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Chapter 1

Review of Elementary Probability

Week 1
8th to 15th September

Fundamental Definition of a Probability Function

Probability Model: A probability model consists of 3 essential components: a sample space, a collection
of events, and a probability function (measure).

• Sample Space: For a random experiment in which all possible outcomes are known, the set of all
possible outcomes is called the sample space (denoted by Ω).

• Event: Every subset A of a sample space Ω is an event.
• Probability Function: For each event A of Ω, P(A) is defined as the probability of an event A,

satisfying 3 conditions:
(i) 0 ≤ P(A) ≤ 1,
(ii) P(Ω) = 1, or equivalently, P(∅) = 0, where ∅ is the null event,
(iii) For n ∈ Z+ (in fact, n = ∞ as well), P(

⋃n
i=1 Ai) =

∑n
i=1 P(Ai) if the sequence of events

{Ai}n
i=1 is mutually exclusive (i.e., Ai ∩Aj = ∅ ∀i ̸= j).

As a result of conditions (ii) and (iii), and noting that Ac is the complement of A, it follows that

1 = P(Ω) = P(A ∪Ac) = P(A) + P(Ac) =⇒ P(Ac) = 1− P(A).

Conditional Probability

Conditional Probability: The conditional probability of event A given event B occurs is defined as

P(A |B) = P(A ∩B)
P(B) ,

provided that P(B) > 0.

Remarks:
(1) When B = Ω, P(A | Ω) = P(A ∩ Ω)/P(Ω) = P(A)/1 = P(A), as one would expect.
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CHAPTER 1. REVIEW OF ELEMENTARY PROBABILITY 3

(2) Rewriting the above formula, P(A ∩ B) = P(A | B)P(B), which is often referred to as the basic
“multiplication rule.” For a sequence of events {Ai}n

i=1, the generalized multiplication rule is given
by

P(A1 ∩A2 ∩ · · · ∩An) = P(A1)P(A2 |A1) · · ·P(An |A1 ∩A2 ∩ · · · ∩An−1).

Example 1.1. Suppose that we roll a fair six-sided die once (i.e., Ω = {1, 2, 3, 4, 5, 6}). Let A denote the
event of rolling a number less than 4 (i.e., A = {1, 2, 3}), and let B denote the event of rolling an odd
number (i.e., B = {1, 3, 5}). Given that the roll is odd, what is the probability that number rolled is less
than 4?

Solution: Since the die is fair, it immediately follows that P(A) = 3/6 = 1/2 and P(B) = 3/6 = 1/2.
Moreover,

P(A ∩B) = P
(
{1, 2, 3} ∩ {1, 3, 5}

)
(1.1)

= P
(
{1, 3}

)
(1.2)

= 2
6 (1.3)

= 1
3 . (1.4)

Therefore,
P(A |B) = P(A ∩B)

P(B) = 1/3
1/2 = 2

3 .

Independence of Events

Independence of Events: Two events A and B are independent if and only if (iff)

P(A ∩B) = P(A)P(B)

In general, if an experiment consists of a sequence of independent trials, and A1, A2, . . . , An are events
such that Ai depends only on the ith trial, then A1, A2, . . . , An are independent events and

P(∩n
i=1Ai) =

n∏
i=1

P(Ai).

Law of Total Probability

Law of Total Probability: For n ∈ Z+ (and even n =∞), suppose that Ω = ∪n
i=1Bi, where the sequence



CHAPTER 1. REVIEW OF ELEMENTARY PROBABILITY 4

of events {Bi}n
i=1 is mutually exclusive. Then,

P(A) = P(A ∩ Ω)
= P

(
A ∩ {∪n

i=1Bi}
)

= P
(
∪n

i=1{A ∩Bi}
)

=
n∑

i=1
P(A ∩Bi)

=
n∑

i=1
P(A |Bi)P(Bi),

where the second last equality follows from the fact that the sequence of events {A ∩ Bi}n
i=1 is also

mutually exclusive.

Bayes’ Formula

Bayes’ Formula: Under the same assumptions as in the previous slide,

P(Bj |A) = P(A ∩Bj)
P(A) = P(A |Bj)P(Bj)∑n

i=1 P(A |Bi)P(Bi)
.

Definition of a Random Variable

Definition: A random variable (rv) X is a real-valued function which maps a sample space Ω onto a state
space S ⊆ R (i.e., X : Ω→ S).

Discrete type: S consists of a finite or countable number of possible values. Important functions include:

p(a) = P(X = a) (pmf),
F (a) = P(X ≤ a) =

∑
x≤a

p(x) (cdf),

F̄ (a) = P(X > a) = 1− F (a) (tpf),

where pmf stands for probability mass function, cdf stands for cumulative distribution function, and tpf
stands for tail probability function.

Remark: If X takes on values in the set S = {a1, a2, a3, . . .}where a1 < a2 < a3 < · · · such that p(ai) > 0
∀i, then we can recover the pmf from knowledge of the cdf via

p(a1) = F (a1),
p(ai) = F (ai)− F (ai−1), i = 2, 3, 4, . . .

Discrete Distributions
Special Discrete Distributions:
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1. Bernoulli: If we consider a Bernoulli trial, which is a random trial with probability p of being a
“success” (denoted by 1) and a probability 1 − p of being a “failure” (denoted by 0), then X is
Bernoulli (i.e., X ∼ BERN(p)) with pmf

p(x) = px(1− p)1−x, x = 0, 1.

2. Binomial: If X denotes the number of successes in n ∈ Z+ independent Bernoulli trials, each with
probability p of being a success, then X is Binomial (i.e., X ∼ BIN(n, p)) with pmf

p(x) =
(

n

x

)
px(1− p)n−x, x = 0, 1, . . . , n,

where (
n

x

)
= n!

(n− x)!x! = (n)x

x! = n(n− 1) · · · (n− x + 1)
x!

is the number of distinct groups of x objects chosen from a set of n objects.

Remarks:
(1) A BIN(1, p) distribution simplifies to become the BERN(p) distribution.
(2) The binomial pmf is even defined for n = 0, in which case p(x) = 1 for x = 0. Such a distribution is

said to be degenerate at 0.
(3) Note that

(
n
x

)
= 0 if n, x ∈ N with n < x.

3. Negative Binomial: If X denotes the number of Bernoulli trials (each with success probability p)
required to observe k ∈ Z+ successes, then X is Negative Binomial (i.e., X ∼ NBt(k, p)) with pmf

p(x) =
(

x− 1
k − 1

)
pk(1− p)x−k, x = k, k + 1, k + 2, . . . .

Remarks:
(1) In the above pmf,

(
x−1
k−1
)
appears rather than

(
x
k

)
since the final trial must always be a success.

(2) Sometimes, a negative binomial distribution is alternatively defined as the number of failures
observed to achieve k successes. If Y denotes such a rv and X ∼ NBt(k, p), then we clearly have
the relationship X = Y + k, which immediately leads to the following pmf for Y :

pY (y) = P(Y = y) = P(X = y + k) =
(

y + k − 1
k − 1

)
pk(1− p)y, y = 0, 1, 2, . . . .

To refer to this negative binomial distribution, we will write Y ∼ NBf (k, p).

4. Geometric: If X ∼ NBt(1, p), then X is Geometric (i.e., X ∼ GEOt(p)) with pmf

p(x) = p(1− p)x−1, x = 1, 2, 3 . . . .

In other words, the geometric distribution models the number of Bernoulli trials required to observe
the first success.
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Remark: Similarly, if X ∼ NBf (1, p) then we obtain an alternative geometric distribution (denoted by
X ∼ GEOf (p)) which models the number of failures observed prior to the first success.

5. Discrete Uniform: If X is equally likely to take on values in the (finite) set {a, a + 1, . . . , b} where
a, b ∈ Z with a ≤ b, then X is Discrete Uniform (i.e., X ∼ DU(a, b)) with pmf

p(x) = 1
b− a + 1 , x = a, a + 1, . . . , b.

6. Hypergeometric: If X denotes the number of success objects in n draws without replacement from
a finite population of size N containing exactly r success objects, then X is Hypergeometric (i.e.,
X ∼ HG(N, r, n)) with pmf

p(x) =
(

r
x

)(
N−r
n−x

)(
N
n

) , x = max{0, n−N + r}, . . . , min{n, r}.

7. Poisson: A rv X is Poisson (i.e., X ∼ POI(λ)) with parameter λ > 0 if its pmf is one of the form

p(x) = e−λλx

x! , x = 0, 1, 2, . . . .

Remark: The pmf is even defined for λ = 0 (if we use the standard convention that 00 = 1), in which case
p(x) = 1 for x = 0 (i.e., X is degenerate at 0).

Example 1.2. Show that when n is large and p is small, the BIN(n, p) distribution may be approximated
by a POI(λ) distribution where λ = np.

Solution: Recall ez = lim
n→∞

(1 + z/n)n, z ∈ R. Letting X ∼ BIN(n, p), we have

P(X = x) =
(

n

x

)
px(1− p)n−x

= n(n− 1) · · · (n− x + 1)
x!

(
λ

n

)x(
1− λ

n

)n−x

= n

n

n− 1
n
· · · n− x + 1

n

λx

x!
(1− λ/n)n

(1− λ/n)x

≃ (1)(1) · · · (1)λx

x!
e−λ

1 when n is large

= e−λλx

x!
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Continuous Random Variables

Continuous type: A rv X takes on a continuum of possible values (which is uncountable) with cdf

F (x) = P(X ≤ x) =
∫ x

−∞
f(y) dy,

where f(x) denotes the probability density function (pdf) of X, which is a non-negative real-valued
function that satisfies

P(X ∈ B) =
∫

x∈B

f(x) dx,

where B is the set of real numbers (e.g., an interval).

Remarks:
(1) If F (x) (or the tpf F̄ (x) = 1− F (x)) is known, we can recover the pdf using the relation

f(x) = d
dx

F (x) = F ′(x) = −F̄ ′(x),

which holds by the Fundamental Theorem of Calculus.
(2) When working with pdfs in general, it is usually not necessary to be precise about specifying whether

a range of numbers includes the endpoints. This is quite different from the situation we encounter
with discrete rvs. Throughout this course, however, we will adopt the convention of not including
the endpoints when specifying the range of values for pdfs.

Continuous Distributions
Special Continuous Distributions:

1. Uniform: A rv X is Uniform on the real interval (a, b) (i.e., X ∼ U(a, b)) if it has pdf

f(x) = 1
b− a

, a < x < b,

where a, b ∈ R with a < b.

Remark: The choice of name is because X takes on values in (a, b) with all subintervals of a fixed length
being equally likely.

2. Beta: A rv X is Beta with parameters m ∈ Z+ and n ∈ Z+ (i.e., X ∼ Beta(m, n)) if it has pdf

f(x) = (m + n− 1)!
(m− 1)!(n− 1)!x

m−1(1− x)n−1, 0 < x < 1.

Remark: A Beta(1, 1) distribution simplifies to become the U(0, 1) distribution.
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3. Erlang: A rv X is Erlang with parameters n ∈ Z+ and λ > 0 (i.e., X ∼ Erlang(n, λ)) if it has pdf

f(x) = λnxn−1e−λx

(n− 1)! , x > 0.

Remark: The Erlang(n, λ) distribution is actually a special case of the more general Gamma distribution
in which n is extended to be any positive real number.

4. Exponential: A rv X is Exponential with parameter λ > 0 (i.e., X ∼ EXP(λ)) if it has pdf

f(x) = λe−λx, x > 0.

Remark: An Erlang(1, λ) distribution actually simplifies to become the EXP(λ) distribution.

Expectation

Expectation: If g( · ) is an arbitrary real-valued function, then

E
[
g(X)

]
=
{∑

x g(x)p(x) , if X is a discrete rv,∫∞
−∞ g(x)f(x) dx , if X is a continuous rv.

