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Chapter 1

What are Longitudinal Data?

Week 1
5th to 7th January

1.1 Introduction
Syllabus.

1.2 What are Longitudinal Data?

April 27, 2021

Lack of sleep in middle age may increase dementia risk

NIH RESEARCH MATTERS

At a Glance

• People who slept six hours or less per night in their 50s and 60s were more likely to develop dementia later in life. 

• The findings suggest that inadequate sleep duration could increase dementia risk and emphasize the importance of good

sleep habits.

What would a study need to look like to conclude this?

1.2.1 The Design of a Longitudinal Study
• Can we conclude this by taking a sample of elderly individuals directly?

– No. How do we determine how much they slept 20 years prior?
• Can we conclude this by taking a sample of middle-aged individuals directly?

– No. How do we determine who will develop dementia later on?
• Can we conclude this by taking independent samples of middle-aged individuals and elderly individuals?

– No. How do we pair the individuals?
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We would need to be able to follow individuals, starting when they are middle-aged, recording information like
how often they sleep, and continue following them until the onset of dementia.

This is a longitudinal study.

Group #1 Group #2 Group #3

Figure 1.1: Longitudinal Study

Group A Group B Group C

Figure 1.2: Cross-Sectional Study

A research study in which subjects are followed over time. Typically, this involves repeated measurements
of the same variables. Longitudinal studies differ from cross-sectional studies and time series studies.

1.2.2 Uses for Longitudinal Studies
• To detect changes in outcomes, both at the population and individual level.
• Longitudinal effects as compared to cohort effects.
• Correctly ascertain the exposures.
• Understand different sources of variation
• Between- and within-subject variation.
• To detect time effects, both directly and as interactions with other relevant factors.

Bottom line: There are many questions of interest which can only be answered using longitudinal data. We
should probably learn how to analyse it.

1.2.3 Why are Longitudinal Data Special?
What makes longitudinal data more difficult to analyse?

• The data are correlated.
• Everyone’s favourite assumption (assume that X1, . . . , Xn are iid) will not hold.
• Now what? STAT 437.
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1.2.4 Example Datasets
TLC Trial

ID Treatment W0 W1 W4 W6
1 P 30.8 26.9 25.8 23.8
2 A 26.5 14.8 19.5 21
3 A 25.8 23 19.1 23.2
... ... ... ... ... ...
98 A 29.4 22.1 25.3 4.1
99 A 21.9 7.6 10.8 13
100 A 20.7 8.1 25.7 12.3

• Is there a difference between placebo and treatment?
• How does the blood lead level change over time (in each group)?
• Is the change over time equal between treatment groups?

Sales Data

DATE brand prod QTY PROMO

2014-01-02 1 1 7 0
2014-01-02 1 2 3 0
2014-01-02 1 3 0 0

... ... ... ... ...
2018-12-31 4 8 1 1
2018-12-31 4 9 0 0
2018-12-31 4 10 3 1

• Are the different brands comparable in terms of overall sales?
• Are the different products comparable?
• Do promotions increase the quantity sold? If so, by how much?
• Do the effects of time, and promotion, change by brand or product?

Podcast Data

Rating No. Reviews Title Date · · ·
4.9 6400 Dissect 2019-11-01 · · ·
4.9 26300 The Adventure Zone 2019-11-01 · · ·
4.8 3700 Song Exploder 2019-11-01 · · ·
... ... ... ... ...

4.2 1100 Finding Fred 2019-12-01 · · ·
3.9 648 Inside Frozen 2 2019-12-01 · · ·
4.6 6400 Pop Culture Happy Hour 2019-12-01 · · ·

• Can we predict the number of ratings that a podcast will receive over time?
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• Can we predict the average rating value that a podcast will receive over time?

Stroke Data

year Prop. (0, 0) Prop. (0, 1) Prop. (1, 0) Prop. (1, 1)
1 57/344 17/72 17/79 5/23
2 27/287 8/55 9/62 4/18
3 23/260 8/47 5/53 3/14
... ... ... ... ...
8 10/129 1/15 5/23 1/4
9 17/119 3/14 4/18 0/3
10 13/102 1/11 2/14 0/3

• 0 = placebo treatment, 1 = active treatment; 0 = no previous stroke, 1 = previous stroke.
• This is time to event data.
• What is probability of surviving beyond some point?
• Does this differ if you previously had a stroke? If you received treatment?

1.2.5 Summary
• Longitudinal data occur when we take repeated measurements on the same individuals over time.
• Longitudinal data are required for answering questions about changes within an individual (compared to

between individuals) and to capture time effects.
• Longitudinal data are challenging to work with because the data are correlated.

1.3 Exploring Longitudinal Data (Application)
R Demo.

1.4 Notation for Longitudinal Data (Theory)

General Notation
• Random variables: X, Y , Z.

– Realizations of these random variables: x, y, z.
• Unknown parameters: θ, β, α.

– Estimates of these parameters with “hat:” θ̂, β̂, α̂.
• Transpose of a matrix X: X⊤.

