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Chapter 1

Introduction

Week 1
5th to 7th January

About this Course
Three topics covered in this course:

• Causal Inference.
• Missing Data.
• Measurement Error.

Basics in Biostatistics
Review:

• Experimental Studies vs. Observational Studies.
• Statistics of Interest.
• Using Regression Models.
• Association vs. Causation.

Research Questions
Questions to ask when studying a disease:

• Which factors are associated with a given disease? These so-called risk factors are sometimes referred to
as predictors, explanatory variables, covariates, independent variables, or exposure variables, etc.

• Which factors are associated with the duration of a given disease?
• Correlation (Association) does not imply causation.
• Ultimately, we want to ask: which factors cause the disease, or which factors determine the duration of the

disease?
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Types of Studies
• Experimental studies.
• Observational studies.

1.1 Experimental Studies
• In an experimental study, the investigator can manipulate the main (risk) factor of interest, while controlling

for other factors.
• In a randomized experimental study, such as a clinical trial, eligible people are randomly assigned to one

of two or more groups. One group receives the treatment (such as a new drug) while the control group
receives nothing or an inactive placebo.

• Due to randomization, the investigator can control for both known and unknown factors, while investigating,
typically, a treatment comparison.

Randomization and Causal Inference:
• Randomization is the perfect/golden design for causal inference.
• Random assignment of treatment (exposure) ensures balance across study arms with respect to observed

and unobserved risk factors.
• Direct comparisons between treatment groups can be made.
• Any difference can be attributed to the causal effect of treatment.
• Randomization is not always feasible due to ethical/economic reasons.
• Even the treatment is randomized, the participant may not comply with the assigned treatment: compliance

issue.

1.2 Observational Studies
• These studies are typically based on sampling populations with subsequent measurement of various factors

of interest. In this setting, we cannot even take advantage of a naturally occurring experiment that changed
risk factor status conveniently.

• It is sometimes useful to use these studies to look at the natural history of a disease, but any attempt to
identify causality between a risk factor and outcome must be done with great caution.

• There is no experimental setting, as study participants typically self-reflect their exposure categories.
Nevertheless, in large part due to ethics, such studies are most often to what we have access in Biostatistics.

Examples of Observational Studies

1. – Risk factor: cigarette smoking.
– Outcome: bladder cancer.

2. – Risk factor: distance of home from hazardous waste site.
– Outcome: respiratory disease.

• Three most popular observational studies:
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1. Cross-sectional studies.
2. Cohort studies.
3. Case-control studies.

• No control over which subjects have the exposure and which do not.
• Exposed and Unexposed groups may be quite different with respect to other subject characteristics.
• Differences in the outcome are not only due to the (risk) factor of interest, but also because of the masking

effect of other covariates (confounders).

Confounding Issue

Gender (X)

Smoking (A) Life Expectancy (Y )

Another Example of Confounding

Critical Condition (X)

Heart Transplant (A) Death (Y )

1.2.1 Cross-sectional Studies
• Individuals are selected from the target population and their status with respect to the risk factor and the

disease status is ascertained at the same time.
• The data represents a snapshot view of the relation between the risk factor and the event occurrence.
• Surveys are often cross-section in nature where associations are of interest and less priority is given to

establishing causation.
• Advantage: cross-sectional studies are typically short.
• Disadvantage: a serious problem with such cross-sectional studies is the inability to determine whether the

disease outcome or the risk factor occurred first, again this makes causal inferences more problematic or
almost impossible.

1.2.2 Cohort Studies
• Cohort studies typically include obtaining two groups from a pre-determined # of individuals, one possess-

ing and the other not possessing a risk factor of interest. Subsequent counts of cases (and non-cases) of a
disease of interest are then recorded.

• Much more often than not, cohort studies are prospective, but there are retrospective (or historical) cohort
studies as well.

Table representing simple cohort study with sampling based on risk-factor status:

Disease
Risk Factor Present (D) Absent (Dc) Total
Present (E) a b n1
Absent (Ec) c d n2
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• a ∼ BIN
(
n1,P(D | E)

)
.

• c ∼ BIN
(
n2,P(D | Ec)

)
.

1.2.3 Case-control Studies
• In case-control studies, the direction of sampling differs from that of cohort studies. Specifically, the invest-

igator selects a pre-determined # of disease cases and non-cases (i.e., controls), then looks retrospectively
to see the # of individuals with and without the risk factor in each group.

• Case-control studies are retrospective studies.
Table representing simple case-control study with sampling based on disease status:

Disease
Risk Factor Present Absent
Present a b
Absent c d

Total n1 n2

• a ∼ BIN
(
n1,P(E |D)

)
.

• b ∼ BIN
(
n2,P(E |Dc)

)
.

Week 2
10th to 14th January

Statistics of Interest
• Relative Risk.
• Excess Risk.
• Odds Ratio.
• Others: such as attributable risk, hazard ratio.

1.3 Relative Risk

The relative risk (RR) of an outcome (e.g., disease) D associated with a binary risk factor E is:

RR = P(D | E)
P(D | Ec) ,

where 0 ≤ RR < ∞.

Remarks:
(1) The upper limit in practice typically will have a finite constraint. Noting that P(D |E) ≤ 1, we have

RR ≤ 1
P(D | Ec) < ∞,
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assuming P(D | Ec) ̸= 0.
(2) If there exists absolutely no association between D and E, this results in RR = 1, that is, this will

happen when P(D | E) = P(D | Ec).
(3) If RR > 1, there is greater risk or probability of D when E is present versus absent.
(4) If RR < 1, there is lower risk or probability of D when E is present versus absent.

RR Calculation

• Recall the table for a cohort study.

Disease
Risk Factor Present (D) Absent (Dc) Total
Present (E) a b n1
Absent (Ec) c d n2

Then,
R̂R = a/(a+ b)

c/(c+ d) = a/n1

c/n2
.

• To make inference, we have, approximately,

log(R̂R) ∼ N
(

log(RR),Var
(
log(RR)

))
,

where
Var
(
log(RR)

)
≈ 1
a

− 1
a+ b

+ 1
c

− 1
c+ d

.

• The (approximate) 95% confidence interval for log(RR) is

log(R̂R) ± 1.96
√

V̂ar
(
log(R̂R)

)
.

• The (approximate) 95% confidence interval for RR is:

exp
{

log(R̂R) ± 1.96
√

V̂ar
(
log(R̂R)

)}

For RR, we have
Var
(
log(R̂R)

)
≈ 1
a

− 1
a+ b

+ 1
c

− 1
c+ d

.

Proof: Define p̂a = a
n1

and p̂c = c
n2

. Assuming the exposed and unexposed groups are independent, we
have

Var
(
log(R̂R)

)
= Var

(
log(p̂a) − log(p̂c)

)
= Var

(
log(p̂a)

)
− Var

(
log(p̂c)

)
.
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Using, Taylor’s approximation, we have

log(p̂a) ≈ log(pa) + d log(pa)
dpa

(p̂a − pa)

= log(pa) + (p̂a − pa)
pa

.

Since a ∼ BIN(n1, pa),

Var
(
log(p̂a)

)
≈ Var(p̂a)

p2
a

=
Var
(

a
n1

)
p2

a

= n1pa(1 − pa)
n2

1p
2
a

= 1 − pa

n1pa
.

Therefore,
V̂ar
(
log(p̂a)

)
= 1 − p̂a

n1p̂a
= b

a(a+ b) .

Similarly,
V̂ar
(
log(p̂c)

)
= d

c(c+ d) .

Therefore,

V̂ar
(
log(R̂R)

)
= b

a(a+ b) + d

c(c+ d)

= 1
a

− 1
a+ b

+ 1
c

− 1
c+ d

.

Remarks:
(1) Relative risk (or sometimes called risk ratio) is a common measure of the disease-exposure association

from cohort studies.
(2) In general, the relative risk is not symmetric in the role of D and E, that is,

P(D | E)
P(D | Ec) ̸= P(E |D)

P(E |Dc) .

1.4 Excess Risk
While RR is a relative measure of risk, it is sometimes of interest to look at absolute measures of risk. One such
measure is excess risk.

The excess risk (ER) is:
ER = P(D | E) − P(D | Ec),

where −1 ≤ ER ≤ 1.

Remark:
(1) ER = 0 means no excess risk (null value).
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(2) ER > 0 means greater risk of D for E versus Ec.
(3) ER < 0 means lower risk of D for E versus Ec.

ER Calculation

• Recall the table for a cohort study.

Disease
Risk Factor Present (D) Absent (Dc) Total
Present (E) a b n1
Absent (Ec) c d n2

Then,
ÊR = a

a+ b
− c

c+ d
= p̂a − p̂c.

• To make inference, we have, approximately,

ÊR ∼ N
(
ER,Var

(
ÊR
))
,

where
Var(ÊR) ≈ ab

(a+ b)3 + cd

(c+ d)3 .

• The (approximate) 95% confidence interval for ER is:

ÊR ± 1.96
√

V̂ar
(
ÊR
)
.

For ER, we have
Var(ÊR) ≈ ab

(a+ b)3 + cd

(c+ d)3 .

Proof: Define p̂a = a
n1

and p̂c = c
n2

. Note that a ∼ BIN(n1, pa) and c ∼ BIN(n2, pc). Hence,

Var(ÊR) = Var(p̂a − p̂c)
= Var(p̂a) + Var(p̂c)

= Var
(
a

n1

)
+ Var

(
c

n2

)
= pa(1 − pa)

n1
+ pc(1 − pc)

n2
.