Special choices of g( · ):
1. g(X) = Xn, n ∈ N =⇒ E

[
g(X)

]
= E[Xn] is the nth moment of X. In general, moments serve to

describe the shape of a distribution. If n = 0, then E[X0] = 1. If n = 1, then E[X] = µX is the
mean of X.

2. g(X) =
(
X − E[X]

)2 =⇒ E
[
g(X)

]
= E

[(
X − E[X]

)2
]
is the variance of X. Note that

Var(X) = σ2
X = E

[(
X − E[X]

)2
]

= E[X2]− E[X]2,

or equivalently
σ2

X = E
[
X(X − 1)

]
+ E[X]− E[X]2.

Related to this quantity, the standard deviation of X is
√

Var(X) = σX .
3. g(X) = aX + b, a, b ∈ R (i.e., g(X) is a linear function of X). Note that

µaX+b = E[aX + b] = aµX + b,

σ2
aX+b = Var(aX + b) = a2σ2

X ,

σaX+b =
√

Var(aX + b) = |a|σX .
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Moment Generating Function

4. g(X) = etX , t ∈ R =⇒ E
[
g(X)

]
= E[etX ] is the moment generating function (mgf) of X. This

quantity is a function of t and is denoted by

ϕX(t) = E[etX ].

First, ϕX(0) = E[e0X ] = E[1] = 1. Moreover, making use of the linearity property of the expected
value operator, note that

ϕX(t) = E[etX ]

= E

[ ∞∑
n=0

(tX)n

n!

]

= E
[

t0X0

0! + t1X1

1! + t2X2

2! + · · ·+ tnXn

n! + · · ·
]

= E[X0] t
0

0! + E[X] t
1

1! + E[X2] t
2

2! + · · ·+ E[Xn] t
n

n! + · · · ,

implying that the nth moment of X is simply the coefficient of tn/n! in the above series expansion.

We have: ϕX(t) = E[tX ] = E[X0] t0

0! + E[X] t1

1! + E[X2] t2

2! + · · ·+ E[Xn] tn

n! + · · · .

Remarks:
(1) Given the mgf of X, we can extract its nth moment via

E[Xn] = ϕ
(n)
X (0) = dn

dtn
ϕX(t)

∣∣∣∣
t=0

= lim
t→0

dn

dtn
ϕX(t), n ∈ N.

Note that the 0th derivative of a function is simply the function itself.
(2) A mgf uniquely characterizes the probability distribution of a rv (i.e., there exists a one-to-one

correspondence between the mgf and the pmf/pdf of a rv). In other words, if two rvs X and Y have
the same mgf, then they must have the same probability distribution (which we denote by X ∼ Y ).
Thus, by finding the mgf of a rv, one has indeed determined its probability distribution.

Example 1.3. Suppose that X ∼ BIN(n, p). Find the mgf of X and use it to find E[X] and Var(X).

Solution: Recall the binomial series formula

(a + b)m =
m∑

x=0

(
m

x

)
axbm−x, a, b ∈ R, m ∈ N.
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Using this formula, we obtain

ϕX(t) = E[etX ]

=
n∑

x=0
etx

(
n

x

)
px(1− p)n−x

=
n∑

x=0

(
n

x

)
(pet)x(1− p)n−x

= (pet + 1− p)n, t ∈ R.

Then,

ϕ′
X(t) = n(pet + 1− p)n−1pet and Q′′

X(t) = n(pet + 1− p)n−1pet + npet(n− 1)(pet + 1− p)n−2pet.

Thus,
E[X] = ϕ′

X(0) = n(pe0 + 1− p)n−1pe0 = np,

Var(X) = E[X2]− E[X]2 = ϕ′′
X(0)− n2p2 = np + np(n− 1)p− n2p2 = np.

Joint Distributions
Joint Distributions: The following results are presented for the bivariate case mostly, but these ideas extend
naturally to an arbitrary number of rvs.

Definition: The joint cdf of X and Y is

F (a, b) = P(X ≤ a, Y ≤ b)
= P

(
{X ≤ a} ∩ {Y ≤ b}

)
, a, b ∈ R.

Remark: If the joint cdf is known, then we can recover their marginal counterparts as follows:

FX(a) = P(X ≤ a) = F (a,∞) = lim
b→∞

F (a, b),

FY (a) = P(Y ≤ b) = F (∞, b) = lim
a→∞

F (a, b).

Jointly Discrete Case:
Joint pmf:

p(x, y) = P(X = x, Y = y)

Marginals:

pX(x) = P(X = x) =
∑

y

p(x, y)

pY (y) = P(Y = y) =
∑

x

p(x, y)

Multinomial Distribution: Consider an experiment which is repeated n ∈ Z+ times, with one of
k ≥ 2 distinct outcomes possible each time. Let p1, p2, . . . , pk denote the probabilities of the k types of
outcomes (with∑k

i=1 pi = 1). If Xi, i = 1, 2, . . . , k, counts the number of type-i outcomes to occur, then
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(X1, X2, . . . , Xk) is Multinomial (i.e., (X1, X2, . . . , Xk) ∼ MN(n, p1, p2, . . . , pk)) with joint pmf

p(x1, x2, . . . , xk) = n!
x1!x2! · · ·xk!p

x1
1 px2

2 · · · p
xk

k , xi = 0, 1, . . . , n ∀i and
k∑

i=1
xi = n

Remark: A MN(n, p1, 1− p1) distribution simplifies to become the BIN(n, p1) distribution.

Jointly Continuous Case:
Joint pdf: The joint pdf f(x, y) is a non-negative real-valued function which enables one to calculate
probabilities of the form

P(X ∈ A, Y ∈ B) =
∫

B

∫
A

f(x, y) dx dy =
∫

A

∫
B

f(x, y) dx dy

where A and B are sets of real numbers (e.g., intervals). As a result,

F (a, b) =
∫ b

−∞

∫ a

−∞
f(x, y) dx dy =

∫ a

−∞

∫ b

−∞
f(x, y) dy dx

Marginals:

fX(x) =
∫ ∞

−∞
f(x, y) dy

fY (y) =
∫ ∞

−∞
f(x, y) dx

Jointly Continuous Case:
Important Relationship:

f(x, y) = ∂2

∂x ∂y
F (x, y)

Transformations: Let (X, Y ) be jointly continuous with joint pdf f(x, y0) and region of support S(X, Y ).
Suppose that the rvs V and W are given by V = b1(X, Y ) and W = b2(X, Y ), where the functions
v = b1(x, y) and w = b2(x, y) defined a one-to-one transformation that maps the set S(X, Y ) onto the
set S(V, W ). If x and y are expressed in terms of v and w (i.e., x = h1(v, w) and y = h2(v, w)), then the
joint pdf of V and W is given by

g(v, w) =
{

f
(
h1(v, w), h2(v, w)

)
|J |, if (v, w) ∈ S(V, W ),

0, elsewhere,

where J is the Jacobian of the transformation given by

J = ∂x

∂v

∂y

∂w
− ∂x

∂w

∂y

∂v
.
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Expectation

Expectation: If g( · , · ) denotes an arbitrary real-valued function, then

E
[
g(X, Y )

]
=
{∑

x

∑
y g(x, y)p(x, y) , if X and Y are jointly discrete,∫∞

−∞
∫∞

−∞ g(x, y)f(x, y) dy dx , if X and Y are jointly continuous.

Remark: The order of summation/integration is irrelevant and can be interchanged.

Special choices of g( · ):
1. g(X, Y ) =

(
X−E[X]

)(
Y −E[Y ]

)
=⇒ E

[
g(X, Y )

]
= E

[(
X − E[X]

)(
Y − E[Y ]

)]
is the covariance

of X and Y . Note that

Cov(X, Y ) = E
[(

X − E[X]
)(

Y − E[Y ]
)]

= E[XY ]− E[X]E[Y ]

and Cov(X, X) = Var(X).
2. g(X, Y ) = aX + bY , a, b ∈ R (i.e., g(X, Y ) is a linear combination of X and Y ). Note that:

E[aX + bY ] = aE[X] + bE[Y ],
Var(aX + bY ) = a2 Var(X) + b2 Var(Y ) + 2ab Cov(X, Y ).

3. g(X, Y ) = esX+tY , s, t ∈ R =⇒ E
[
g(X, Y )

]
= E[esX+tY ] is the joint mgf of X and Y . A joint

mgf (denoted by ϕ(s, t)) also uniquely characterizes a joint probability distribution and can be used
to calculate joint moments of X and Y via the formula

E[XmY n] = ϕ(m,n)(0, 0) =
(

∂m+n

∂sm ∂tn
ϕ(s, t)

)
s=0,t=0

= lim
s→0,t→0

∂m+n

∂sm ∂tn
ϕ(s, t), m, n ∈ N

Independence of Random Variables

Formal Definition: If X and Y are independent rvs if

F (a, b) = P(X ≤ a, Y ≤ b)
= P(X ≤ a)P(Y ≤ b)
= FX(a)FY (b) ∀a, b ∈ R.

Equivalently, independence exists iff p(x, y) = pX(x)pY (y) (in the jointly discrete case) or f(x, y) =
fX(x)fY (y) (in the jointly continuous case) ∀x, y ∈ R.

Important Property: For arbitrary real-valued functions g( · ) and h( · ), if X and Y are independent, then

E
[
g(X)h(Y )

]
= E

[
g(X)

]
E
[
h(Y )

]
.

Remark: As a consequence of this property, Cov(X, Y ) = 0 if X and Y are independent, implying that
Var(aX + bY ) = a2 Var(X) + b2 Var(Y ). However, if Cov(X, Y ) = 0, we cannot conclude that X and Y
are independent (we can only say that X and Y are uncorrelated).
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Example 1.4. Suppose that X and Y have joint pmf (and corresponding marginals) of the form

p(x, y) 0 1 pX(x)
0 0.2 0 0.2
1 0 0.6 0.6
2 0.2 0 0.2

pY (y) 0.4 0.6 1

y

x

Show that Cov(X, Y ) = 0 holds, but X and Y are not independent.

Solution: Recall that Cov(X, X) = E[XY ]− E[X]E[Y ]. Note that

E[XY ] =
∑

x

∑
y

xyp(x, y)

= (0)(0)(0.2) + (0)(1)(0) + (1)(0)(0) + (1)(1)(0.6) + (2)(0)(0.2) + (2)(1)(0)
= 0.6,

E[X] =
∑

x

xpX(x) = (0)(0.2) + (1)(0.6) + (2)(0.2) = 1,

E[Y ] =
∑

y

ypY (y) = (0)(0.4) + (1)(0.6) = 0.6.

Thus,
Cov(X, Y ) = E[XY ]− E[X]E[Y ] = 0.6− (1)(0.6) = 0.

However, from the given table, it is clear that p(2, 0) = 0.2 ̸= 0.08 = (0.2)(0.4) = pX(2)pY (0). Thus, we
conclude that while Cov(X, Y ) = 0, X and Y are not independent.

Theorem 1.1. If X1, X2, . . . , Xn are independent rvs where ϕXi(t) is the mgf of Xi, i = 1, 2, . . . , n, then
T =

∑n
i=1 Xi has mgf ϕT (t) =

∏n
i=1 ϕXi

(t).

Proof: Note that the mgf of T given by

ϕT (t) = E[etT ]
= E[et(X1+X2+···+Xn)]
= E[etX1etX2 · · · etXn ]
= E[etX1 ]E[etX2 ] · · ·E[etXn ] by independence of {Xi}n

i=1

= ϕX1(t)ϕX2(t) · · ·ϕXn
(t)

=
n∏

i=1
ϕXi

(t).

Remarks:
(1) Simply put, Theorem 1.1 states that the mgf of a sum of independent rvs is just the product of their

individual mgfs.
(2) As a special case of the above result, note that ϕT (t) = ϕX1(t)n if X1, X2, . . . , Xn is an independent

and identically distributed (iid) sequence of rvs.
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Example 1.5. Let X1, X2, . . . , Xm be an independent sequence of rvs where Xi ∼ BIN(ni, p), i =
1, 2, . . . , m. Find the distribution of T =

∑m
i=1 Xi.