Individual Notation
• Individual outcome for individual i at time j: Yij , where i = 1, . . . , n are the individuals, and j = 1, . . . , ki

are the time points. We may also use Yitj to denote the outcome for individual i at time tj when more
complex times are used.

• Individual variate: Xijk, where i and j index over individuals and times, respectively, and k indexes over
the different variates of interest.
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Suppose for an individual that we measure age, treatment, and symptom status. We have k = 3
since we have three variables.

• Usually, Xijk will not change over time, so we may write Xijk = Xij′k for all j and j′. Usually Xij1 = 1
to include the intercept in our models. However, if a variate is time-changing, then we need to be more
careful about Xij1 = 1.

• For an individual, define Yi =


Yi1
Yi2
...

Yiki


ki×1

≡ (Yi1, Yi2, . . . , Yiki)⊤ to be a vector of outcomes.

• For variates, take Xij =
[
Xij1 Xij2 · · · Xijp

]
1×p

≡ (Xij1, Xij2, . . . , Xijp), where p different variates
are measured.

• Define Xi =


Xi1
Xi2
...

Xiki


p×ki

to be a matrix containing of all the variates.

• In certain contexts, we may write Yi as a row vector or to take the transpose of Xi.

1.4.1 Notation and Considerations for Time
• Time for the ith individual at the jth measurement: tij .

– Sometimes, we take tij = j, where j is an index of visits.
– If the scale of time is related to calendar time, we may have ti1 = 0 and ti2 = 14 to indicate the first
visit and second visit are two weeks apart, where time is measured in days.

• The design is balanced if tij = ti′j for all i and i′. In this case, we drop subscript i from the times and
write t1, . . . , tk. We will often consider balanced designs, but this is not necessary.

1.5 What is Linear Regression (Review/Theory)

The Ordinary Least Squares Estimators
• Suppose Yi are continuous, and we want to model E[Yi | Xi].
• A linear regression model takes

E[Yi | Xi] = Xiβ.

• We take
β̂ = (X⊤X)−1X⊤Y ,

and we call these ordinary least squares (OLS) estimators.

OLS Estimators (Two Ways)
• If Yi | Xi ∼ N (Xiβ, σ2), then the OLS estimators are the maximum likelihood estimators.
• If we take Yi = Xiβ + εi, where εi is non-normal, then the OLS estimators are simply the best (in terms

of mean squared error) predictor of β.
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Assumptions for OLS
1. The conditional mean is linear (in parameters).
2. All values of Yi have constant variance, denoted σ2 (conditionally).
3. The Yi are independent.

Asymptotic Analysis

• As n → ∞, β̂ ∼ N
(
β, Var(β̂)

)
, where

Var(β̂) = σ2(X⊤X)−1.

We can use this result for confidence intervals and hypothesis tests.

Summary
• Linear Regression allows us to estimate a functional form for the conditional mean of a continuous outcome.
• The OLS estimators are valid MLE-type estimators when normality is assumed, and are LS estimators

otherwise.
• The asymptotic analysis is valid in large samples, regardless of distributional assumptions, and can be used

for Wald-type analysis.

1.6 Why Can’t We Just Use Regression? (Linear Marginal Models)

Stated Mathematically
We want to fit a model that gives E[Yij | Xij , tij ] in terms of interpretable parameters.

Let’s use an example!

ID Trt W0 W1 W4 W6 ID Trt time W

1 P 30.8 26.9 25.8 23.8 1 P 1 30.8
2 A 26.5 14.8 19.5 21 2 A 1 26.5
3 A 25.8 23 19.1 23.2 3 A 1 25.8
... ... ... ... ... ... ... ... ... ...

98 A 29.4 22.1 25.3 4.1 98 A 4 4.1
99 A 21.9 7.6 10.8 13 99 A 4 13
100 A 20.7 8.1 25.7 12.3 100 A 4 12.3

• Consider the TLC trial data, in wide format (left-hand side) and then in long format (right-hand side).
• In the right-hand side we have an outcome (W ), with two explanatory factors

(
{Trt, time}

)
.

– We want E[W | Trt, time]. Is this familiar?
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Using Linear Regression
We can fit the model in R, using lm. Is this valid?

Estimate Std. Error P(> |t|)
(Intercept) 26.540 0.937 0.000
time2 −13.018 1.325 0.000
time3 −11.026 1.325 0.000
time4 −5.778 1.325 0.000
TreatmentP −0.268 1.325 0.840
time2:TreatmentP 11.406 1.874 0.000
time3:TreatmentP 8.824 1.874 0.000
time4:TreatmentP 3.152 1.874 0.093

What does this lm imply about our data?
• There is a linear conditional mean structure:

E[Wij | Trti, tj ] = β0 + β1Trti + β2 I{tj = 2} + β3 I{tj = 3} + β4 I{tj = 4}
+ β5Trti I{tj = 2} + β6Trti I{tj = 3} + β7Trti I{tj = 4}.