Therefore,

V̂ar(ÊR) = p̂a(1 − p̂a)
n1

+ p̂c(1 − p̂c)
n2

= ab

(a+ b)3 + cd

(c+ d)3 .
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1.5 Odds Ratio

The odds of disease for the exposed group is

P(D | E)
P(Dc | E) = P(D | E)

1 − P(D | E) .

The odds of disease for the unexposed group is

P(D | Ec)
P(Dc | Ec) = P(D | Ec)

1 − P(D | Ec) .

The odds ratio for measuring the association of disease with the exposed versus unexposed groups is

OR = P(D | E)/P(Dc | E)
P(D | Ec)/P(Dc | Ec) = P(D | E)/[1 − P(D | E)]

P(D | Ec)/[1 − P(D | Ec)] .

Remarks:
• OR = 1 means no association between D and E.
• OR > 1 means greater odds of disease when E is present.
• OR < 1 means lower odds of disease when E is present.

OR Calculation

• For general study with binary disease and exposure (risk factor):

Disease
Risk Factor Present (D) Absent (Dc)
Present (E) a b
Absent (Ec) c d

Here,
ÔR = P(D | E)/P(Dc | E)

P(D | Ec)/P(Dc | Ec) =
(

a
a+b

)/(
b

a+b

)(
c

c+d

)/(
d

c+d

) = ad

bc
.

• To make inference, we have approximately,

log(ÔR) ∼ N
(
log(OR),Var

(
log(ÔR)

))
,

where
Var
(
log(ÔR)

)
≈ 1
a

+ 1
b

+ 1
c

+ 1
d
.

Remark: OR is symmetric in roles of D and E:

P(E |D)/P(Ec |D)
P(E |Dc)/P(Ec |Dc) =

(
a

a+c

)/(
c

a+c

)(
b

b+d

)/(
d

b+d

) = ad

bc
.

Therefore, the OR for D associated with E is equal to the OR for E associated with D. It is this symmetry that
makes OR a popular “risk” measure for case-control studies, where sampling is done on disease status, not risk
factor status.
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1.6 Comments
The various types of probabilities that may be of interest:

• Joint probabilities: P(D,E), P(D,Ec), P(Dc, E), and P(Dc, Ec).
• Marginal probabilities: P(D), P(E), P(Dc), and P(Ec).
• Conditional probabilities: P(D | E), P(D | Ec), P(E |D), and P(E |Dc).

Cross-sectional Study:
• All the above probabilities can be estimated by the observed proportions if the sampling is simple random

sampling.
Cohort Study:

• P(D | E), P(Dc | E), P(D | Ec), and P(Dc | Ec) can be estimated.
• Marginal probabilities P(D), P(E), and joint probabilities such as P(D,E) cannot be estimated.
• RR, ER, and OR can be estimated.

Case-control Study:
• Only P(E |D), P(Ec |D), P(Ec |Dc), and P(E |Dc) can be estimated.
• RR and ER cannot be estimated.
• OR can be estimated. Furthermore, RR ≈ OR when the disease is rare.

If the disease is rare in a case-control study (i.e., P(D) ≈ 0), we have RR ≈ OR.

Proof:

OR = P(D | E)/P(Dc | E)
P(D | Ec)/P(Dc | Ec)

= P(D | E)
P(D | Ec)

≈1︷ ︸︸ ︷
P(Dc | Ec)
P(Dc | E)︸ ︷︷ ︸

≈1

≈ P(D | E)
P(D | Ec)

= RR.

1.7 Regression Models
• Linear model.
• Log-linear model.
• Probit model.
• Logistic regression model.

Notation:
• X: exposure variable of interest.
• D: disease status.
• Px: P(D = 1 |X = x), that is, how the risk of disease changes according to the exposure variable.



CHAPTER 1. INTRODUCTION 12

1.7.1 Linear Model

Px = P(D = 1 |X = x) = α+ βx.

• α = Px=0: the baseline risk.
• β = Px+1 − Px: excess risk with 1 unit increase in exposure.

Drawbacks:
(1) Possible to produce P̂x < 0 or P̂x > 1.
(2) Can’t be directly applied to case-control data.

1.7.2 Log-Linear Model

log(Px) = log
(
P(D = 1 |X = x)

)
= α+ βx.

• α = log(Px=0): the log baseline risk.
• β: log relative risk associated with 1 unit increase in exposure.

Drawbacks:
(1) Possible to produce P̂x > 1.
(2) Can’t be directly applied to case-control data.

1.7.3 Probit Model

Px = P(D = 1 |X = x) = Φ(α+ βx),

where Φ(u) is the cdf of a standard normal distribution.
• α = Φ−1(Px=0).
• β > 0: the risk increases as X increases.
β < 0: the risk increases as X decreases.

Drawbacks:
(1) There is no natural interpretation of α and α in terms of association.
(2) Can’t be directly applied to case-control data.

1.7.4 Logistic Regression Model

Px = P(D = 1 |X = x) = 1
1 + exp

{
−(α+ βx)

} .
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• α = log
(

Px=0

1 − Px=0

)
: the log odds of disease at baseline.

• β: log odds ratio associated with 1 unit increase in exposure.

Advantages:

(1) 0 < P̂x < 1.
(2) exp{β}: the odds ratio, which is symmetric with respect to D and E if both are binary.
(3) Can be applied to case-control data.

Remarks:
(1) “Correlation does not imply causation.”
(2) Regression models tell us correlational/associational relationship between the exposure and the disease

outcome
(3) Conclusion: We need better tools to define causality
(4) Solution: Potential outcomes framework (Chapter 2).



Chapter 2

Causal Inference and Potential Outcomes

Week 3
17th to 21st January

2.1 Causal Inference

2.1.1 Introduction
Reference

• Hernán M.A., & Robins J.M. (2020). Causal Inference: What If. Boca Raton: Chapman Hall/CRC.
https://www.hsph.harvard.edu/miguel-hernan/causal-inference-book/

Causal Inference

Two notions of causation:
• Causes of an effect/outcome.
• Effects of a cause.

Causes of an effect

• What are causes of lung cancer?
• What was the cause of outbreak of food poisoning?

Effects of a cause/intervention

• Does smoking cause lung cancer?
• Does mixed feeding cause obesity?
• How strong is the effect?

• We concentrate on effects of a cause/treatment/intervention.
• Fundamentally simpler question: search is for useful information rather than complete scientific under-

standing.
• Typical approach for estimating causal effects (which may be problematic): collect sample on treat-

ments/exposures, outcomes, and other variables in population; Use standard statistical methods (such as
multiple regression) to derive inferences about associations between observable variables.

14

https://www.hsph.harvard.edu/miguel-hernan/ causal-inference-book/
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A Note

• In pharmaceutical companies, people used to believe conducting randomized clinical trials is the only way
to evaluate a newly developed drug. However, there is a shifting trend going on right now because of:

– Difficult to find control subjects.
– Compliance issue.
– Exclusion criteria.
– Cost issue.

• New trend: utilizing existing Electronic Health Records data to help find controls.
• The study is not randomized any more: observational study.

Draw Causality

Observational Studies

• No control over which subjects have the exposure and which do not.
• Exposed and Unexposed groups may be quite different with respect to other subject characteristics
• It is sometimes useful to use these studies to look at the natural history of a disease, but any attempt to

identify causality b/t a risk factor and outcome must be done w/ great caution.

2.1.2 Confounding
Confounding Issue in Observational Studies

Differences in the outcome are not only due to the treatment, but also because of the masking effect of
covariates (confounders).

Gender (X)

Smoking (A) Life Expectancy (Y )

Here, gender is known as a confounder. Very often, in real applications, the list of potential confounders
could be very large, and even high-dimensional.

Another Example of Confounding

Researchers find when the consumption of ice cream increases, the death from drowning increases. Does
eating ice cream lead to drowning?

Summer (X)

Ice cream (A) Drowning (Y )

Here, summer (hot weather) is a confounder.
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Potential Outcomes Framework

• Useful to have more precise definitions of causal effects.
• Demystifies the process of going from association to causation.
• Allows explicit statements regarding what assumptions are necessary to justify causal inferences.
• Allows for more critical, better informed evaluation of causal claims.
• Helps determine when familiar methods useful or unfamiliar methods necessary.
• Motivates derivation and use of unfamiliar methods.

2.2 Potential Outcomes Framework

Definition of a Causal Effect

Suppose we have data on subjects i = 1, . . . , n.
• Xi = (Xi1,Xi2, . . . ,Xip)⊤: baseline covariates/potential confounders.
• Ai: treatment assignment/exposure status for subject i

Ai =
{

1, if exposed/treated,
0, if unexposed/treated.

• Yi: observed outcome for subject i.
Counterfactuals/Potential outcomes

• Y 1
i : the potential outcome if subject i were treated/exposed.

• Y 0
i : the potential outcome if subject i were untreated/unexposed.

The individual-level causal effect for subject i is:

Y 1
i − Y 0

i .

Causal Estimand
The average causal effect (ACE) is:

ACE = E[Y 1
i − Y 0

i ] = E[Y 1
i ] − E[Y 0

i ],

where
• E[Y 1

i ] is the mean potential outcome had all subjects in the population were treated/exposed, and
• E[Y 0

i ] is the mean potential outcome had all subjects in the population were untreated/unexposed.