Solution: Looking at the mgf of T , note that

ϕT (t) =
m∏

i=1
ϕXi

(t) by Theorem 1.1

=
m∏

i=1
(pet + 1− p)ni using the result of Example of 1.3

= (pet + 1− p)
∑m

i=1
ni , t ∈ R.

By the mgf uniqueness property we recognize that T =
∑m

i=1 Xi ∼ BIN
(∑m

i=1 ni, p
)
.

Remark: As a special case of the above example, if X1, X2, . . . , Xm are iid BERN(p) rvs, then T =∑m
i=1 Xi ∼ BIN(m, p).

Convergence of Random Variables

Modes of Convergence: If Xn, n ∈ Z+, and X are rvs, then
1. Xn → X in distribution iff

lim
n→∞

P(Xn ≤ x) = P(X ≤ x), ∀x ∈ R at which P(X ≤ x) is continuous,

2. Xn → X in probability, iff ∀ε > 0,

lim
n→∞

P
(
|Xn −X| > ε

)
= 0,

3. Xn → X almost surely (a.s.) iff
P
(

lim
n→∞

Xn = X
)

= 1.

Remarks:
(1) In probability theory, an event is said to happen a.s. if it happens with probability 1.
(2) The following implications hold true in general:

Xn → X a.s. =⇒ Xn → X in probability =⇒ Xn → X in distribution.

Strong Law of Large Numbers

Strong Law of Large Numbers (SLLN): If X1, X2, . . . , Xn is an iid sequence of rvs with common mean µ
and E

[
|X1|

]
<∞, then

X̄n = X1 + X2 + · · ·+ Xn

n
→ µ a.s. as n→∞.
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Remark: The SLLN is one of the most important results in probability and statistics, indicating that the
sample mean will, with probability 1, converge to the true mean of the underlying distribution as the
sample size approaches infinity. In other words, if the same experiment or study is repeated independently
many times, the average of the results of the trials must be close to the mean. The result gets closer to the
mean as the number of trials is increased.
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Formulation: If X1 and X2 are both discrete rvs with joint pmf p(x1, x2) and marginal pmfs p1(x1) and
p2(x2), respectively, then the conditional distribution of X1 given X2 = x2, denoted by X1 | (X2 = x2), is
defined via its conditional pmf

p1|2(x1 | x2) = P(X1 = x1 |X2 = x2) = P(X1 = x1, X2 = x2)
P(X2 = x2) = p(x1, x2)

p2(x2) ,

provided that p2(x2) > 0. Similarly, the conditional distribution of X2 | (X1 = x1) is defined via its
conditional pmf

p2|1(x2 | x1) = P(X2 = x2 |X1 = x1) = p(x1, x2)
p1(x1) , provided that p1(x1) > 0.

Remarks:
(1) If X1 and X2 are independent, then p(x1, x2) = p1(x1)p2(x2) ∀x1, x2 ∈ R, and so p1|2(x1 | x2) =

p1(x1) and p2|1(x2 | x1) = p2(x2).
(2) These ideas extend beyond the simple bivariate case naturally. For example, suppose that X1, X2,

and X3 are discrete rvs. We can define the conditional distribution of (X1, X2) given X3 = x3 via
its conditional pmf as follows:

p12|3(x1, x2 | x3) = P(X1 = x1, X2 = x2, X3 = x3)
P(X3 = x3) = p(x1, x2, x3)

p3(x3) ,

provided that p3(x3) > 0. Alternatively, we can define the conditional distribution of X2 given
(X1 = x1, X3 = x3) via its conditional pmf given by

p2|13(x2 | x1, x3) = p(x1, x2, x3)
p13(x1, x3) , provided that p13(x1, x3) > 0,

where p13(x1, x3) is the joint pmf of X1 and X3.

Conditional Expectation: The conditional mean of X1 | (X2 = x2) is

E[X1 |X2 = x2] =
∑
x1

x1p1|2(x1 | x2).

More generally, if w( · , · ), h( · ), and g( · ) are arbitrary real-valued functions, then

E
[
w(X1, X2)

∣∣X2 = x2
]

= E
[
w(X1, x2)

∣∣X2 = x2
]

=
∑
x1

w(x1, x2)p1|2(x1 | x2)

and
E
[
g(X1)h(X2)

∣∣X2 = x2
]

= E
[
g(X1)h(x2)

∣∣X2 = x2
]

= h(x2)E
[
g(X1)

∣∣X2 = x2
]
.

As an immediate consequence, if a, b ∈ R, then we obtain

E
[
ag(X1) + bh(X1)

∣∣X2 = x2
]

= aE
[
g(X1)

∣∣X2 = x2
]

+ bE
[
h(X1)

∣∣X2 = x2
]
.

Furthermore, if we recall that E[X1 + X2] =
∑

x1

∑
x2

(x1 + x2)p(x1, x2), then it correspondingly follows
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that

E[X1 + X2 |X3 = x3] =
∑
x1

∑
x2

(x1 + x2)p12|3(x1, x2 | x3)

=
∑
x1

∑
x2

(x1 + x2)p(x1, x2, x3)
p3(x3)

=
∑
x1

∑
x2

x1 ·
p(x1, x2, x3)

p3(x3) +
∑
x1

∑
x2

x2 ·
p(x1, x2, x3)

p3(x3)

=
∑
x1

x1

p3(x3)
∑
x2

p(x1, x2, x3) +
∑
x2

x2

p3(x3)
∑
x1

p(x1, x2, x3)

=
∑
x1

x1

p3(x3)p13(x1, x3) +
∑
x2

x2

p3(x3)p23(x2, x3)

=
∑
x1

x1p1|3(x1 | x3) +
∑
x2

x2p2|3(x2 | x3)

= E[X1 |X3 = x3] + E[X2 |X3 = x3].

We have: E[X1 + X2 |X3 = x3] = E[X1 |X3 = x3] + E[X2 |X3 = x3]. In other words, the conditional
expected value is also a linear operator. In fact, more generally, if ai ∈ R, i = 1, 2, . . . , n, then the same
essential approach can be used to show that

E
[ n∑

i=1
aiXi

∣∣∣∣ Y = y

]
=

n∑
i=1

ai E[Xi | Y = y].

Conditional Variance: If we take g(X1) =
(
X1 − E[X1 |X2 = x2]

)2, then

E
[
g(X1)

∣∣X2 = x2
]

= E
[(

X1 − E[X1 |X2 = x2]
)2
∣∣∣X2 = x2

]
= Var(X1 |X2 = x2)

is the conditional variance of X1 | (X2 = x2).

As with the calculation of variance, the following result provides an alternative (and often times preferred)
way to calculate Var(X1 |X2 = x2).

Theorem 2.1. Var(X1 |X2 = x2) = E[X2
1 |X2 = x2]− E[X1 |X2 = x2]2.

Proof:

Var(X1 |X2 = x2) = E
[(

X1 − E[X1 |X2 = x2]
)2
∣∣∣X2 = x2

]
= E

[
X2

1 − 2X1 E[X1 |X2 = x2] + E[X1 |X2 = x2]2
∣∣X2 = x2

]
= E[X2

1 ]− 2E[X1 |X2 = x2]2 + E[X1 |X2 = x2]2

= E[X2
1 |X2 = x2]− E[X1 |X2 = x2]2
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Example 2.1. Suppose that X1 and X2 are discrete rvs having joint pmf of the form

p(x1, x2) =



1/5 , if x1 = 1 and x2 = 0,
2/15 , if x1 = 0 and x2 = 1,
1/15 , if x1 = 1 and x2 = 2,
1/5 , if x1 = 2 and x2 = 0,
2/5 , if x1 = 1 and x2 = 1,
0 , otherwise.

Find the conditional distribution of X1 | (X2 = 1). Also, calculate E[X1 |X2 = 1] and Var(X1 |X2 = 1).

Solution: Note that for problems of this nature, it often helps to create a table summarizing the information:

p(x1, x2) 0 1 2 p1(x1)
0 0 2/15 0 2/15
1 1/5 2/5 1/15 2/3
2 1/5 0 0 1/5

p2(x2) 2/5 8/15 1/15 1

x2

x1

Then,
• p1|2(0 | 1) = P(X1 = 0 |X2 = 1) = (2/15)/(8/15) = 1/4, and
• p1|2(1 | 1) = P(X1 = 1 |X2 = 1) = (2/5)/(8/15) = 3/4.

Thus, the conditional pmf of X1 | (X2 = 1) can be represented as follows:
x1 0 1

p1|2(x1 | 1) 1/4 3/4

Note that X1 | (X2 = 1) ∼ BERN(3/4). Thus, E[X1 | X2 = 1] = 3/4 and Var(X1 | X2 = 1) =
3/4(1− 3/4) = 3/16.

Example 2.2. For i = 1, 2, suppose that Xi ∼ BIN(ni, p) where X1 and X2 are independent. Find the
conditional distribution of X1 given X1 + X2 = m.

Solution: We want to find the conditional pmf of X1 | (Y = m), where Y = X1 + X2. Let this
conditional pmf be denoted by pX1|Y (x1 | m) = P(X1 = x1 | Y = m). Recall from Example 1.5 that
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X1 + X2 ∼ BIN(n1 + n2, p).

pX1|Y (x1 | m) = P(X1 = x1, Y = m)
P(Y = m)

= P(X1 = x1, X1 + X2 = m)
P(X1 + X2 = m)

= P(X1 = x1, X2 = m− x1)(
n1+n2

m

)
pm(1− p)n1+n2−m

= p1(x1)p2(m− x1)(
n1+n2

m

)
pm(1− p)n1+n2−m

=
(

n1
x1

)
px1(1− p)n1−x1

(
n2

m−x1

)
pm−x1(1− p)n2−(m−x1)(

n1+n2
m

)
pm(1− p)n1+n2−m

provided that 0 ≤ x1 ≤ n1, and 0 ≤ m− x1 ≤ n2 (i.e., m− n2 ≤ x ≤ m). Simplifying,

pX1|Y (x1 | m) =
(

n1
x1

)(
n2

m−x1

)(
n1+n2

m

) ,

for x1 = max{0, m− n2}, . . . , min{n1, m}.

Remark: Looking at the conditional pmf we just obtained, we recognize that X1 | (X1 + X2 = m) ∼
HG(n1 + n2, n1, m). The result that X1 | (X1 + X2 = m) has a hypergeometric distribution should not be all
that surprising. Consider the sequence of n1 + n2 Bernoulli trials represented visually as follows:

1 2 · · · n1 1 2 · · · n2︸ ︷︷ ︸
n1 + n2 trials

Of these n1 + n2 trials in which m of them were known to be successes, we want x1 successes to have occurred
among the first n1 trials (thereby implying that m− x1 successes are obtained during the final n2 trials). Since
any of these trials were equally likely to be a success (i.e., the same success probability p is assumed), the desired
result ends up being the obtained hypergeometric probability.

Example 2.3. Let X1, X2, . . . , Xm be independent rvs where Xi ∼ POI(λi), i = 1, 2, . . . , m. Define
Y =

∑m
i=1 Xi. Find the conditional distribution of Xj | (Y = n).

Solution: We are interested in the conditional pmf of Xj | (Y = n), to be denoted by

pXj |Y (xj | n) = P(Xj = xj | Y = n)

= P(Xj = xj , Y = n)
P(Y = n)

=
P
(

Xj = xj ,
∑m

i=1 Xi = n

)
P(Y = n)



CHAPTER 2. CONDITIONAL DISTRIBUTIONS AND CONDITIONAL EXPECTATION 21

First, we investigate the numerator:

P
(

Xj = xj ,

m∑
i=1

Xi = n

)
= P

(
Xj = xj , Xj +

m∑
i=1,i̸=j

Xi = n

)

= P
(

Xj = xj ,

m∑
i=1,i̸=j

Xi = n− xj

)

= P(Xj = xj)P
( m∑

i=1,i̸=j

Xi = n− xj

)

where the last equality follows due to the independence of {Xi}m
i=1. We are given that Xj ∼ POI(λj).