• There is constant variance such as Var(Wij) = σ2 for all i and j.
• The values of Wij are independent. However, this assumption is clearly violated.

What makes longitudinal data special?
Longitudinal data are characterized by correlation within individuals.

TODO figure Therefore, the previous lm will work only if we are willing to assume that the observations are
independent.

Longitudinal Data as Multivariate Data
How can we adapt linear regression to allow for this association?

• When the data are in long format, it appears that the outcomes are univariate.
• When the data are in wide format, we can view the outcome as a vector of outcomes, (e.g., W =

(W0, W1, W4, W6)).
• The analysis of longitudinal data is multivariate analysis.

– This accounts for the lack of independence in the outcomes!

Multivariate Normal
Instead of assuming that Yij ∼ N (Xijβ, σ2), what if we took

Yi ∼ MVN(Xiβ, Σi)?

Recall: The multivariate normal (MVN) has a density given by

f(y, µ, Σ) = 1
(2π)k/2 |Σ|−1/2 exp

{
−1

2(y − µ)Σ−1(y − µ)⊤
}

.
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Linear Marginal Models
• In this proposal, we specify a linear form for the conditional mean.

– That is, E[Yi | Xi] = Xiβ, where Xi is a matrix and Yi is a vector.
• We allow for correlation through the individual covariance matrix, Σi.
• We could (theoretically) find the MLE under the assumption of multivariate normality.

Covariance Matrix
Recall that Cor(X, Y ) = Cov(X,Y )√

Var(X) Var(Y )
, and so, re-arranging,

Cov(X, Y ) = Cor(X, Y )
√

Var(X) Var(Y ).

Moreover, recall that a variance/covariance matrix is

Cov(Yi) = Σi =


Var(Yi1) Cov(Yi1, Yi2) · · · Cov(Yi1, Yip)

Cov(Yi2, Yi1) Var(Yi2) · · · Cov(Yi2, Yip)
... ... . . . ...

Cov(Yip, Yi1) Cov(Yip, Yi1) · · · Var(Yip)

 .

Covariance Matrix Simplification
If we assume that Var(Yij) = σ2 for all i, j, and we denote Cor(Yij , Yiℓ) = ρjℓ for all i, then note that

Cov(Yij , Yiℓ) = Cor(Yij , Yiℓ)
√

Var(Yij Var(Yiℓ)) = σ2ρiℓ.

We write

R(ρ) =


ρ11 ρ12 · · · ρ1p

ρ21 ρ22 · · · ρ2p

... ... . . . ...
ρp1 ρp2 · · · ρpp

 =


1 ρ12 · · · ρ1p

ρ12 1 · · · ρ2p

... ... . . . ...
ρ1p ρ2p · · · 1

 .

With this notation,
Σi = σ2R(ρ).

Linear Marginal Models
Under the previous specification we can find the MLE to be

β̂ =
( n∑

i=1
X⊤

i R−1
i Xi

)−1 n∑
i=1

X⊤
i R−1

i Yi.

For the variance parameter, we get

σ2 = 1
nk

n∑
i=1

(Yi − Xiβ)⊤R−1
i (Yi − Xiβ),

then we can solve numerically for Ri. We want to model E[Yij | Xi] (for some purpose) and so we specify a
multivariate linear model. By assuming that the variance is constant across different times, and we can
accommodate the correlation expected within each individual.

The multivariate normality assumption gives us a process for computing the MLE, which can produce estimates
for the parameters of interest, denoted β̂.
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Next Steps
• How can we conduct inference on the estimated parameters? (Why do we want to?)
• How can we specify time trends in the model for the mean?
• How can we use this model to answer scientific questions of interest?
• What can we do about the correlation matrix? (Are there any shortcomings with our assumptions?)

Asymptotic Normality
It can be shown that, asymptotically

β̂ ∼ MVN
(
β, Var(β̂)

)
,

where
Var(β̂) =

(
1
σ2

n∑
i=1

X−1
i R−1

i Xi

)
,

which can be estimated by plugging in σ̂2 and ρ̂. We get

se(β̂j) =
[
V̂ar(β̂)

]1/2

(j,j)
.

Inference based on Wald Statistics
As a result,

β̂j − βj

se(β̂j)
∼ N (0, 1).

This can be used to test H0: βj = β⋆, or for confidence intervals, just like with linear regression! An equivalent
expression is

(β̂j − βj)2

Var(β̂j)
∼ χ2

1.

Time as a Covariate
• Generally speaking, we can simply include time as a covariate in the model.
• If the data are balanced and there are relatively few time points, we can include it as a factor.
• If the data are not balanced or there are too many time points, we can include it as a continuous variable.

– We can also include quadratic time trends, or logarithmic time trends, or any other functional form.
• We can include time as calendar time, time since baseline, index of time point, age, etc.

– This will depend on what we have measured and what we are interested in.

The choice of how we include time will be dictated both by the available data, and by the scientific questions
of inquiry. This goes for the form it takes in the model, and the timescale that we choose to use.
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