If Y is binary,
• ACE is causal excess risk (omit subscript i):

E[Y 1 − Y 0] = E[Y 1] − E[Y 0] = P(Y 1 = 1) − P(Y 0 = 1).
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• Causal relative risk:
P(Y 1 = 1)
P(Y 0 = 1) .

• Causal odds ratio:
P(Y 1 = 1)/P(Y 1 = 0)
P(Y 0 = 1)/P(Y 0 = 0) .

• Crude excess risk:
P(Y = 1 |A = 1) − P(Y = 1 |A = 0).

• Crude relative risk:
P(Y = 1 |A = 1)
P(Y = 1 |A = 0) .

• Crude odds ratio:
P(Y = 1 |A = 1)/P(Y = 0 |A = 1)
P(Y = 1 |A = 0)/P(Y = 0 |A = 0) .

A Toy Example

Assume we have a population of 8 subjects:

A Y 0 Y 1

S1 0 0 1
S2 0 1 1
S3 0 0 0
S4 0 0 0
S5 1 0 0
S6 1 1 0
S7 1 1 1
S8 1 0 1

We get
Causal excess risk (ACE) = P(Y 1 = 1) − P(Y 0 = 1) = 4

8 − 3
8 = 1

8 .

For crude excess risk, we have
A Y 0 Y 1 Y

S1 0 0 1 0
S2 0 1 1 1
S3 0 0 0 0
S4 0 0 0 0
S5 1 0 0 0
S6 1 1 0 0
S7 1 1 1 1
S8 1 0 1 1

Crude excess risk = P(Y = 1 |A = 1) − P(Y = 1 |A = 0) = 2
4 − 1

4 = 1
4 .
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Fundamental Problem of Causal Inference

For subject i, we only get to observe one of Y 1
i and Y 0

i , that is,

Yi = Y 1
i Ai + Y 0

i (1 −Ai).

Remarks:
(1) In the literature, the above equality is often referred as the consistency assumption for causal

inference
(2) For each subject i, one of the two potential outcomes is always missing.
(3) For this reason, many people believe causal inference is essentially a missing data problem.

2.3 Estimation

In randomized studies:
• E[Y |A = 1] = E[Y 1 |A = 1] = E[Y 1], and
• E[Y |A = 0] = E[Y 0 |A = 0] = E[Y 0].

Consequently, an unbiased estimate of ACE is:

ÂCE = Ê[Y 1] − Ê[Y 0]

= Ê[Y |A = 1] − Ê[Y |A = 0]

=
∑n

i=1 YiAi∑n
i=1 Ai

−
∑n

i=1 Yi(1 −Ai)∑n
i=1(1 −Ai)

,

where
• ∑n

i=1 Ai = n1 is the number of treated/exposed subjects in the sample, and
• ∑n

i=1(1 −Ai) = n0 is the number of untreated/unexposed subjects in the sample.

In observational studies:
• E[Y |A = 1] = E[Y 1 |A = 1] ̸= E[Y 1], and
• E[Y |A = 0] = E[Y 0 |A = 0] ̸= E[Y 0],

where the inequalities are due to selection bias. Therefore, the estimator in randomized studies is biased
for ACE in observational studies.
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Assumptions for Causal Inference

2.4 Assumption 1

Assumption 1: Strongly Ignorable Treatment Assignment (SITA)

(Y 0, Y 1) ⊥⊥ (A | X).

Remarks:
• In observational studies, it meansX includes all possible confounders (no unmeasured confounders).
• In randomized studies, we have (Y 0, Y 1) ⊥⊥ A.
• Within a subset of subjects with similarX, exposure/treatment can be viewed as if it were randomly

assigned.
• This assumption cannot be verified on the observed data; more plausible as the size of X grows.
• If violated, instrumental variable approach can be used in some cases.

2.5 Assumptions 2–4

Assumption 2: Stable Unit Treatment Value Assumption (SUTVA)

(Y 0
i , Y

1
i ) ⊥⊥ Aj for i ̸= j.

Remarks:
• Each subject’s potential outcomes are not influenced by the actual treatment status of other subjects.
• Counter-example: infectious disease, family studies.
• If violated, divide the subjects into clusters.

Assumption 3: Common Support Condition (CSC)

0 < P(A = 1 |X = x) < 1 for any x.

Remarks:
• It means that Y 0 and Y 1 should both exist in principle.
• Can be violated if a particular group of subjects in the population always receive the treatment or

never receive the treatment.
• If violated, re-define the population (exclude those subjects).

Assumption 4: Consistency

Y = Y 1A+ Y 0(1 −A).
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Remarks:
• The observed outcome for a subject equals to the potential outcome under the actual treatment

assignment the subject receives.
• Can be violated if different versions of treatment have different causal effects.

2.6 Propensity Scores

Motivation for Propensity Scores
The SITA assumption (Y 0, Y 1) ⊥⊥ (A | X) gives us some ideas about how to estimate causal effects for observa-
tional studies.

• If we condition on X, we can estimate the causal effect as in a randomized study, which is relatively
straightforward.

• However, if X contains a large number of covariates, conditioning on X is challenging (curse of dimension-
ality).

• Solution: propensity score methods

Propensity score is the conditional probability of being exposed/treated given baseline covariates:

ps(x) = P(A = 1 |X = x).

Also,
ps(X) = P(A = 1 |X).

Remarks:
• In simple randomized studies, ps(x) = 0.5.
• In observational studies, ps(x) is unknown and must be estimated.

Properties
Properties of Propensity Score

• Propensity score is a balancing score:
X ⊥⊥ (A | ps(X))

• If the treatment is strongly ignorable given X, that is,

(Y 0, Y 1) ⊥⊥ (A | X),

then it is strongly ignorable given ps(x)

(Y 0, Y 1) ⊥⊥ (A | ps(X)).

• ps(x) is a scalar, free of dimension of X.
• It is a summary of the contribution of all baseline characteristics to the exposure/treatment assignment.
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2.7 Properties of Propensity Score

The propensity score is a balancing score, that is,

X ⊥⊥ (A | ps(X))

Proof: Rosenbaum and Rubin (1983).

P
(
A = 1

∣∣ ps(X), X
)

= P(A = 1 |X) ps(X) is a function of X
= ps(X).

On the other hand,

P
(
A = 1

∣∣ ps(X)
)

= E
[
A
∣∣ ps(X)

]
since A is binary

= E
[
E[A | X︸︷︷︸

C1

]
∣∣ ps(X)︸ ︷︷ ︸

C2

]
LIE since C2 = f(C1)

= E
[
ps(X)

∣∣ ps(X)
]

= ps(X).

Therefore,
P
(
A = 1

∣∣ ps(X), X
)

= P
(
A = 1

∣∣ ps(X)
)
.

In other words, X ⊥⊥ (A | ps(X)).

If (Y 0, Y 1) ⊥⊥ (A | X), then
(Y 0, Y 1) ⊥⊥ (A | ps(X)).

Proof:

P(A = 1 | Y 0, Y 1, ps(X)) = E[A | Y 0, Y 1, ps(X)] since A is binary
= E

[
E[A | Y 0, Y 1, X︸ ︷︷ ︸

C1

]
∣∣ Y 0, Y 1, ps(X)︸ ︷︷ ︸

C2

]
LIE since C2 = f(C1)

= E
[
E[A |X]

∣∣ Y 0, Y 1, ps(X)
]

SITA
= E

[
ps(X)

∣∣ Y 0, Y 1, ps(X)
]

= ps(X)
= P

(
A = 1

∣∣ ps(X)
)
. from the previous result

Therefore,
(Y 0, Y 1) ⊥⊥ (A | ps(X)).

Week 4
24th to 28th January
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2.8 Modeling of Propensity Scores
Estimation of Propensity Scores

• In observational studies, ps(x) is unknown and must be estimated.
• Logistic regression is the most common approach:

logit
(
ps(x)

)
= x⊤β.

– For a subject with covariates x, p̂s(x) = expit(x⊤β̂).
– The goal of fitting a propensity score model is not interpretation (overfitting is okay).

Variable selection in PS model:
X2 X1 X3

A Y

• X1: real confounder.
• X2: marginally related to the treatment.
• X3: marginally related to the outcome.
• We should include X1 and X3 into the propensity score model.

Estimation of Propensity Scores
Remember when we estimate propensity scores, we model A (assuming binary) as a function of X. Therefore,
we may employ non-parametric classification methods to estimate propensity scores:

• Classification and regression trees.
• Random forest.
• Generalized boosted model.
• Support vector machine.
• K nearest neighbours.



Chapter 3

Propensity Score-Based Methods

PS analysis is a two-step procedure:
1. Estimate propensity scores p̂s(Xi) for i = 1, . . . , n using data (Ai, Xi), i = 1, . . . , n.
2. Using p̂s(Xi), i = 1, . . . , n to adjust the original sample and estimate causal effects:

• Matching.
• Stratification.
• Inverse Probability Weighting (IPW).
• Double-Robust Estimation.

3.1 Method 1: Matching
Basic idea: Consider matching strata, S1, . . . , SK

E[Y 1 − Y 0] =
K∑

k=1
E[Y 1 − Y 0 |X ∈ Sk]P(X ∈ Sk),

where for all X ∈ Sk, we have balance.
• E[Y 1 − Y 0 |X ∈ Sk] may be estimated as in a randomized study by using data in Sk.