Due to the result of Exercise 1.1, it follows that
m∑

i=1,i̸=j

Xi ∼ POI
( m∑

i=1,i̸=j

λi

)
.

By the same result, we also have that

Y =
m∑

i=1
Xi ∼ POI

( m∑
i=1

λi

)
.

Therefore,

pXj |Y (xj | n) =
e−λj λ

xj
j

xj !
e

−
∑m

i=1,i ̸=j
λi (
∑m

i=1,i ̸=j
λi)n−xj

(n−xj)

e
−
∑m

i=1
λi (
∑m

i=1
λi)n

n!

provided that xj ≥ 0 and n− xj ≥ 0 which implies 0 ≤ xj ≤ n. Thus,

pXj |Y (xj | n) =
(

n

xj

)
λ

xj

j (λY − λj)n−xj

λn
Y

=
(

n

xj

)(
λj

λY

)xj
(

1− λj

λY

)n−xj

, xj = 0, 1, . . . , n

where λY =
∑m

i=1 λi and note that λ
xj

Y λ
n−xj

Y = λY . We see that

Xj | (Y = n) ∼ BIN
(

n,
λj∑m
i=1 λi

)
.

Example 2.4. Suppose that X ∼ POI(λ) and Y | (X = x) ∼ BIN(x, p). Find the conditional distribution
of X | (Y = y).

Solution: We want to calculate the conditional pmf of X | (Y = y), to be denoted by

pX|Y (x | y) = P(X = x | Y = y) = P(X = x, Y = y)
P(Y = y) .

First, note that
P(Y = y |X = x) = P(X = x, Y = y)

P(X = x) ,
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which implies that

P(X = x, Y = y) = P(Y = y |X = x)P(X = x) = e−λλx

x!

(
x

y

)
py(1− p)x−y,

for x = 0, 1, 2, . . . and y = 0, 1, . . . , x. Note that the range of y depends on the values of x. A graphical
display of the region is given below:

0 1 2 3 40

1

2

3

4

y = x

We may rewrite this region with the range of x depending on the values of y. Specifically, note that
x = 0, 1, 2, . . . and y = 0, 1, . . . , x is equivalent to y = 0, 1, 2, . . . and x = y, y + 1, y + 2, . . .. We use this
alternative region to find the marginal pmf of Y .

P(Y = y) =
∑

x

P(X = x, Y = y)

=
∞∑

x=y

e−λ λx

x!

(
x

y

)
py(1− p)x−y

=
∞∑

x=y

e−λ λx

x!
x!

y!(x− y)!p
y(1− p)x−y

= e−λ

y! py
∞∑

x=y

λx(1− p)x−y

(x− y)! λ−yλy

= e−λ(λp)y

y!

∞∑
x=y

(
λ(1− p)

)x−y

(x− y)! let z = x− y

= e−λ(λp)y

y! eλ(1−p)

= e−λp(λp)y

y! y = 0, 1, 2, . . .

In fact, Y ∼ POI(λp). Therefore,

pX|Y (x | y) =
e−λλx

x!
x!

y!(x−y)! p
y(1− p)x−y

e−λp(λp)y

y!

=
e−λ(1−p)(λ(1− p)

)x−y

(x− y)! ,

for x = y, y + 1, . . ..
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Remark: The above conditional pmf is recognized as that of a shifted Poisson distribution (y units to the
right). Specifically, we have that

X | (Y = y) ∼W + y

where W ∼ POI
(
λ(1− p)

)
.

Formulation: In the jointly discrete case, it was natural to define:

pX|Y (x | y) = P(X = x | Y = y) = P(X = x, Y = y)/P(Y = y).

Strictly speaking, this no longer makes sense in a continuous context since f(x, y) ̸= P(X = x, Y = y)
and fY (y) ̸= P(Y = y). However, for small positive values of dy (as the figure below shows), P(y ≤ Y ≤
y + dy) ≈ fY (y) dy.

Formally,
fY (y) = lim

dy→0

P(y ≤ Y ≤ y + dy)
dy

.

Similarly,
f(x, y) = lim

dx→0,dy→0

P(x ≤ X ≤ x + dx, y ≤ Y ≤ y + dy)
dx dy

,

which implies that P(x ≤ X ≤ x + dx, y ≤ Y ≤ y + dy) ≈ f(x, y) dx dy. For small positive values of dx and dy,
consider now

P(x ≤ X ≤ x + dx | y ≤ Y ≤ y + dy) = P(x ≤ X ≤ x + dx | y ≤ Y ≤ y + dy)
P(y ≤ Y ≤ y + dy)

≈ f(x, y) dx dy

fY (y) dy

= f(x, y)
fY (y) dx.

As a result, we formally define the conditional pdf of X given Y = y (again to be denoted by X | (Y = y)) as

fX|Y (x | y) = f(x, y)
fY (y) = lim

dx→0,dy→0

P(x ≤ X ≤ x + dx, y ≤ Y ≤ y + dy)
dx

.

Remark: In the jointly continuous case, the conditional probability of an event of the form {a ≤ X ≤ b} given
Y = y would be calculated as

P(a ≤ X ≤ b | Y = y) =
∫ b

a

fX|Y (x | y) dx =
∫ b

a
f(x, y) dx

fY (y) ,

which we can also express as

P(a ≤ X ≤ b | Y = y) =
∫ b

a
f(x, y) dx∫∞

−∞ f(x, y) dx
.

In other words, we could view this as a way of assigning probability to an event {a ≤ X ≤ b} over a “slice,”
Y = y, of the (joint) region of support for the pair of rvs X and Y .

Example 2.5. Suppose that the joint pdf of X and Y is given by

f(x, y) =
{

5e−3x−y, if 0 ≤ 2x ≤ y <∞,
0, elsewhere.

Determine the conditional distribution of Y | (X = x) where 0 ≤ x <∞.
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Solution: We wish to find the conditional pdf of Y | (X = x) given by

fY |X(y | x) = f(x, y)
fX(x)

The region of support for this joint distribution looks like:

0 2 4 6

0

2

4

6
y = 2x

For 0 < x <∞:

fX(x) =
∫ ∞

−∞
f(x, y) dy

=
∫ ∞

2x

5e−3x−y dy

=
[
5e−3x(−e−y)

]y=∞

y=2x

= 5e−3xe−2x

= 5e−5x

Note that X ∼ EXP(5). Finally, we get:

fY |X(y | x) = 5e−3x−y

5e−5x
= e−y+2x, y > 2x.

Remark: The conditional pdf of Y | (X = x) is recognized as that of a shifted exponential distribution (2x
units to the right). Specifically, we have that Y | (X = x) ∼W + 2x, where W ∼ EXP(1).

Conditional Expectation: If X and Y are jointly continuous rvs and g( · ) is an arbitrary real-valued
function, then the conditional expectation of g(X) given Y = y is

E[g(X) | Y = y] =
∫ ∞

−∞
g(x)fX|Y (x | y) dx,

and so the conditional mean of X | (Y = y) is given by

E[X | Y = y] =
∫ ∞

−∞
xfX|Y (x | y) dx.
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Example 2.6. Suppose that the joint pdf of X and Y is given by

f(x, y) =


12
5 x(2− x− y), if 0 < x < 1 and 0 < y < 1,

0, elsewhere.

Find the conditional distribution of X given Y = y where 0 < y < 1, and use it to calculate its conditional
mean.

Solution: Using our earlier theory, we wish to find the conditional pdf of X | (Y = y) given by

fX|Y (x | y) = f(x, y)
fY (y) .

The region of support for this joint distribution of X and Y look like:

−1 −0.5 0 0.5 1 1.5 2
−1

0

1

2

For 0 < y < 1,

fY (y) =
∫ ∞

−∞
f(x, y) dx

=
∫ 1

0

12
5 x(2− x− y) dx

= 12
5

∫ 1

0
(2x− x2 − xy) dx

= 12
5

[
x2 − x3

3 −
x2y

3

]x=1

x=0

= 12
5

(
1− 1

3 −
y

2

)
= 2(4− 3y)

5

You can verify this by integrating fY (y) over the support of Y (to get 1). Thus,

fX|Y (x | y) = 12/5x(2− x− y)
2/5(4− 3y) = 6x(2− x− y)

4− 3y
, 0 < x < 1
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The conditional mean of X given Y = y is:

E[X | Y = y] =
∫ 1

0
x

6x(2− x− y)
4− 3y

dx

= 6
4− 3y

∫ 1

0
(2x2 − x3 − x2y) dx

= 6
4− 3y

[
2x3

3 − x4

4 −
x3y

3

]x=1

x=0

= 6
4− 3y

(
2
3 −

1
4 −

y

3

)
= 5− 4y

2(4− 3y)

Conditional Variance: Likewise, as in the jointly discrete case, we can also consider the notion of
conditional variance, which retains the same definition as before:

Var(X | Y = y) = E
[(

X − E[X | Y = y]
)2
∣∣∣ Y = y

]
= E[X2 | Y = y]− E[X | Y = y]2.

A fact that is becoming more and more evident is that conditional expectation inherits many of the
properties from regular expectation. Moreover, the same properties concerning conditional expectation
that held in the jointly discrete case continue to hold true in the jointly continuous case (as we are
effectively replacing summation with integration).

Example 2.6. (continued) Calculate Var(X | Y = y) where 0 < y < 1 and the joint pdf of X and Y is
given by

f(x, y) =


12
5 x(2− x− 5), if 0 < x < 1 and 0 < y < 1,

0, elsewhere.

Solution: Our earlier results tell us that

E[X2 | Y = y] =
∫ 1

0
x2 6x(2− x− y)

4− 3y
dx

= 6
4− 3y

∫ 1

0
(2x3 − x4 − x3y) dx

= 6
4− 3y

[
x4

2 −
x5

5 −
x4y

4

]x=1

x=0

= 6
4− 3y

(
1
2 −

1
5 −

y

4

)
= 3(6− 5y)

10(4− 3y) .

Therefore, this leads to
Var(X | Y = y) = E[X2 | Y = y]− E[X | Y = y]2

= 3(6− 5y)
10(4− 3y) −

(5− 4y)2

4(4− 3y)2

= 19 + 2y(5y − 14)
20(4− 3y)2 .
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Mixed Case

We can also consider conditional distributions where the rvs are neither jointly continuous nor jointly
discrete. To consider such a situation, suppose X is a continuous rv having pdf fX(x) and Y is a discrete
rv having pmf pY (y).
If we focus on the conditional distribution of X given Y = y, then let us look at the following quantity:

P(x ≤ X ≤ x + dx | Y = y)
dx

= P(x ≤ X ≤ x + dx, Y = y)
dxP(Y = y)

= P(x ≤ X ≤ x + dx)P(Y = y | x ≤ X ≤ x + dx)
dxP(Y = y)

= P(Y = y | x ≤ X ≤ x + dx)
P(Y = y)

P(x ≤ X ≤ x + dx)
dx

,

where dx is again, a small positive value.
By letting dx→ 0, we can formally define the conditional pdf of X | (Y = y) as follows:

f(x | y) = lim
dx→0

P(x ≤ X ≤ x + dx | Y = y)
dx

= lim
dx→0

P(Y = y | x ≤ X ≤ x + dx)
P(Y = y)

P(x ≤ X ≤ x + dx)
dx

= P(Y = y |X = x)
P(Y = y) fX(x)

= p(y | x)fX(x)
pY (y) ,

where p(y | x) = P(Y = y |X = x) is defined as the conditional pmf of Y | (X = x). Note that since
f(x | y) is a pdf, it follows that∫ ∞

−∞
f(x | y) dx = 1 =⇒ pY (y) =

∫ ∞

−∞
p(y | x)fX(x) dx.