• P(X ∈ Sk) ≈ number of subjects in Sk

n .
• Problem: if size of X is moderate or high-dimensional, it is hard to define the strata (curse of dimensional-

ity).
• Solution: use the same stratified estimation strategy as before, but use ps(X) instead of X to stratify.

E[Y 1 − Y 0] =
K∑

k=1
E
[
Y 1 − Y 0 ∣∣ ps(X) ∈ Sk

]
P
(
ps(X) ∈ Sk

)
.

• Lots of different matching algorithms available
• One example: 1 to 1 nearest available matching on estimated propensity scores:

1. Randomly order the treated and untreated (control) subjects.
2. Select the first treated subject and find the control subject with the closest propensity score.
3. Both subjects are then removed from the pool and then repeat step 2 until all the treated subjects are

matched.
4. Fit an outcome model using the matched dataset.

23
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A Toy Example

A = 1

0.2

0.8

0.5

0.6

A = 0

0.1

0.2

0.3

0.5

0.6

Once the matched dataset is formed, we have

ÂCE = Ȳ A=1,matched − Ȳ A=0,matched.

Different variations of matching algorithm:
• 1 to 1 versus 1 toM matching (M = 3 is a common choice).
• With replacement versus without replacement matching.
• Matching without calipers versus matching within calipers (only two closest subjects whose propensity

score difference is within a prespecified caliper, say, 0.2, will be matched).
• Other variations.
• Advantage: matching based on propensity scores is far simpler than matching on even a modest number

of risk factors simultaneously.
• Disadvantage: obtaining valid standard error of the causal estimator is challenging. In R, use Matching

package.

3.2 Method 2: Stratification
Basic idea: create only a few strata; in each stratum, individuals have similar, but not identical, values of p̂s(X).

Algorithm for Stratification

1. Divide the subjects intoK (usuallyK = 5) strata on the basis of the quantiles of p̂s(Xi), i = 1, . . . , n.
2. The causal effect is estimated within each stratum as in a randomized study: For the jth stratum,

defined as Sj:

ÂCE(j)
=
∑

i∈Sj
YiAi∑

i∈Sj
Ai

−
∑

i∈Sj
Yi(1 −Ai)∑

i∈Sj
(1 −Ai)

,

and
ÂCE = 1

K

K∑
j=1

ÂCE(j)
.

• Advantage: Simpler than matching algorithms.
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• Disadvantage:
– It is possible to have no treated/untreated subjects in a particular stratum.
– There is no good way to obtain valid standard error of ÂCE.

3.3 Method 3: Inverse Probability Weighting

E
[
AY

ps(X)

]
= E[Y 1] and E

[
(1 −A)Y
1 − ps(X)

]
= E[Y 0].

Proof: Lunceford & Davidian (2004).

E
[
AY

ps(X)

]
= E

[
E
[
AY

ps(X)

∣∣∣∣ Y 1, X

]]
= E

[
E
[
AY 1

ps(X)

∣∣∣∣ Y 1, X

]]
since AY 1 + (1 −A)Y 0 = Y

= E
[

Y 1

ps(X) E
[
A
∣∣ Y 1, X

]]
= E

[
Y 1

ps(X) E[A |X]
]

SITA

= E
[

Y 1

ps(X) ps(X)
]

= E[Y 1].

Similarly,

E
[

(1 −A)Y
1 − ps(X)

]
= E

[
E
[

(1 −A)Y
1 − ps(X)

∣∣∣∣ Y 0, X

]]
...
= E[Y 0].

We used SITA: (Y 1, Y 0) ⊥⊥ (A | X), however we only need WITA: Y 1 ⊥⊥ (A | X) and Y 0 ⊥⊥ (A | X).

• Weighting scheme:
– For those in the treatment group (Ai = 1), assign a weight of wi = 1/ p̂s(Xi).
– For those in the control group (Ai = 0), assign a weight of wi = 1/(1 − p̂s(Xi)).

• By weighting, each subject is replicated wi times. IPW creates a pseudo-population in which A and X are
not associated (no confounding).

Example: IPW Weighting

• Before weighting:

X

A Y
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• After weighting:

X

A Y

X and A are no longer confounded.

• To estimate E[Y 1], we take the weighted average of the observed Y in the treatment group, that is,

1
n

n∑
i=1

AiYi

p̂s(Xi)
.

• To estimate E[Y 0], we take the weighted average of the observed Y in the control group, that is,

1
n

n∑
i=1

(1 −Ai)Yi

1 − p̂s(Xi)
.

• The consistent (asymptotically unbiased) estimator for ACE is:

τ̂IPW1 = 1
n

n∑
i=1

AiYi

p̂s(Xi)
− 1
n

n∑
i=1

(1 −Ai)Yi

1 − p̂s(Xi)
.

• A more efficient estimator for ACE is:

τ̂IPW2 =
( n∑

i=1

Ai

p̂s(Xi)

)−1 n∑
i=1

AiYi

p̂s(Xi)
−
( n∑

i=1

1 −Ai

1 − p̂s(Xi)

)−1 n∑
i=1

(1 −Ai)Yi

1 − p̂s(Xi)
.

• Properties (such as standard error) of IPW estimators should reflect the fact that ps(Xi)’s are estimated.
– In R, use survey or geepack packages to get standard errors of τ̂ .
– Bootstrap approach: A random re-sampling approach to measure the accuracy of a sample estimator.

Bootstrap Approach for IPW

• Sample b = 1, . . . , B (say B = 500) datasets of size n with replacement from the original data.

• For each bootstrapped sample, estimate τ̂ (b)
IPW1

and τ̂ (b)
IPW2

, b = 1, . . . , B.
• Obtain

V̂ar(τ̂IPW1) = 1
B − 1

B∑
b=1

(τ̂ (b)
IPW1

− ¯̂τIPW1)2,

where ¯̂τIPW1 = 1
B

∑B
b=1 τ̂

(b)
IPW1

.

• The same procedure applies to V̂ar(τ̂IPW2).
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3.4 Method 4: Double-Robust Estimation
• Problem: If the propensity score model is incorrect, Matching, Stratification and IPW estimators will be

biased.
• Solution: Combine IPW with the regression modelling approach to protect against model misspecification.

• “Double-robust” means τ̂DR is consistent for ACE, if one of the following is true:
– The model for the propensity score, ps(X,β), is correctly specified:

logit
(
ps(X,β)

)
= X⊤β.

– The models for the outcome regression, ma(X; γa), a = 0, 1, are correctly specified:

m1(X; γ1) = E[Y |X,A = 1] = X⊤γ1.

m0(X; γ0) = E[Y |X,A = 0] = X⊤γ0.

• The consistency of the estimator does not require both sets of models to be correct.
• The DR estimator:

τ̂DR = 1
n

n∑
i=1

AiYi − [Ai − p̂s(Xi)]m̂1(Xi)
p̂s(Xi)

− 1
n

n∑
i=1

(1 −Ai)Yi + [Ai − p̂s(Xi)]m̂0(Xi)
1 − p̂s(Xi)

= τ̂1,DR − τ̂0,DR,

where τ̂1,DR estimates E[Y 1] and τ̂0,DR estimates E[Y 0].

Remark: The above estimator is also called augmented estimator since it can be viewed as taking the
inverse weighted estimator and “augmenting” it by a second term.

Implementation of Double-Robust Estimation

1. Fit logistic regression model for the propensity score

logit
(
P(Ai = 1 |Xi = xi)

)
= x⊤

i β, p̂si = expit(x⊤
i β̂).

2. Fit regression model for the outcome using data from the treatment group only, predict for all
subjects

E[Yi |Xi = xi, Ai = 1] = x⊤
i γ1, m̂1(xi) = x⊤

i γ̂1.

3. Fit a regression model for the outcome (same form as above) using data from the control group
only, predict for all subjects

E[Yi |Xi = xi, Ai = 0] = x⊤
i γ0, m̂0(xi) = x⊤

i γ̂0.

4. Plug in predicted values into the expression for τ̂DR.

• Properties (such as standard error) of the DR estimator should reflect the fact that ps(Xi)’s are estimated.
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• A formula for the theoretical standard error

V̂ar(τ̂DR) = 1
n2

n∑
i=1

Î2
i ,

where

Îi = AiYi − [Ai − p̂s(Xi)]m̂1(Xi)
p̂s(Xi)

− (1 −Ai)Yi + [Ai − p̂s(Xi)]m̂0(Xi)
1 − p̂s(Xi)

− τ̂DR.

Note: The formula only works well if both the propensity score and outcome regression models are correctly
specified.

Bootstrap Approach for Double-Robust Estimation

• Sample b = 1, . . . , B (say B = 500) datasets of size n with replacement from the original data.

• For each bootstrapped sample, estimate τ̂ (b)
DR , b = 1, . . . , B.

• Obtain
V̂ar(τ̂DR) = 1

B − 1

B∑
b=1

(τ̂ (b)
DR − ¯̂τDR)2,

where ¯̂τDR = 1
B

∑B
b=1 τ̂

(b)
DR .

3.5 Case Study I: Propensity Score Analysis
Propensity Score Methods:

• Matching.
• Stratification.
• Inverse Probability Weighting.
• Double-Robust Estimation.
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Marginal Structural Models

Week 5
0131 to 4th February

Reference: Robins, James M., Miguel Angel Hernan, and Babette Brumback. “Marginal structural models and
causal inference in epidemiology.” (2000): 550–560.

4.1 MSM

Definition
• In regression models, we assume

E[Y |A = a] = β0 + β1a.

LHS represents “average” response in members of the population who actually received treatment a.
• In MSMs, we assume

E[Y a] = β∗
0 + β∗

1a.

LHS represents “average” response under treatment a in the entire population; MSMs model the potential
outcomes directly.

• If A is unconfounded, β∗
1 = β1 because

E[Y |A = a] = E[Y a |A = a] = E[Y a].

• If A is confounded, β∗
1 ̸= β1.

– β∗
1 cannot be directly estimated.

– Idea: use inverse probability weighting (IPW) to create a pseudo-population in which A is uncon-
founded.

Parameters of Interest
If both A and Y are binary, recall

• Crude excess risk:
P(Y = 1 |A = 1) − P(Y = 1 |A = 0).

• Crude relative risk:
P(Y = 1 |A = 1)
P(Y = 1 |A = 0) .

29
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• Crude odds ratio:
P(Y = 1 |A = 1)/P(Y = 0 |A = 1)
P(Y = 1 |A = 0)/P(Y = 0 |A = 0) .

For comparison,
• Crude excess risk:

P(Y = 1 |A = 1) − P(Y = 1 |A = 0).

• Causal relative risk:
P(Y 1 = 1)
P(Y 0 = 1) .

• Causal odds ratio:
P(Y 1 = 1)/P(Y 1 = 0)
P(Y 0 = 1)/P(Y 0 = 0) .

Causal ER, RR and OR can be expressed in terms of parameters of the following MSMs:
• P(Y a = 1) = ψ0 + ψ1a =⇒ Causal ER = ψ1.
• log

(
P(Y a = 1)

)
= θ0 + β1a =⇒ Causal RR = eθ1 .

• logit
(
P(Y a = 1)

)
= β0 + β1a =⇒ Causal OR = eβ1 .

Causal Diagram
TODO

Inverse Probability Weighting
The causal quantities can be consistently estimated in (b)–(c) by fitting the corresponding regression model
(Y ∼ A) with IPW weights:

wi = 1
P(A = Ai |X = Xi)

.

ŵi =


1

p̂s(Xi)
, Ai = 1,

1
1 − p̂s(Xi)

, Ai = 0.

To avoid extreme weights, we may use stabilized weights:

swi = P(A = Ai)
P(A = Ai |X = Xi)

.

• If we have a binary treatment and a binary outcome with a single time point, unstabilized and stabilized
weights yield the same estimates;

• Otherwise, stabilized weights yield more efficient estimates.
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4.2 Example 1: Why does IPW work?

X = 1 X = 0
A = 1 A = 0 A = 1 A = 0

Y = 1 108 24 20 40
Y = 0 252 16 30 10
Total 360 40 50 50

• P(A = 1 |X = 1) = 0.9 and P(A = 1 |X = 0) = 0.5 both imply X and A are confounded.
Aggregated Data:

A = 1 A = 0
Y = 1 128 64
Y = 0 282 26
Total 410 90

• Crude relative risk = P(Y = 1 |A = 1)/P(Y = 1 |A = 0) = 128/410
64/90 = 0.44.

We can calculate causal relative risk by conditioning on X (assuming the ignorability assumption holds):

P(Y 1 = 1) = P(Y = 1 |A = 1, X = 1)P(X = 1) + P(Y = 1 |A = 1, X = 0)P(X = 0)

= 108
360

4
5 + 20

50
1
5

= 0.32.

Similarly,

P(Y 0 = 1) = P(Y = 1 |A = 0, X = 1)P(X = 1) + P(Y = 1 |A = 0, X = 0)P(X = 0)

= 24
40

4
5 + 40

50
1
5

= 0.64.

Therefore, Causal Relative Risk = P(Y 1 = 1)/P(Y 0 = 1) = 0.32/0.64 = 0.5.
Another approach is performing Inverse Probability Weighting:

X A Y n (observed) P(A |X) w N (pseudo)
1 1 1 108 0.9 1.11 120
1 1 0 252 0.9 1.11 280
1 0 1 24 0.1 10 240
1 0 0 16 0.1 10 160
0 1 1 20 0.5 2 40
0 1 0 30 0.5 2 60
0 0 1 40 0.5 2 80
0 0 0 10 0.5 2 20

Pseudopopulation Created by IPW with Binary A Stratified by the Confounder X:

X = 1 X = 0
A = 1 A = 0 A = 1 A = 0

Y = 1 120 240 40 80
Y = 0 280 160 60 20
Total 400 400 100 100

• P(A = 1 |X = 1) = P(A = 1 |X = 0) = 0.5 imply X and A are confounded.
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Aggregated Data from the Pseudopopulation:

A = 1 A = 0
Y = 1 160 320
Y = 0 340 180
Total 500 500

• Crude relative risk = P(Y = 1 |A = 1)/P(Y = 1 |A = 0) = 160/500
320/500 = 0.5.

4.3 Example 2: Fit MSM for Continuous Treatments
Early Dieting in Girls Study: a longitudinal study that aims to examine parental influences on daughters’ growth
and development from ages 5–15.

• Reference: Zhu, Y., Coffman, D. L., Ghosh, D. (2015). A boosting algorithm for estimating generalized
propensity scores with continuous treatments. Journal of causal inference, 3(1), 25–40.

• Treatment (M2WTCON):
– mother’s overall weight concern, calculated as the average score of five likert-scale (1–5) questions
– measured at girls’ age 7
– which can be regarded as a continuous treatment variable

• Outcome (earlydiet): whether the daughter diets between ages 7 and 11, which is binary.
• Baseline confounders (50 covariates in total):

– family history of diabetes and obesity, family income, etc
– daughter’s disinhibition, daughter’s body esteem, etc
– mother’s perception of mother’s current size and mother’s satisfaction with daughter’s current body,

etc.

The following is one sample question in the weight concern questionnaire:
1. How afraid are you of gaining 3 pounds:

(1) Not afraid
(2) Slightly afraid
(3) Moderately afraid
(4) Very afraid
(5) Terrified

• Fit a marginal structural model
logit

(
P(Y a = 1)

)
= β∗

0 + β∗
1a,

where a ∈ [a1, a2] and β∗
1 is the causal log odds ratio for 1 unit increase in the treatment (dosage) A.

• The causal effect β∗
1 can be consistently estimated by fitting the corresponding regression model

logit
(
P(Y = 1)

)
= β0 + β1a,

using IPW where
swi = f(Ai)

f(Ai | Xi)
, i = 1, . . . , n,

where f( · )is the unconditional density and f( · | · ) is the conditional density.
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• Problem: when X is of even moderate dimension, estimate the conditional density is challenging.
• Solution: use normal approximation to estimate the unconditional and conditional density.
• Using normal density, we can estimate f(Ai) by:

f̂(Ai) = 1√
2πσ̂

exp
{

− (Ai − µ̂)2

2σ̂2

}
,

where µ̂ and σ̂ are the sample mean and SD of A1, . . . , An.
• Assume

Ai = X⊤
i β + εi,

where εi ∼ N (0, σ2).

• Let ri = Ai −X⊤
i β̂, we can approximate f(Ai | Xi) by f̂(ri | Xi):

f̂(Ai | Xi) = f̂(ri | Xi) = 1√
2πσ̃

exp
{

− (Ai −Xiβ̂)2

2σ̃2

}
,

where σ̃2 is the mean-squared error (MSE).

R Code, not public.

Week 6 | Monday
7th February

Review of chapters 1–4.
Week 6 | Wednesday

9th February

Chapter 5 Part I

Slide 8

Cov(Y,Z) = Cov(β0 + β1A+ v, Z)
= Cov(β0, Z) + Cov(β1A,Z) + Cov(v, Z)
= Cov(β1A,Z)
= β1 Cov(A,Z),

where Cov(β0, Z) = 0 since β0 is a scalar, and Cov(v, Z) = 0 by the exogeneity assumption. Re-arranging,

β̂1 = Ĉov(Y,Z)
Ĉov(A,Z)

=
∑n

i=1(Yi − Ȳ )(Zi − Z̄)∑n
i=1(Ai − Ā)(Zi − Z̄)

Bias of β̂: By the Weak Law of Large Numbers (WLLN),

β̂1
P−−−−→

n→∞

Cov(Y,Z)
Cov(A,Z) .
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RHS:
Cov(β0 + β1A+ v, Z)

Cov(A,Z) = β1 Cov(A,Z) + Cov(v, Z)
Cov(A,Z)

= β1 + Cov(v, Z)
Cov(A,Z)

= β1 + Corr(v, Z)σvσZ

Corr(A,Z)σAσZ

= β1 + Corr(v, Z)σv

Corr(A,Z)σA︸ ︷︷ ︸
asymptotic bias

.

If Z is a valid instrument, then Corr(v, Z) = 0, and so

β̂1
P−−−−→

n→∞
β1.

• Corr(v, Z) shows how bad the instrument is; we want this to be small.
• Corr(A,Z) shows us how weak the instrument is; we want this to be large.

Note that if OLS is used here (Y ∼ A),

β̂1,OLS = Ĉov(Y,A)
σ̂2

A

P−−−−→
n→∞

Cov(Y,A)
σ2

A

.

RHS:
Cov(β0 + β1A+ v,A)

σ2
A

= β1 Cov(A,A) + Cov(v,A)
σ2

A

= β1 + Cov(v,A)
σ2

A

= β1 + Corr(v,A)σV

σA︸ ︷︷ ︸
asymptotic bias

.