Similarly, we can also write
p(y | x) = f(x | y)pY (y)

fX(x) .

Since p(y | x) is a pmf, we have that∑
y

p(y | x) = 1 =⇒ fX(x) =
∑

y

f(x | y)pY (y).

Example 2.7. Suppose that X ∼ U(0, 1) and Y | (X = x) ∼ BERN(x). Find the conditional distribution
of X | (Y = y).

Solution: We wish to find the conditional pdf of X | (Y = y) given by

f(x | y) = p(y | x)fX(x)
pY (y)

Based on the given information, we have

fX(x) = 1, 0 < x < 1,

p(y | x) = xy(1− x)1−y, y = 0, 1.



CHAPTER 2. CONDITIONAL DISTRIBUTIONS AND CONDITIONAL EXPECTATION 28

For y = 0, 1, note that

pY (y) =
∫ ∞

−∞
p(y | x)fX(x) dx

=
∫ 1

0
xy(1− x)1−y(1) dx

• For y = 0 =⇒ pY (0) =
∫ 1

0 (1− x) dx =
[
x− x2/2

]x=1
x=0 = 1/2.

• For y = 1 =⇒ pY (1) =
∫ 1

0 x dx =
[
x2/2

]x=1
x=0 = 1/2.

In other words, we have that

pY (y) = 1
2 , y = 0, 1 =⇒ Y ∼ BERN

(
1
2

)
Thus, for y = 0, 1, we ultimately obtain

f(x | y) = xy(1− x)1−y(1)
1/2 = 2xy(1− x)1−y, 0 < x < 1.

2.2 Computing Expectation by Conditioning

An Important Observation
As before, let g( · ) be an arbitrary real-valued function. In general, we recognize that E

[
g(X)

∣∣ Y = y
]

= v(y),
where v(y) is some function of y. With this in mind, let us make the following definition:

E
[
g(X)

∣∣ Y
]

= E
[
g(X)

∣∣ Y = y
]∣∣

y=Y
= v(Y ).

Functions of rvs are, once again, rvs themselves. Therefore, it makes sense to consider the expected value of
v(Y ). In this regard, we would obtain:

E
[
E
[
g(X)

∣∣ Y
]]

= E
[
v(Y )

]
=
{∑

y v(y)pY (y) , if Y is discrete,∫∞
−∞ v(y)fY (y) dy , if Y is continuous,

=
{∑

y E
[
g(X)

∣∣ Y = y
]
pY (y) , if Y is discrete,∫∞

−∞ E
[
g(X)

∣∣ Y = y
]
fY (y) dy , if Y is continuous.

Law of Total Expectation
The following important result is regarded as the law of total expectation.

Theorem 2.2. For rvs X and Y , E
[
g(X)

]
= E

[
E
[
g(X)

∣∣ Y
]]
.
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Proof: Without loss of generality, assume that X and Y are jointly continuous rvs. From above, we have

E
[
E
[
g(X)

∣∣ Y
]]

=
∫ ∞

−∞
E
[
g(X)

∣∣ Y = y
]
fY (y) dy

=
∫ ∞

−∞

∫ ∞

−∞
g(x)fX|Y (x | y) dxfY (y) dy

=
∫ ∞

−∞

∫ ∞

−∞
g(x)f(x, y)

fY (y) fY (y) dx dy

=
∫ ∞

−∞

∫ ∞

−∞
g(x)f(x, y) dy dx

=
∫ ∞

−∞
g(x)

∫ ∞

−∞
f(x, y) dy dx

=
∫ ∞

−∞
g(x)fX(x) dx

= E
[
g(X)

]
Remark: Using a similar method of proof, the result of Theorem 2.2 can naturally be extended as follows:

E
[
g(X, Y )

]
= E

[
E
[
g(X, Y )

∣∣ Y
]]

.

The usefulness of the law of total expectation is well-demonstrated in the following example.

Example 2.8. Suppose that X ∼ GEOt(p) with pmf pX(x) = (1− p)x−1p, x = 1, 2, 3, . . .. Calculate E[X]
and Var(X) using the law of total expectation.

Solution: With X ∼ GEOt(p), recall that X actually models the number of (independent) trials necessary
to obtain the first success. Define:

Y =
{

0 , if the 1st trial is a failure,
1 , if the 1st trial is a success.

We observe that Y ∼ BERN(p), so that pY (0) = 1− p and pY (1) = p.
Note:

• X | (Y = 1) is degenerate at 1 (i.e., X given Y = 1 is equal to 1 with probability 1).
• X | (Y = 0) is equivalent in distribution 1 + X (i.e., X | (Y = 0) ∼ 1 + X).

By the law of total expectation, we obtain:

E[X] = E
[
E[X | Y ]

]
=

1∑
y=0

E[X | Y = y]pY (y)

= (1− p)E[X | Y = y]pY (y)
= (1− p)E[X | Y = 0] + pE[X | Y = 1]
= (1− p)E[1 + X] + p

= (1− p) + (1− p)E[X] + p

= 1 + (1− p)E[X],

which implies that (1 − (1 − p))E[X] = 1, or simply E[X] = 1/p. Similarly, we use the law of total
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expectation to get

E[X2] = E
[
E[X2 | Y ]

]
=

1∑
y=0

E[X2 | Y = y]pY (y)

= (1− p)E[X2 | Y = 0] + pE[X2 | Y = 1]
= (1− p)E

[
(1 + X)2]+ p

= (1− p)
(
E[X2] + 2E[X] + 1

)
+ p

= 1 + (1− p)E[X2] + 2(1− p)
p

,

which implies that (
1− (1− p)

)
E[X] = p + 2(1− p)

p

or simply
E[X2] = p + 2− 2p

p2 = 2− p

p2

Finally,
Var(X) = 2− p

p2 −
(

1
p

)2
= 1− p

p2

Remarks:
(1) Note that the obtained mean and variance agree with known results. Moreover, the above procedure relied

only on basic manipulations and did not involve any complicated sums or the differentiation of a mgf.
(2) As part of the above solution, we claimed that X | (Y = 0) ∼ Z where Z = 1 + X, and this implied that

E[X2 | Y = 0] = E
[
(1 + X)2]. To see why this holds true formally, consider first

pX|Y (x | 0) = P(X = x | Y = 0) = P(X = x, Y = 0)
P(Y = 0) = P(X = x, Y = 0)

1− p
.

Note that
P(X = x, Y = 0) = P(1st trial is a failure and x total trials needed to get 1st success)

= P(1st trial is a failure, next x− 2 trials are failures, and xth trial is a success)
= (1− p)(1− p)x−2p due to independence of trials.

Thus,
pX|Y (x | 0) = (1− p)(1− p)x−2p

1− p
= (1− p)x−2p, x = 2, 3, 4, . . . .

On the other hand, note that
pZ(z) = P(Z = z)

= P(1 + X = z)
= P(X = z − 1)
= (1− p)(z−1)−1p

= (1− p)z−2p, z = 2, 3, 4, . . . .

Since these two pmfs are identical, it follows that X | (Y = 0) ∼ Z. As a further consequence, for an
arbitrary real-valued function g( · ), we must have that

E
[
g(X)

∣∣ Y = 0
]

= E
[
g(Z)

]
= E

[
g(1 + X)

]
.
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Computing Variances by Conditioning

In recognizing that E
[
g(X)

∣∣ Y = y
]
is a function of y, it similarly follows that Var(X | Y = y) is also a

function of y. Therefore, we can make the following definition:

Var(X | Y ) = Var(X | Y = y)
∣∣
y=Y

.

Since Var(X | Y ) is a function of Y , it is a rv as well, meaning that we could take its expected value. The
following result, usually referred to as the conditional variance formula, provides a convenient way to
calculate variance through the use of conditioning.

Theorem 2.3. For rvs X and Y , Var(X) = E
[
Var(X | Y )

]
+ Var

(
E[X | Y ]

)
.

Proof: First, consider the term E
[
Var(X | Y )

]
. Since

Var(X | Y = y) = E[X2 | Y = y]− E[X | Y = y]2,

it follows that
Var(X | Y ) = E[X2 | Y ]− E[X | Y ]2,

which yields (by Theorem 2.2)

E
[
Var(X | Y )

]
= E

[
E[X2 | Y ]− E[X | Y ]2

]
= E

[
E[X2 | Y ]

]
− E

[
E[X | Y ]2

]
= E[X2]− E

[
E[X | Y ]2

]
.

Next, recall
Var(v(Y )) = E

[
v(Y )2]− E

[
v(Y )

]2
.

Applying Theorem 2.2 once more,

Var
(
E[X | Y ]

)
= E

[
E[X | Y ]2

]
− E

[
E[X | Y ]

]2
= E

[
E[X | Y ]2

]
− E[X]2.

Thus,

E
[
Var(X | Y )

]
+ Var

(
E[X | Y ]

)
= E[X2]− E

[
E[X | Y ]2

]
+ E

[
E[X | Y ]2

]
− E[X]2

= E[X2]− E[X]2

= Var(X).

Example 2.9. Suppose that {Xi}∞
i=1 is an iid sequence of rvs with common mean µ and common variance

σ2. Let N be a discrete, non-negative integer-valued rv that is independent of each Xi. Find the mean
and variance of T =

∑N
i=1 Xi (referred to as a random sum).

Solution: By the law of total expectation,

E[T ] = E
[
E[T |N ]

]
.
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Note that

E[T |N = n] = E
[ N∑

i=1
Xi

∣∣∣∣N = n

]

= E
[ n∑

i=1
Xi

∣∣∣∣N = n

]

=
n∑

i=1
E[Xi |N = n]

=
n∑

i=1
E[Xi] since N is independent of {Xi}∞

i=1

= nµ.

Thus,
E[T |N ] = E[T |N = n]

∣∣
n=N

= Nµ,

and so E[T ] = E[Nµ] = µE[N ]. To calculate Var(T ), we employ Theorem 2.3 to obtain

Var(T ) = E
[
Var(T |N)

]
+ Var

(
E[T |N ]

)
= E

[
Var(T |N)

]
+ Var(Nµ)

= E
[
Var(T |N)

]
+ µ2 Var(N).

Now,

Var(T |N = n) = Var
( N∑

i=1
Xi

∣∣∣∣N = n

)

= Var
( n∑

i=1
Xi

∣∣∣∣N = n

)

= Var
( n∑

i=1
Xi

)
since N is independent of {Xi}∞

i=1

=
n∑

i=1
Var(Xi)

= nσ2.

Thus, Var(T |N) = Var(T |N = n)
∣∣
N=n

= Nσ2. Finally,

Var(T ) = E[Nσ2] + µ2 Var(N)
= σ2 E[N ] + µ2 Var(N).
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Week 3
22nd to 29th September

2.3 Computing Probabilities by Conditioning

For any two rvs, recall that

E[X] = E
[
E[X | Y ]

]
=
{∑

y E[X | Y = y]pY (y) , if Y is discrete,∫∞
−∞ E[X | Y = y]fY (y) dy , if Y is continuous. (2.1)

Now suppose that A represents some event of interest, and we wish to determine P(A). Define an indicator
rv X such that

X =
{

0 , if event Ac occurs,
1 , if event A occurs.

Clearly, P(X = 1) = P(A) and P(X = 0) = 1− P(A), so that X ∼ BERN
(
P(A)

)
. Thus,

E[X | Y = y] =
∑

x

xP(X = x | Y = y)

= 0P(X = 0 | Y = y) + 1P(X = 1 | Y = y)
= P(X = 1 | Y = y)
= P(A | Y = y).