If Corr(v,A) ̸= 0, then β̂1,OLS ̸ P−→ β1. If

Corr(v, Z)
Corr(Z,A) < Corr(v,A),

then two-stage least squares (TSLS) is better than OLS (less asymptotic bias).

Week 7 | Monday
14th February ♡
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Chapter 5 Part II

Slide 3

Under the assumption E[v2] = σ2, we can derive the variance of β̂1:

Var(β̂1) = σ2∑n
i=1(Ai − Ā)

× 1
R2

AZ

,

where R2
AZ is the coefficient of determination in a regression of A on Z. Similarly,

Var(β̂1,OLS) = σ2∑n
i=1(Ai − Ā)

.

Remarks:
(1) Var(β̂1) > Var(β̂1,OLS) since 0 < R2

AZ < 1, so two stage least squares (TSLS) is less efficient than
ordinary least squares (OLS).

(2) If Z is a weak instrument, then R2
AZ is very small and β̂1 is highly inefficient.

Slide 4–5
Why does TSLS work?
(1) Â is the projection of A onto the space spanned by Z, and Z ⊥⊥ v, implies Â ⊥⊥ v;
(2) Yi = β0 + β1Âi + ηi, where Âi ⊥⊥ ηi implies OLS can be applied in the second stage.

Slide 6

(1) Bootstrap approach.
(i) Sample b = 1, . . . , B datasets of size n with replacement.
(ii) Apply TSLS to the bootstrapped sample, estimate β̂(b)

1 , b = 1, . . . , B.
(iii) Hence, the variance is given by

Var(β̂1) = 1
B − 1

B∑
i=1

(β̂(b)
1 − ¯̂

β1)2,

where ¯̂
β1 = 1

B

∑B
b=1 β̂

(b)
1 .

(2) Derive the theoretical standard error.
In matrix form, we have

Y =

Y1
...
Yn

 , A =

1 A1
... ...
1 An

 , Z =

1 Z⊤
1

... ...
1 Z⊤

n

 , β =
[
β0
β1

]
, γ =

[
γ0
γ1

]
.

Hence,
β̂TSLS = (Â⊤Â)−1Â⊤Y,

where Â = PZA = Z(Z⊤Z)−1Z⊤A. Note that PZ is often called a projection matrix. Therefore,

V̂ar(β̂TSLS) = σ̂2(Â⊤Â)−1,
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where the theoretical standard variance is given by

σ̂2 = (Y −A⊤β̂TSLS)⊤(Y −A⊤β̂TSLS)
n− 2 .

Slide 14
• H0: A is exogenous, that is, Cov(A, v) = 0.
• If A is endogenous, that is, Cov(vi, εi) ̸= 0.
• If Z is a valid instrument, a consistent estimator of εi is ε̂i, which implies Cov(vi, ε̂i) ̸= 0, that is,

Cov(Yi, ε̂i) ̸= 0.

Week 7 | Wednesday
16th February

Case Study IV Analysis

Slide 22

β̂IVW =
∑K

k=1 AkYk/σ
2
Y k∑K

k=1 A
2
k/σ

2
Y k

=

K∑
k=1

Yk

Ak

A2
k

σ2
Y k

K∑
k=1

A2
k

σ2
Y k

.

Remarks:
• The Yk/Ak is known as the Wald estimator,

Yk

Ak
= Ĉov(Y, Zk)/Ĉov(Zk, Zk)

Ĉov(A,Zk)/Ĉov(Zk, Zk)

= Ĉov(Y, Zk)
Ĉov(A,Zk)

.

• The A2
k/σ

2
Y k is derived by

V̂ar
(
Yk

Ak

)
= σ2

Y k

A2
k

.

• In the simple case (one genetic), we get

β̂IVW = Yk

Ak
.

Week 8 | Monday
27th February
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Chapter 6 Part I

Slide 7

M

A Y

α

τ ′

β

• τ ′: direct effect (A → Y );
• αβ: indirect effect (A → M → Y );
• τ : total effect, that is, τ = αβ + τ ′;
• M is the intermediate variable.

Slide 8

Y = β1 + τA+ ε3 (4.1)
Y = β2 + τ ′A+ βM + ε2 (4.2)
M = β3 + αA+ ε3 (4.3)

Plug in (3) into (2),

Y = β2 + τ ′A+ β(β3 + αA+ ε3) + ε2

= β2 + ββ3︸ ︷︷ ︸
β1

+ (τ ′ + αβ)︸ ︷︷ ︸
τ

A+ βε3 + ε2︸ ︷︷ ︸
ε1

,

which yields τ = τ ′ + αβ =⇒ τ − τ ′ = αβ.
• τ − τ ′: subtraction approach.
• αβ: product approach.

Slide 10
Why can the direct and indirect effect be opposite? (for the following diagram)

copying

stress mood

Slide 11
When testing the mediation effect, we can conduct the following hypothesis:

H0 : αβ = 0,

which is a composite hypothesis. That is, we will need to test
• α = 0, β ̸= 0;
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• α ̸= 0, β = 0;
• α = 0, β = 0.

To get the test statistic, we use the Delta method.
• E[X] ≈ µ̂ is consistent;
• Var(X) ≈ se2(X).
• To get Var(g(X)), using the first-order Delta method, we get

Var(g(X)) ≈
[
g′(µ̂)

]2se2(X),

assuming g( · ) is differentiable.
In the bivariate case,

• g(X,Y ) = XY , so that
∇g(X,Y ) =

[
∂g
∂X
∂g
∂Y

]
=
[
Y
X

]
.

• We know that
Var(α̂) ≈ se2(α̂),

Var(β̂) ≈ se2(β̂).

Hence, using the first-order Delta method, we get

Var(α̂β̂) ≈
[
β̂ α̂

] [se2(α̂) 0
0 se2(β̂)

] [
β̂
α̂

]
= α̂2se2(β̂) + β̂2se2(α̂).

Chapter 6 Part II

Slide 5

CDE1 = E[Y 1,1 − Y 0,1]
= α0 + α1 + α2 + α3 − α0 − α2

= α1 + α3.

Week 8 | Wednesday
2nd March

Slide 3

self-efficacy

workshop finding a job

IfM is binary,
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• CDE1 = E[Y 1,1 − Y 0,1];
• CDE0 = E[Y 1,0 − Y 0,0].

If there is no interaction between A andM , then

CDE = CDE1 = CDE0.

Slide 5
Since we have two time points now and using the diagram on slide 4, we see that

swi = swi(1) × swi(2)

= P(A = Ai)
P(A = Ai |X = Xi)

× P(M = Mi |A = Ai)
P(M = Mi |A = Ai, X = Xi,W = Wi)

.

Slide 7

M

A Y

U

• A: treatment being assigned;
• M : treatment actually received;
• Y : outcome;
• U : age.

We lose the ability to draw a causal inference between A and Y .

Slide 10
Using the conditional probabilities, the total effect is

E[Y 1 − Y 0] = CACEpC + DACEpD + AACEpA + NACEpM .

• The exclusion restriction implies AACE = NACE = 0.
• The monotocity assumption implies pD = 0.
• The third assumption implies E[Y 1 − Y 0] = E[Y |A = 1] − E[Y |A = 0].

Re-arranging,
ĈACE = Ê[Y 1 − Y 0]

p̂C
= Ê[Y |A = 1] − Ê[Y |A = 0]

p̂C
.

Looking at the quantity
P(M = 1 |A = 1) − P(M = 1 |A = 0),

we see that
• P(M = 1 |A = 1) are the always takers and compliers, and
• P(M = 1 |A = 0) are the always takers (and defiers; although there is no defiers in this case).
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Hence,
p̂C = Ê[M |A = 1] − Ê[M |A = 0],

which yields the same formula for ĈACE as slide 11.

Slide 18
If Ai = 1, we need to first imputeM0

i with

M ∼ A+X,

and then impute Y 1,M0
i

i , Y 0,M1
i

i , Y 0,M0
i

i with

Y ∼ M +A+X.

Case Study III: Mediation Analysis

Slide 6
The output line-by-line is:

• NIE0;
• NIE1;
• NDE0;
• NDE1;
• TE;
• NIE0/TE;
• NIE1/TE,

and rest are unimportant.

Week 9 | Monday
7th March

Midterm Project
• Binary Y : ACE2 is the coefficient for A in lm(Y˜A,weights=IPTW) which gives the causal excess risk.
• Binary Y : glm(Y˜A,weights=IPTW,family=binomial) gives the causal log odds ratio (coefficient for A).
• Count Y : use the poisson family, which gives causal log relative risk (coefficient for A).
• DR estimator log odds ratio is the coefficient forA: glm(Y˜A+X,weights=IPTW,family=binomial), which

is consistent if either this glm is correctly specified or if the PS model is correctly specified.



CHAPTER 4. MARGINAL STRUCTURAL MODELS 41

Case Study III: Mediation Analysis

Slide 12

swi = swi(1) × swi

= P(A = Ai)
P(A = Ai |X = Xi)︸ ︷︷ ︸

w1

P(M = Mi |A = Ai)
P(M = Mi |A = Ai, X = Xi)︸ ︷︷ ︸

w2

.

For example, in the slides w1.num gives P(A = Ai). We talk about categoricalM , but ifM is continuous,
we replace the probability by the density (similar to A2).

Chapter 7 Part I
Covered slides 1–23.
Week 9 | Wednesday

9th March

Chapter 7 Part I
Suppose we are interested in evaluating Yeying. Some examples of missingness:

• MCAR: student forgot to come to class;
• MAR: student did not come to class because the weather was bad;
• MNAR: student did not come to class because he thinks that the professor is bad at teaching.

Chapter 7 Part II

Slide 10
Suppose that Y has missing values. For

Cov(X,Y )
Cov(X,X) ,

we can calculate Cov(X,X) because there is no missingness in X. However, we have an unknown sample
size for Y , so pairwise deletion might not be appropriate.

Covered slide up to and including 29.

Week 10 | Monday
14th March

Chapter 7 Part II
Finished the module.
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Chapter 7 Part III

Slide 8
γ̃ ∼ MVN(γ̂, V ).

Covered all the slides.

Theoretical Part
Notations:

• Y : disease status;
• A: exposure status;
• X: a single covariate (for simplicity);
• Missing indicator:

R =
{

1, if X is missing,
0, if X is observed;

• Missing mechanism:
q(y, a, x) = P(R = 1 | Y = y,A = a,X = x).

– If q does not depend on x or y, we have missing completely at random (MCAR).
– If q does not depend on x, we have missing at random (MAR).
– Otherwise, we have missing not at random (MN AR).

• Fit logistic regression with missing data. Given

P(Y = 1 |A = a,X = x) = f(β0 + βAa+ βXx),

where f(t) = expit(t) = exp{t}/
(
1 + exp{t}

)
. We can show that

P(Y = 1 |A = a,X = x,R = 0) = f

(
β0 + log

(
1 − q(1, a, x)
1 − q(0, a, x)

)
+ βAa+ βXx

)
. (1)

Our missing data equation is:

P(Y = 1 |A = a,X = x,R = 1) = f

(
β0 + log

(
q(1, a, x)
q(0, a, x)

)
+ βAa+ βXx

)
.

Hence, for the missing data, our model is

P(Y = 1 |A = a,R = 1) =
∫

x

f

(
β0 + log

(
q(1, a, x)
q(0, a, x)

)
+ βAa+ βXx

)
dF (x | A = a, R = 1). (2)

1. Complete data analysis:
• If MCAR, q(1, a, x) = q(0, a, x). Hence,

P(Y = 1 |A = a,X = x) = P(Y = 1 |A = a,X = x,R = 0).

In other words, the model we get for the missing data is consistent for the true data.



CHAPTER 4. MARGINAL STRUCTURAL MODELS 43

• If q(y, a, x) = q(a, x) (in other words, the missingness does not depend on the disease outcome), then
P(Y = 1 |A = a,X = x) = P(Y = 1 |A = a,X = x,R = 0).

Note: in case-control studies, the missingness often depends on the disease outcome. In cohort studies,
the missingness does not depend on the disease outcome.

• If q(y, a, x) = q(y)q(a, x) (i.e., the missingness does not jointly depend on Y and (X,A)), one can
still get valid (consistent) estimates of βA and βX . However, the intercept will change to

β⋆
0 = log

(
q(1)
q(0)

)
.

2. Missing indicator approach:
• Add the missing indicator R to the regression model.
• This approach does not work in the general case even when MCAR. Why? Suppose for a contradiction

we assume MCAR, that is, q(y, a, x) = q. Then,
P(Y = 1 |A = a,X,R = 0) = f(β0 + βAa+ βXx+ βR0) = f(β0 + βAa+ βXx). (a)

The missing values are given by
P(Y = 1 |A = a,X = c,R = 1) = f(β0 + βAa+ βXc+ βR) = f(β⋆

0 + βAa), (b)
where β⋆

0 = β0 + βXc+ βR.
– βA in (a) corresponds to the adjusted OR of the exposure variable.
– βA in (b) corresponds to the unadjusted OR of the exposure variable.
– exp{β̂A} obtained from this approach lies between the adjusted and unadjusted odds ratios.
Therefore, βA is an inconsistent estimator of the odds ratio.

Next time, we will prove (1).
Week 10 | Wednesday

16th March

Theoretical Part
No slides today, writing for 1h 20min. Recall that

q(y, a, x) = P(R = 1 | Y = y,A = a,X = x).

Given
P(Y = 1 |A = a,X = x) = f(β0 + βa + βXx) = f(β0 + βAa+ βXx)

where f(t) = expit(t), we can show (1):
P(Y = 1 |A = a,X = x,R = 0)

= P(R = 0, Y = 1 |A = a,X = x)
P(R = 0 |A = a,X = x)

= P(R = 0 | Y = 1, A = a,X = x)P(Y = 1 |A = a,X = x)
P(R = 0, Y = 1 |A = a,X = x) + P(R = 0, Y = 0 |A = a,X = x)

= P(R = 0 | Y = 1, A = a,X = x)P(Y = 1 |A = a,X = x)
P(R = 0 | Y = 1, A = a,X = x)P(Y = 1 |A = a,X = x) + P(R = 0 | Y = 0, A = a,X = x)P(Y = 0 |A = a,X = x)

= [1 − q(1, a, x)]f(β0 + βAa+ βXx)
[1 − q(1, a, x)]f(β0 + βAa+ βXx) + [1 − q(0, a, x)][1 − f(β0 + βAa+ βXx)]

= f

(
β0 + log

(
1 − q(1, a, x)
1 − q(0, a, x)

)
+ βAa+ βXx

)
.
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1. Complete data analysis.
2. Missing indicator approach.
3. Single imputation method.

• Replace each missing value by X̄.
• A better way is to replace the missing value by X̄ | A, that is, the mean of the observed X given A.
• Why? For simplicity, assume q(y, a, x) = q(a). By (1), we have

P(Y = 1 |A = a,X = x,R = 0) = P(Y = 1 |A = a,X = x).

By (2), we have

P(Y = 1 |A = a,R = 1) =
∫

x

f(β0 + βAa+ βXx) dF (x | A = a, R = 1)

=
∫

x

f(β0 + βAa+ βXx) dF (x | A = a) since R ⊥⊥ X | A

= f

(
β0 + βAa+

∫
x

βXxdF (x | A = a)
)

if f as an approx. linear function

= f
(
β0 + βAa+ βX E[X |A = a]

)
4. Inverse probability weighting.

• Weigh each subject with complete data by
1

1 − q̂(yi, ai, xi)
, i = 1, . . . , n, Ri = 0.

• For logistic regression, the score function for MLE is

Sn(β) = 1
n

n∑
i=1

Sβ(yi, ai, xi),

where
Sβ(y, a, x) = ∂

∂β
{y log(fβ(a, x)) + (1 − y) log(1 − fβ(a, x))}.

• For incomplete data, Sβ(yi, ai, xi) is unknown for any subject with Ri = 1.
• We use the Horvitz-Thompson Estimator: solve β by letting S̃n(β) = 0, where

S̃n(β) = 1
n

n∑
i=1,Ri=0

Sβ(yi, ai, xi)
1 − q̂(yi, ai, xi)

= 1
n

n∑
i=1

Sβ(yi, ai, xi)(1 −Ri)
1 − q̂(yi, ai, xi)

.

• Works well if MAR and q is properly modelled (i.e., use q instead of q̂). Why? We will show that

E
[
Sβ(Y,A,X)(1 −R)

1 − q(Y,A,X)

]
= E

[
Sβ(Y,A,X)

]
,

that is, we will have a consistent estimator. Note that MAR implies
– q does not depend on X;
– R ⊥⊥ X | Y,A.
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E
[
Sβ(Y,A,X)(1 −R)

1 − q(Y,A,X)

]
= E

[
E
[
Sβ(Y,A,X)(1 −R)

1 − q(Y,A)

∣∣∣∣ Y,A]] since R ⊥⊥ X | Y,A

= E

[
E
[
Sβ(Y,A,X | Y,A)

]E[(1 −R)
∣∣ Y,A]

1 − q(Y,A)

]
since R ⊥⊥ X | Y,A

= E
[
E
[
Sβ(Y,A,X | Y,A)

]1 − q(Y,A)
1 − q(Y,A)

]
= E

[
Sβ(Y,A,X)

]
.

5. Multiple imputation.
• Perform imputation m times.
• Rubin’s rule gives

β̂ = 1
m

m∑
j=1

β̂j ,

V̂ar(β̂) = 1
m

m∑
j=1

s2
j +

(
1 + 1

m

)
1

m− 1

m∑
j=1

(β̂k − β̂)2

= 1
m

m∑
j=1

s2
j︸ ︷︷ ︸

Ū

+ 1
m− 1

m∑
j=1

(β̂j − β̂)2

︸ ︷︷ ︸
B

+ 1
m(m− 1)

m∑
j=1

(β̂j − β̂)2

︸ ︷︷ ︸
(1/m)B

.

– Ū : within imputation variance;
– B: between imputation variance;
– (1/m)B: simulation error (i.e., extra variability as a consequence of imputing the missing data

using a finite number of imputations instead of an infinite number of times).
• Define

T = Ū +
(

1 + 1
m

)
B, λ = B +B/m

T
,

where λ is known as the proportion of variation attributed to the missing data. Furthermore,

r = B +B/m

Ū
,

where r is known as the relative increase in variance due to the missing data.
• ν: degrees of freedom.

– Rubin (1978):
νold = (m− 1)

(
1 + 1

r2

)
= m− 1

λ2 .