Therefore, (2.1) becomes

P(A) =
{∑

y P(A | Y = y)pY (y) , if Y is discrete,∫∞
−∞ P(A | Y = y)fY (y) dy , if Y is continuous, (2.2)

which are analogues of the law of total probability. In other words, the expectation formula (2.1) can also
be used to calculate probabilities of interest as indicated by (2.2).

Example 2.10. Suppose that X and Y are independent continuous rvs. Find an expression for P(X < Y ).

Solution: With the event defined as A = {X < Y }, we apply (2.2) to get

P(X < Y ) = P(A)

=
∫ ∞

−∞
P(A | Y = y)fY (y) dy

=
∫ ∞

−∞
P(X < Y | Y = y)fY (y) dy

=
∫ ∞

−∞
P(X < y | Y = y)fY (y) dy

=
∫ ∞

−∞
P(X < y)fY (y) dy since X and Y are independent rvs

=
∫ ∞

−∞
P(X ≤ y)fY (y) dy since X is a continuous rv

=
∫ ∞

−∞
FX(y)fY (y) dy (2.3)

Remark: If, in addition, X and Y are identically distributed, then the pdf fY (y) is equal to fX(y) and the
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result of Example 2.10 simplifies to become

P(X < Y ) =
∫ ∞

−∞
FX(y)fX(y) dy

=
∫ 1

0
u du where u = FX(y) =⇒ du

dy
= fX(y) =⇒ du = fX(y) dy

=
[

u2

2

]u=1

u=0

= 1
2 ,

as one would expect.

Example 2.11. Suppose that X ∼ EXP(λ1) and Y ∼ EXP(λ2) are independent exponential rvs. Show that

P(X < Y ) = λ1

λ1 + λ2
.

Solution: Since X and Y are both exponential rvs, it immediately follows that

fY (y) = λ2e−λ2y, y > 0,

FX(y) =
∫ y

0
λ1e−λ1x dx

= λ1

[
− 1

λ1
e−λ1x

]x=y

x=0

= 1− e−λ1y, y ≥ 0.

Therefore, (2.3) becomes

P(X < Y ) =
∫ ∞

0
(1− e−λ1y)λ2e−λ2y dy

=
∫ ∞

0
λ2e−λ2y dy − λ2

∫ ∞

0
e−(λ1+λ2)y dy

= 1− λ2

(λ1 + λ2)

∫ ∞

0
(λ1 + λ2)e−(λ1+λ2)y dy

= 1− λ2

λ1 + λ2

= λ1

λ1 + λ2
.

Remark: As a matter of interest, this particular result will be featured quite prominently in Chapter 4.

Example 2.12. Suppose W , X, and Y are independent continuous rvs on (0,∞). If Z = X | (X < Y ),
then show that (W, X) | (W < X < Y ) and (W, Z) | (W < Z) are identically distributed.
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Solution: Let us first consider the joint conditional cdf of (W, X) | (W < X < Y ):

G(w, x) = P(W ≤ w, X ≤ x |W < X < Y )

= P(W ≤ w, X ≤ x, W < X < Y )
P(W < X < Y )

= P(W ≤ w, X ≤ x, W < X, X < Y )
P(W < X, X < Y ) , w, x ≥ 0.

Conditioning on the rv X and noting that W , X, and Y are independent rvs, it follows that

P(W < X, X < Y ) =
∫ ∞

0
P(W < X, X < Y |X = s)fX(s) ds

=
∫ ∞

0
P(W < s, Y > s |X = s)fX(s) ds

=
∫ ∞

0
P(W < s, Y > s)fX(s) ds

=
∫ ∞

0
P(W < s)P(Y > s)fX(s) ds (2.4)

and

P(W ≤ w, X ≤ x, W < X, X < Y ) =
∫ ∞

0
P(W ≤ w, X ≤ x, W < X, X < Y |X = s)fX(s) ds

=
∫ ∞

0
P(W ≤ w, s ≤ x, W < s, Y > s |X = s)fX(s) ds

=
∫ ∞

0
P(W ≤ w, s ≤ x, W < s, Y > s)fX(s) ds

=
∫ x

0
P(W ≤ w, W < s, Y > s)fX(s) ds

=
∫ x

0
P
(
W ≤ min{w, s}, Y > s

)
fX(s) ds

=
∫ x

0
P
(
W ≤ min{w, s}

)
P(Y > s)fX(s) ds (2.5)

Next, consider the conditional rv Z = X | (X < Y ).

P(Z ≤ z) = P(X ≤ z |X < Y )

= P(X ≤ z, X < Y )
P(X < Y )

=
∫∞

0 P(X ≤ z, X < Y |X = s)fX(s) ds

P(X < Y )

=
∫∞

0 P(s ≤ z, s < Y |X = s)fX(s) ds

P(X < Y )

=
∫∞

0 P(s ≤ z, s < Y )fX(s) ds

P(X < Y )

=
∫ z

0 P(Y > s)fX(s) ds

P(X < Y )
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and so the pdf of Z is given by

hZ(z) = d
dz

P(Z ≤ z)

=
d

dz

∫ z

0 P(Y > s)fX(s) ds

P(X < Y )

= P(Y > z)fX(z)
P(X < Y ) , z > 0.

Now, the joint conditional cdf of (W, Z) | (W < Z) is given by

P(W ≤ w, Z ≤ z |W < Z) = P(W ≤ w, Z ≤ z, W < Z)
P(W < Z) , w, z ≥ 0

Due to the independence of W with X and Y ,

P(W < Z) =
∫ ∞

0
P(W < Z | Z = s)hZ(s) ds

=
∫ ∞

0
P(W < z | Z = s)hZ(s) ds

=
∫ ∞

0
P(W < s)hZ(s) ds

=
∫ ∞

0
P(W < s)P(Y > s)fX(s)

P(X < Y ) ds

= P(W < X, X < Y )
P(X < Y ) from (2.4)

Next,

P(W ≤ w, Z ≤ z, W < Z) =
∫ ∞

0
P(W ≤ w, Z ≤ z, W < Z | Z = s)hZ(s) ds

=
∫ ∞

0
P(W ≤ w, s ≤ z, W < s)hZ(s) ds

=
∫ z

0
P(W ≤ w, W < s)hZ(s) ds

=
∫ z

0
P(W ≤ min{w, s})P(Y > s)fX(s)

P(X < Y ) ds

= P(W ≤ w, X ≤ z, W < X, X < Y ) from (2.5)

Therefore, we ultimately obtain:

P(W ≤ w, Z ≤ z, W < Z) = P(W ≤ w, X ≤ z, W < X, X < Y )
P(W < X, X < Y ) = G(w, z), w, z ≥ 0.

This implies that
(W, X) | (W < X < Y ) ∼ (W, Z) | (W < Z).

Remark: It can likewise be shown that if V = X | (W < X), then (X, Y ) | (W < X < Y ) and
(V, Y ) | (V < Y ) are identically distributed (left as an upcoming exercise).
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2.4 Some Further Extensions
If you consider our treatment of the conditional expectation E[X | Y = y], then one detail you should notice is
that this kind of expectation behaves exactly the same as the regular (i.e., unconditional) expectation except that
all pmfs/pdfs used now are conditional on the event Y = y. In this sense, conditional expectations essentially
satisfy all the properties of regular expectation. Thus, for an arbitrary real-valued function g( · ), a corresponding
analogue of

E
[
g(X)

]
=
{∑

w E
[
g(X)

∣∣W = w
]
pW (w) , if W is discrete,∫∞

−∞ E
[
g(X)

∣∣W = w
]
fW (w) dw , if W is continuous,

would be

E
[
g(X)

∣∣ Y = y
]

=
{∑

w E
[
g(X)

∣∣W = w, Y = y
]
pW |Y (w | y) , if W is discrete,∫∞

−∞ E
[
g(X)

∣∣W = w, Y = y
]
fW |Y (w | y) dw , if W is continuous.

We remark that the above relation makes sense, since if we assume (without loss of generality) that X and Y are
discrete rvs, then we obtain (in the case when W is discrete too):∑

w

E
[
g(X)

∣∣W = w, Y = y
]
pW |Y (w | y) =

∑
w

∑
x

g(x)pX|W Y (x | w, y)pW |Y (w | y)

=
∑

w

∑
x

g(x)pXW Y (x, w, y)
pW Y (w, y)

pW Y (w, y)
pY (y)

=
∑

x

g(x)
pY (y)

∑
w

pXW Y (x, w, y)

=
∑

x

g(x)pXY (x, y)
pY (y)

=
∑

x

g(x)pX|Y (x, y)

= E
[
g(X)

∣∣ Y = y
]
.

Similarly, if one introduces an event of interest A and defines

g(X) =
{

0 , if event Ac occurs,
1 , if event A occurs,

then we obtain

E
[
A
∣∣ Y = y

]
=
{∑

w E
[
A
∣∣W = w, Y = y

]
pW |Y (w | y) , if W is discrete,∫∞

−∞ E
[
A
∣∣W = w, Y = y

]
fW |Y (w | y) dw , if W is continuous.

Furthermore, if we now define

E
[
g(X)

∣∣W, Y
]

= E
[
g(X)

∣∣W = w, Y = y
]∣∣

w=W,y=Y
,

then the law of total expectation extends to become

E
[
g(X)

]
= E

[
E[g(X) | Y ]

]
= E

[
E
[
E[g(X) |W, Y ]

∣∣ Y
]]

.

Example 2.13. Consider an experiment in which independent trials, each having success probability
p ∈ (0, 1), are performed until k consecutive successes are achieved where k ∈ Z+. Determine the
expected number of trials needed to achieve k consecutive successes.
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Solution: Let Nk represent the number of trials needed to get k consecutive successes. We wish to
determine E[Nk]. For k = 1, note that N1 ∼ GEOt(p), therefore E[Nk] = 1

p . For arbitrary k ≥ 2, let us
consider conditioning on the outcome of the first trial, represented by W , such that

W =
{

0 , if first trial is a failure,
1 , if first trial is a success.

Thus,

E[Nk] = E
[
E[Nk |W ]

]
= P(W = 0)E[Nk |W = 0] + P(W = 1)E[Nk |W = 1]
= (1− p)E[Nk |W = 0] + pE[Nk |W = 1]

Now, it is clear Nk | (W = 0) ∼ 1 + Nk, but unfortunately we do not have a nice corresponding result for
Nk | (W = 1). It does not hold true that Nk | (W = 0) ∼ 1 + Nk−1. What else can we try?
Idea: Let’s try E[Nk] = E

[
E[Nk |Nk−1]

]
, i.e., to get k in a row, we must first get k − 1 in a row. Define

Y | (Nk−1 = n) =
{

0 , if (n + 1)th trial is a failure,
1 , if (n + 1)th trial is a success.

By independence of the trials,

P(Y = 0 |Nk−1 = n) = 1− p,

P(Y = 1 |Nk−1 = n) = p.

As a result, we get:

E[Nk |Nk−1 = n] =
1∑

y=0
E[Nk |Nk−1 = n, Y = y]P(Y = y |Nk−1 = n)

= (1− p)E[Nk |Nk−1 = n, Y = 0] + pE[Nk |Nk−1 = n, Y = 1].

Note that Nk | (Nk−1 = n, Y = 0) ∼ n + 1 + Nk (i.e., given that we know it took n trials to get k − 1
consecutive successes, and then on the next trial we got a failure, what happens?). Also, Nk | (Nk−1 =
n, Y = 1) is equal to n + 1 with probability 1. Therefore,

E[Nk |Nk−1 = n] = (1− p)(n + 1 + E[Nk]) + p(n + 1)
= n + 1 + (1− p)E[Nk].

Therefore,
E[Nk |Nk−1] = E[Nk |Nk−1 = n]

∣∣
n=Nk−1

= Nk−1 + 1 + (1− p)E[Nk].

Now, our whole idea was to apply E[Nk] = E
[
E[Nk |Nk−1]

]
, and now we have the inner piece, so

E[Nk] = E
[
Nk−1 + 1 + (1− p)E[Nk]

]
= E[Nk−1] + 1 + (1− p)E[Nk]

Therefore, (
1− (1− p)

)
E[Nk] = 1 + E[Nk−1] =⇒ E[Nk] = 1

p
+ E[Nk−1]

p
, k ≥ 2,

which is a recursive equation for E[Nk]. Take k = 2:

E[N2] = 1
p

+ E[N1]
p

= 1
p

+ (1/p)
p

= 1
p

+ 1
p2 .
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Take k = 3:
E[N3] = 1

p
+ E[N2]

p
= 1

p
+ 1

p2 + 1
p3 .

Take k = 4:
E[N4] = 1

p
+ E[N3]

p
= 1

p
+ 1

p2 + 1
p3 + 1

p4 .

Continuing inductively, we actually have

E[Nk] = 1
p

+ 1
p2 + · · ·+ 1

pk
,

which is a finite geometric series, therefore,

E[Nk] = (1/p)− (1/pk+1)
1− (1/p) = p−k − 1

1− p
, k ≥ 2.

Actually, this holds true for k ∈ Z+ (try it).



Chapter 3

Discrete-time Markov Chains

Week 4
0929 to 6th October

3.1 Definitions and Basic Concepts

Stochastic Process

Definition: {X(t), t ∈ T } is called a stochastic process if X(t) is a rv (or possibly a random vector) for any
given t ∈ T . T is referred to as the index set and is often interpreted in the context of time. As such, X(t)
is often called the state of the process at time t. We note that:

Index set T
{
can be a continuum of values such as T = {t : t ≥ 0},
can be a set of discrete points such as T = {t0, t1, t2, . . .}.

Since there is a one-to-one correspondence between the sets T = {t0, t1, t2, . . .} and N = {0, 1, 2, . . .},
we will use T = N as the general index set for a discrete-time stochastic process (unless otherwise stated).
In other words, {X(n), n ∈ N} or {Xn, n ∈ N} will represent a general discrete-time stochastic process.

Discrete-time Stochastic Process
Some examples of a discrete-time stochastic process {Xn, n ∈ N} might include:
(1) Xn represents the outcome of the nth toss of a die,
(2) Xn represents the price of a stock at the end of day n trading,
(3) Xn represents the maximum temperature in Waterloo during the nth month,
(4) Xn represents the number of goals scored in game n by the varsity hockey team,
(5) Xn represents the number of STAT 333 students in class for the nth lecture.

Discrete-time Markov Chain

Definition: A stochastic process {Xn, n ∈ N} is said to be a discrete-time Markov chain (DTMC) if the
following two conditions hold true:
(1) For n ∈ N, Xn is a discrete rv (i.e., the state space S of Xn is of discrete type).

40
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(2) For n ∈ N and all states x0, x1, . . . , xn+1 ∈ S, the Markov property must hold:

P(Xn+1 = xn+1 |Xn = xn, Xn−1 = xn−1, . . . , X1 = x1, X0 = x0) = P(Xn+1 = xn+1 |Xn = xn).

In mathematical terms, this property states that the conditional distribution of any future state Xn+1
given the past states X0, X1, . . . , Xn−1 and the present state Xn is independent of the past states.
In a more informal way, the Markov property tells us, for a random process, that if we know the
value taken by the process at a given time, we will not get any additional information about the
future behaviour of the process by gathering more knowledge about the past.

Remarks:
(1) Unless otherwise stated, the state space S of a DTMC {Xn, n ∈ N} will be assumed to be N.
(2) In general, the sequence of rvs {Xn}∞

n=0 are neither independent nor identically distributed.
(3) The Markov property does not require “full” information on the past to ensure independence. For

example, consider the following conditional probability:
P(Xn+1 = xn+1 |Xn = xn, Xn−2 = xn−2, . . . , X1 = x1, X0 = x0)

= P(Xn+1 = xn+1, Xn = xn, Xn−2 = xn−2, . . . , X1 = x1, X0 = x0)
P(Xn = xn, Xn−2 = xn−2, . . . , X1 = x1, X0 = x0) ,

which is “missing” the information for Xn−1.
However, note that:

P(Xn+1 = xn+1, Xn = xn, Xn−2 = xn−2, . . . , X1 = x1, X0 = x0)

=
∞∑

xn−1=0
P(Xn+1 = xn+1, Xn = xn, Xn−1 = xn−1, Xn−2 = xn−2, . . . , X1 = x1, X0 = x0)

=
∞∑

xn−1=0
P(Xn+1 = xn+1 |Xn = xn, Xn−1 = xn−1, Xn−2 = xn−2, . . . , X1 = x1, X0 = x0)

× P(Xn = xn, Xn−1 = xn−1, Xn−2 = xn−2, . . . , X1 = x1, X0 = x0)
=P(Xn+1 = xn+1 |Xn = xn)

×
∞∑

xn−1=0
P(Xn = xn, Xn−1 = xn−1, Xn−2 = xn−2, . . . , X1 = x1, X0 = x0) Markov property

=P(Xn+1 = xn+1 |Xn = xn)P(Xn = xn, Xn−2 = xn−2, . . . , X1 = x1, X0 = x0).

We have:
P(Xn+1 = xn+1 |Xn = xn, Xn−2 = xn−2, . . . , X1 = x1, X0 = x0)

=P(Xn+1 = xn+1, Xn = xn, Xn−2 = xn−2, . . . , X1 = x1, X0 = x0)
P(Xn = xn, Xn−2 = xn−2, . . . , X1 = x1, X0 = x0)

and
P(Xn+1 = xn+1, Xn = xn, Xn−2 = xn−2, . . . , X1 = x1, X0 = x0)

=P(Xn+1 = xn+1 |Xn = xn)P(Xn = xn, Xn−2 = xn−2, . . . , X1 = x1, X0 = x0).

Substituting this latter expression into the numerator of the top equation yields
P(Xn+1 = xn+1 |Xn = xn, Xn−2 = xn−2, . . . , X1 = x1, X0 = x0) = P(Xn+1 = xn+1 |Xn = xn).

It is straightforward to extend the above result to any number of previous time points from
0, 1, . . . , n− 1 with “missing” information. This is the essence of the Markov property.
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One-step Transition Probability Matrix

Definition: For any pair of states i and j, the transition probability from state i at time n to state j at time
n + 1 is given by

Pn,i,j = P(Xn+1 = j |Xn = i), n ∈ N.

Let Pn be the associated matrix containing all these transition probabilities, referred to as the one-step
transition probability matrix (TPM) from time n to time n + 1. It looks like

Pn = [Pn,i,j ] =



0 1 2 · · · j · · ·
0 Pn,0,0 Pn,0,1 Pn,0,2 · · · Pn,0,j · · ·
1 Pn,1,0 Pn,1,1 Pn,1,2 · · · Pn,1,j · · ·
... ... ... ... ...
i Pn,i,0 Pn,i,1 Pn,i,2 · · · Pn,i,j · · ·
... ... ... ... ...

,

where, for convenience, the states of the DTMC are labelled along the margins of the matrix.
For each pair of states i and j, if Pn,i,j = Pi,j ∀n ∈ N, then we say that the DTMC is stationary or
homogenous. In this situation, the one-step TPM becomes:

P = [Pi,j ] =



0 1 2 · · · j · · ·
0 P0,0 P0,1 P0,2 · · · P0,j · · ·
1 P1,0 P1,1 P1,2 · · · P1,j · · ·
... ... ... ... ...
i Pi,0 Pi,1 Pi,2 · · · Pi,j · · ·
... ... ... ... ...

.

Remark: In STAT 333, we only consider stationary DTMCs. Moreover, from the construction of the TPM
P , it is clear that Pi,j ≥ 0 ∀i, j ∈ N and∑∞

j=0 Pi,j = 1 ∀i ∈ N (i.e., each row sum of P must be 1). Such
a matrix whose elements are non-negative and whose row sums are equal to 1 is said to be stochastic.

Example 3.1. On a given day, the weather is either clear, overcast, or raining. If the weather is clear today,
then it will be clear, overcast, or raining tomorrow with respective probabilities 0.6, 0.3, and 0.1. If the
weather is overcast today, then it will be clear, overcast, or raining tomorrow with respective probabilities
0.2, 0.5, and 0.3. If the weather is raining today, then it will be clear, overcast, or raining tomorrow with
respective probabilities 0.4, 0.2, and 0.4. Construct the underlying DTMC and determine its TPM.

Solution: Note that the weather tomorrow only depends on the weather today, implying that the Markov
property holds true. Thus, letting Xn denote the state of the weather on the nth day, {Xn, n ∈ N} is a
three-state DTMC.
If we let state 0 correspond to clear weather, state 1 correspond to overcast, and state 2 correspond to
raining, then the state space of the DTMC is S = {0, 1, 2} and its TPM is given by

P =


0 1 2

0 0.6 0.3 0.1
1 0.2 0.5 0.3
2 0.4 0.2 0.4

.
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n-step Transition Probability Matrix

Definition: For any pair of states i and j, the n-step transition probability is given by

P
(n)
i,j = P(Xm+n = j |Xm = i), m, n ∈ N.

Due to the stationary assumption, this quantity is actually independent of m (which is why we do not
include m in its notation). Thus, P

(n)
i,j = P(Xn = j |X0 = i), n ∈ N. Furthermore, it is evident that

P
(0)
i,j = P(X0 = j |X0 = i) =

{
0, if i ̸= j,

1, if i = j.

Similarly, let P (n) =
[
P

(n)
i,j

]
represent the associated n-step TPM. Clearly, when n = 1, P (1) = P . When

n = 0, P (0) = I, where I represents the identity matrix. Just as with the one-step TPM, it follows that the
row sums of P (n) must equal 1 as well.

Chapman-Kolmogorov Equations

For n ∈ Z+, let us consider

P
(n)
i,j = P(Xn = j |X0 = i)

=
∞∑

k=0
P(Xn = j |Xn−1 = k, X0 = i)P(Xn−1 = k |X0 = i)

=
∞∑

k=0
P

(n−1)
i,k P(Xn = j |Xn−1 = k, X0 = i)

=
∞∑

k=0
P

(n−1)
i,k P(Xn = j |Xn−1 = k) due to the Markov property

=
∞∑

k=0
P

(n−1)
i,k Pk,j . (3.1)

We have: P
(n)
i,j =

∑∞
k=0 P

(n−1)
i,k Pk,j ← (3.1).

Recall: If A = [ai,j ], B = [bi,j ], and C = AB where C = [ci,j ], then ci,j =
∑

k ai,kbk,j .
As a result, note that (3.1) implies that P (n) = P (n−1)P , n ∈ Z+. More generally, P

(n)
i,j can be expressed

as
P

(n)
i,j =

∞∑
k=0

P
(n)
i,k P

(n−m)
k,j ∀i, j ∈ N and 0 ≤ m ≤ n,

which are referred to as the Chapman-Kolmogorov equations for a DTMC. In matrix form, this translates to

P (n) = P (m)P (n−m), 0 ≤ m ≤ n.

Coming back to P (n) = P (n−1)P , n ∈ Z+, let us look at a few values of n:

Take n = 2 =⇒ P (2) = P (1)P = PP = P 2,

Take n = 3 =⇒ P (3) = P (2)P = P 2P = P 3,

Take n = 4 =⇒ P (4) = P (3)P = P 3P = P 4.
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Clearly, we see that
P (n) = P n,

and so the n-step TPM is simply the one-step TPM multiplied by itself n times.