Problem: If λ = 0 (i.e., we have complete data), then νold is indeterminate (which is clearly
inappropriate).

– Banard and Rubin (1999) (used in the mice package):

νcom = n− k,

where n is the sample size, and k is the number of parameters. Also,

νobs = νcom
νcom + 3νcom(1 − λ).
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– The newly proposed degrees of freedom is then given by

νnew = νoldνobs
νold + νobs

,

where we see that νnew ≤ νcom, and if λ = 0, then νnew = νcom.
– H0: β = β0, HA: β ̸= βa:

T = β̂ − β0√
V̂ar(β)

·∼ t(νnew),

under H0. Furthermore, T 2 ∼ F (1, νnew) under H0 (which is equivalent, but used in some
software).

Week 11 | Monday
21st March

6. Maximum Likelihood Estimation
• Assume (Xi, Yi), i = 1, . . . , n.

(1) Y is fully observed; the first m components of X are observed, but the last (n−m) components of
X are missing.

(2) The joint pdf/pmf of (X,Y ) is f(x, y).
(3) The parameter(s) of interest is θ.

Research Question: We want to estimate some (or all) components of θ.
• Then, the joint (observed) likelihood for θ is based on the observed data is:

L(x, y; θ) =
m∏

i=1
f(xi, yi; θ)

n∏
j=m+1

g(yi; θ), (4.4)

where g(yi; θ) =
∑

x f(x, y; θ) if X is discrete, or g(yi) =
∫

x
f(x, y; θ) dx if X is continouous.

• θ is solved by maximizing the joint likelihood L(x, y; θ).

Missing Data for Contingency Table (MLE)

Suppose we have a cross-sectional study with the focus on the association between mother’s marital status
and babies low birthweight status.

Birthweight (Y )
Martial Status (X) Low Normal
Unmarried 12 (p11) 68 (p12) 80
Married 5 (p21) 95 (p22) 100

17 163 180

• We further assume the babies birthweight is missing for 5 married mothers, and 15 unmarried
mothers.

• If a complete case analysis is conducted, then the likelihood is:

L = p12
11p

68
12p

5
21p

95
22,
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under the constraint p11 + p12 + p21 + p22 = 1. We get

p̂ij = nij

n⋆
,

where n⋆ =
∑

i

∑
j nij . Hence,

p̂11 = 12
180 = 0.063, p̂12 = 0.378, p̂21 = 0.028, p̂22 = 0.533.

• If the information is missing completely at random, then we have a simple random sample, and by
maximizing our likelihood we will have an asymptotically unbiased estimator by the properties of
the likelihood function. By maximizing the likelihood, the MLE of θ = (p11, . . . , p22) is biased if the
missing mechanism is not MCAR.

• If we also consider modelling the missing outcome, then we know that

p11 = P(unmarried, low),

p12 = P(unmarried,normal),
so that P(unmarried) = p11 + p12. Therefore, our new likelihood is:

L = p12
11p

65
12p

5
21p

95
22(p11 + p12)15(p21 + p22)5,

subject to p11 + p12 + p21 + p22 = 1. By maximizing this likelihood, under regularity conditions
of MLE and MAR assumption, the MLE of θ is asymptotically unbiased (consistent), efficient and
normally distributed. Maximizing this likelihood is not easy, and requires a Newton Raphson method.
We will try sequentially.

p̂ij = P̂(X = i, Y = j) = P̂(X = i) P̂(Y = j |X = i).

That is,

p̂11 = P̂(X = 1, Y = 1) = P̂(X = 1) P̂(Y = 1 |X = 1) = 80 + 15
200 × 12

80 = 0.071.

Similarly,
p̂12 = P̂(X = 1) P̂(Y = 2 |X = 1) = 80 + 15

200 × 68
80 = 0.404.

p̂21 = P̂(X = 2) P̂(Y = 1 |X = 2) = 100 + 5
200 × 5

100 = 0.026.

p̂22 = P̂(X = 2) P̂(Y = 2 |X = 2) = 100 + 5
200 × 95

100 = 0.499.

Expectation-Maximization (EM) Algorithm

The EM algorithm is a general iterative approach to getting maximum likelihood estimates with missing
data. It always follows (next lecture we do it in R):
(1) Fill in the missing values by their estimated values. Now, we have complete data.
(2) Estimate the parameters for this “complete” dataset.
(3) Use the estimated parameters to re-estmate the missing values (called an E-step). We fill in the

missing values with their expected values, given the observed data (Expectation-step).
(4) Re-estimate the parameters from this updated “complete” dataset (M-step). We maximize the
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likelihood to estimate the parameters (Maximization-step).
Iterate between steps (3) and (4) until convergence of the parameter estimates.

Expectation-Maximization (Bivariate Normal Data)

Consider [
Y
X

]
∼ BVN(µ,Σ),

where
µ =

[
µ1
µ2

]
, Σ =

[
σ2

11 σ12
σ12 σ2

22

]
,

where Σ is a symmetric matrix. We observe (y1, . . . , yn) and (x1, . . . , xm), where m < n. The goal is to
estimate the mean µ with two approaches:
(1) Direct computation of MLE;
(2) EM algorithm.

In the BVN example, these two approaches are equivalent. Some properties from STAT 330: If
[
Y
X

]
∼

BVN(µ,Σ), then
• Y ∼ N (µ1, σ

2
11) and X ∼ N (µ2, σ

2
22);

• Conditional distribution:

X | Y = y ∼ N
(
µ2 + σ12

σ11
(y − µ1)︸ ︷︷ ︸

E[xi|yi]

, σ2
22 − σ2

12
σ2

11︸ ︷︷ ︸
E[x2

i
|yi]−E[xi|yi]2

)
.

Week 12 | Monday
28th March

Direct Computation of MLE

L(x, y; θ) =
m∏

i=1
f(xi, yi; θ)︸ ︷︷ ︸

g(yi;θ)h(xi|yi;θ)

n∏
i=m+1

g(yi; θ)

=
n∏

i=1
g(yi; θ)

m∏
i=1

h(xi | yi; θ)

=
n∏

i=1
g(yi;µ1, σ

2
11)

m∏
i=1

h(xi | yi;µ,Σ)

=
(

1√
2πσ2

11

)n

exp
{

−
∑n

i=1(yi − µ1)2

2σ2
11

}(
1√

2π(σ2
22 − σ2

12
σ2

11
)

)m

exp

−
∑m

i=1(xi − µ2 − σ12
σ11

(yi − µ1))2

2(σ2
22 − σ2

12
σ2

11
)

.
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Ignoring constants, we have:

ℓ(x, y;µ,Σ) = −n

2 log(σ2
11) − 1

2

n∑
i=1

(yi − µ1)2

σ2
11

− m

2 log
(
σ2

22 − σ2
12
σ2

11

)
− 1

2

m∑
i=1

[xi − µ2 − σ12
σ11

(yi − µ1)]2

σ2
22 − σ2

12
σ2

11

.

(3)
Solving MLE, we obtain

µ̂1 = 1
n

n∑
i=1

yi.

µ̂2 = β̂0 + β̂1µ̂1,

where

β̂1 =
∑m

i=1(yi − ȳ∗)(xi − x̄∗)∑m
i=1(yi − ȳ∗)2 ,

β̂0 = x̄∗ − β̂1ȳ
∗,

where the ∗ is for complete data, that is,

x̄∗ = 1
m

m∑
i=1

xi,

ȳ∗ = 1
m

m∑
i=1

yi.

EM Algorithm

Idea: sometimes, maximizing the “observed” likelihood (3) is not easy, and it’s easier to maximize the
“complete” likelihood if we can fill in the missing values first. Under bivariate normal assumption,

LC(x, y;µ,Σ) =
n∏

i=1
f(xi, yi;µ,Σ).

ℓC(x, y;µ,Σ) = −n

2 log(det(Σ)) − 1
2

n∑
i=1

([
yi

xi

]
−
[
µ1
µ2

])
Σ−1

([
yi

xi

]
−
[
µ1
µ2

])
.

E-step: the sufficient statistic(s) for bivariate normal is given by

S1 =
n∑

i=1
yi, S2 =

n∑
i=1

xi, S11 =
n∑

i=1
y2

i , S22 =
n∑

i=1
x2

i , S12 =
n∑

i=1
xiyi.

We can impute the values by computing

E[xi | yi;µ,Σ] = β0 + β1yi,

E[x2
i | yi;µ,Σ] = (β0 + β1yi)2 + σ22·1,

E[xiyi | yi;µ,Σ] = (β0 + β1yi)yi,

where
β0 = µ2 − σ12

σ11
µ1, β1 = σ12

σ11
, σ22·1 = σ2

22 − σ2
12
σ2

11
.

Given the input of µ,Σ, we can obtain β̂0, β̂1, σ̂22·1.
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M-step:

µ̂1 = S1

n
=
∑n

i=1 yi

n
,

µ̂2 = S2

n
=
∑n

i=1 xi

n
,

σ̂2
11 = S11

n
− µ̂2

1 =
∑n

i=1(yi − ȳ)2

n
,

σ̂2
22 = S22

n
− µ̂2

2 =
∑n

i=1(xi − x̄)2

n
,

σ̂12 = S12

n
− µ̂1µ̂2 =

∑n
i=1(xi − x̄)(yi − ȳ)

n
.

Repeat the E-step and M-step until all the parameter estimates converge.
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