Marginal pmf of Xn

For n ∈ N, let us now introduce a particular row vector, which we will denote as either

αn = (αn,0, αn,1, . . . , αn,k, . . .),

or
αn =

[
αn,0 αn,1 · · · αn,k · · ·

]
,

where αn,k = P(Xn = k) ∀k ∈ N. In other words, αn,k represents the marginal pmf of Xn, n ∈ N. As a
consequence, it follows that∑∞

k=0 αn,k = 1 ∀n ∈ N.
If we focus on the case when n = 0, then α0 is referred to as the initial probability row vector of the DTMC,
or simply the initial conditions of the DTMC.
For n ∈ Z+, note that

αn,k = P(Xn = k)

=
∞∑

i=0
P(Xn = k |Xm = i)P(Xm = i) where 0 ≤ m ≤ n

=
∞∑

i=0
αm,i P(Xn−m = k |X0 = i) due to the stationary assumption

=
∞∑

i=0
αm,iP

(n−m)
i,k .

In matrix form, the above relation implies that

αn = αmP (n−m) = αmP n−m, 0 ≤ m ≤ n,

which subsequently leads to
αn = α0P (n) = α0P n, n ∈ N.

Probabilities of Interest

Having knowledge of the initial conditions and the one-step transition probabilities, one can readily
calculate various probabilities of possible interest such as

P(Xn = xn, Xn−1 = xn−1, . . . , X1 = x1, X0 = x0)
= P(X0 = x0)P(X1 = x1 |X0 = x0)P(X2 = x2 |X1 = x1, X0 = x0)× · · ·
× P(Xn = xn |Xn−1 = xn−1, Xn−2 = xn−2, . . . , X0 = x0)

= P(X0 = x0)P(X1 = x1 |X0 = x0)P(X2 = x2 |X1 = x1) · · ·P(Xn = xn |Xn−1 = xn−1)
= α0,x0Px0,x1Px1,x2 · · ·Pxn−1,xn

,

where the second last equality follows due to the Markov property.
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Similarly,

P(Xn+m = xn+m, Xn+m−1 = xn+m−1, . . . , Xn+1 = xn+1 |Xn = xn)

= P(Xn+m = xn+m, Xn+m−1 = xn+m−1, . . . , Xn+1 = xn+1, Xn = xn)
P(Xn = xn)

= P(Xn=xn) P(Xn+1=xn+1|Xn=xn)··· P(Xn+m=xn+m|Xn+m−1=xn+m−1,Xn+m−2=xn+m−2,...,Xn=xn)
P(Xn=xn)

= Pxn,xn+1Pxn+1,xn+2 · · ·Pxn+m−1,xn+m
.

The key observation here is that the DTMC is completely characterized by its one-step TPM P and the
initial conditions α0.

Example 3.2. A particle moves along the states {0, 1, 2} according to a DTMC whose TPM is given by

P =


0 1 2

0 0.7 0.2 0.1
1 0 0.6 0.4
2 0.5 0 0.5

.

Let Xn denote the position of the particle after the nth move. Suppose that the particle is equally likely to
start in any of the three positions.
(a) Calculate P(X3 = 1 |X0 = 0).

Solution: We wish to determine P
(3)
0,1 . To get this, we proceed to calculate P (3) = P 3. First,

P (2) = P 2 =

0.7 0.2 0.1
0 0.6 0.4

0.5 0 0.5

0.7 0.2 0.1
0 0.6 0.4

0.5 0 0.5

 =


0 1 2

0 0.54 0.26 0.2
1 0.2 0.36 0.44
2 0.6 0.1 0.3

.

Then,

P (3) = P (2)P =

0.54 0.26 0.2
0.2 0.36 0.44
0.6 0.1 0.3

0.7 0.2 0.1
0 0.6 0.4

0.5 0 0.5

 =


0 1 2

0 0.478 0.264 0.258
1 0.36 0.256 0.384
2 0.57 0.18 0.25

.

Thus, P(X3 = 1 |X0 = 0) = P
(3)
0,1 = 0.264.

(b) Calculate P(X4 = 2).
Solution: We wish to calculate α4,2 = P(X4 = 2). Note that

α4 =
[
α4,0 α4,1 α4,2

]
= α0P (4)

= α0P (3)P

=
[ 1

3
1
3

1
3
] 0.478 0.264 0.258

0.36 0.256 0.384
0.57 0.18 0.25

0.7 0.2 0.1
0 0.6 0.4

0.5 0 0.5


=
[ 1

3
1
3

1
3
] 0.4636 0.254 0.2824

0.444 0.2256 0.3304
0.524 0.222 0.254


=
[
0.4772 0.233867 0.288933

]
.

Thus, P(X4 = 2) = 0.288933 ≈ 0.289.
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(c) Calculate P(X6 = 0, X4 = 2).
Solution: We have

P(X6 = 0, X4 = 2) = P(X4 = 2)P(X6 = 0 |X4 = 2)

= α4,2P
(2)
2,0

= (0.288933)(0.6)
= 0.17336
≈ 0.173.

(d) Calculate P(X9 = 0, X7 = 2 |X5 = 1, X2 = 0).
Solution: We have

P(X9 = 0, X7 = 2 |X5 = 1, X2 = 0)
= P(X7 = 2 |X5 = 1, X2 = 0)P(X9 = 0 |X7 = 2, X5 = 1, X2 = 0)
= P(X7 = 2 |X5 = 1)P(X9 = 0 |X7 = 2) Markov property
= P

(2)
1,2 P

(2)
2,0

= (0.44)(0.6)
= 0.264.

Accessibility and Communication
With these basic results in place, we next consider the classification of states in a DTMC.

Definition: State j is accessible from state i (denoted by i→ j) if ∃n ∈ N such that P
(n)
i,j > 0. If states i

and j are accessible from each other, then the states i and j communicate (denoted by i↔ j). In other
words, i↔ j iff ∃m, n ∈ N such that P

(n)
i,j > 0 and P

(m)
j,i > 0.

In terms of accessibility, note that the size of the components of P do not matter. All that matters is which
are positive and which are 0. In particular, if state j is not accessible from state i, then P

(n)
i,j = 0 ∀n ∈ N

and
P(DTMC ever visits state j |X0 = i)
= P

(
∪∞

n=0{Xn = j}
∣∣X0 = i

)
≤

∞∑
n=0

P(Xn = j |X0 = i) due to Boole’s inequality (see Exercise 1.1.1)

=
∞∑

n=0
P

(n)
i,j

= 0,

implying that P(DTMC ever visits state j |X0 = i) = 0.
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Equivalence Relation

The concept of communication forms what is known as an equivalence relation, satisfying the following
criteria:
(i) Reflexivity: i↔ i.

Clearly true since P
(0)
i,i = 1 > 0.

(ii) Symmetry: i↔ j =⇒ j ↔ i.
This is obviously true by definition.

(iii) Transitivity: i↔ j and j ↔ k =⇒ i↔ k.
To see this holds formally, we know that ∃n ∈ N such that P

(n)
i,j > 0. Also, ∃m ∈ N such that

P
(m)
j,k > 0. Using the Chapman-Kolmogorov equations, we have that

P
(n+m)
i,k =

∞∑
ℓ=0

P
(n)
i,ℓ P

(m)
ℓ,k ≥ P

(n)
i,j P

(m)
j,k > 0.

Therefore, P
(n+m)
i,k > 0, implying that i→ k. Using precisely the same logic, it is straightforward to

show that k → i. Thus, by definition, i↔ k

Communication Classes
The fact that communication forms an equivalence relation allows us to partition all the states of a DTMC into
various communication classes, so that within each class, all states communicate. However, if states i and j
belong to different classes, then i↔ j is not true (i.e., at most one of i→ j or j → i can be true).

Definition: A DTMC that has only one communication class is said to be irreducible. On the other hand, a
DTMC is called reducible if there are two or more communication classes.

Example 3.2. (continued) What are the communication classes of the DTMC?

P =


0 1 2

0 0.7 0.2 0.1
1 0 0.6 0.4
2 0.5 0 0.5

.

Solution: To answer questions of this nature, it is often useful to draw a state transition diagram.

0

1

2

It is clear from this diagram that there is only one class for this DTMC, namely {0, 1, 2}. Therefore, this
DTMC is irreducible.
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Example 3.3. Consider a DTMC with TPM

P =


0 1 2 3

0 0 1 0 0
1 0 0 1 0
2 0 0 0 1
3 0.5 0 0.5 0

.

What are the communication classes of this DTMC?

Solution: State Transition Diagram

0

1

2

3

The above diagram indicates that there is only one communication class for this DTMC, namely {0, 1, 2, 3}.
Therefore, this DTMC is irreducible.

Example 3.4. Consider a DTMC with TPM

P =


0 1 2 3

0 1
3

2
3 0 0

1 1
2

1
4

1
8

1
8

2 0 0 1 0
3 3

4
1
4 0 0

.

What are the communication classes of this DTMC?

Solution: State Transition Diagram

0

1

2

3

The above diagram indicates that the communication classes are {0, 1, 3} and {2}. Thus, this DTMC is
reducible.
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Periodicity

Definition: The period of state i is given by d(i) = gcd{n ∈ Z+ : P
(n)
i,i > 0}, where gcd{ · } denotes the

greatest common divisor of a set of positive integers.

Remark: If d(i) = 1, then state i is said to be aperiodic. In fact, a DTMC is said to be aperiodic if
d(i) = 1 ∀i ∈ N. Furthermore, if P

(n)
i,i = 0 ∀n ∈ Z+, then we set d(i) =∞.

Example 3.5. Consider a DTMC with TPM

P =


0 1 2 3

0 1
3 0 0 2

3
1 1

2
1
4

1
8

1
8

2 0 0 1 0
3 3

4 0 0 1
4

.

Determine the communication classes of this DTMC and the period of each state.

Solution: State Transition Diagram

0

1

2

3

Communications are {0, 3}, {1}, {2}. Next, we note that

d(0) = gcd{n ∈ Z+ : P
(n)
0,0 > 0} = gcd{1, 2, 3, . . .} = 1,

as a consequence of a fact that P0,0 > 0 (implying P
(n)
0,0 ≥ (P0,0)n > 0). In fact, since every term on the

main diagonal of P is positive, this same argument holds for every state. Thus, d(1) = d(2) = d(3) = 1.
Note that this DTMC is aperiodic, but not irreducible.

Example 3.3. (continued) Recall that {0, 1, 2, 3} is the only communication class for the DTMC with TPM

P =


0 1 2 3

0 0 1 0 0
1 0 0 1 0
2 0 0 0 1
3 0.5 0 0.5 0

.

Determine the period of each state.
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Solution: State Transition Diagram

0

1

2

3

Examining the state transition diagram, the shortest amount of steps that the DTMC can take to arrive at
state 0, after leaving state 0 is 4 (corresponding to the path 0→ 1→ 2→ 3→ 0), so that P

(n)
0,0 > 0 for

n = 4, 8, 12, . . .. We also note that since the DTMC can return to state 2 immediately after visiting state 3
(thereby revisiting state 3 again in a total of 2 steps), P

(n)
0,0 > 0 ∀n = 4 + 2k, k ∈ N. Thus,

d(0) = gcd{n ∈ Z+ : P
(n)
0,0 > 0} = gcd{4, 6, 8, 10, 12, 14, . . .} = 2.

Following a similar line of logic, we find that

d(1) = gcd{n ∈ Z+ : P
(n)
1,1 > 0} = gcd{4, 6, 8, 10, . . .} = 2,

d(2) = gcd{n ∈ Z+ : P
(n)
2,2 > 0} = gcd{2, 4, 6, 8, 10, . . .} = 2,

d(3) = gcd{n ∈ Z+ : P
(n)
3,3 > 0} = gcd{2, 4, 6, 8, 10, . . .} = 2.

Example 3.6. Consider the DTMC with TPM

P =


0 1 2 3

0 1
2

1
2 0 0

1 2
3

1
3 0 0

2 0 0 0 1
3 0 0 1 0

.

Find the communication classes of this DTMC and determine the period of each state.

Solution: The communication classes are clearly {0, 1} and {2, 3}. As in Example 3.5, the main diagonal
components P0,0 and P1,1 are positive, and so d(0) = d(1) = 1. For states 2 and 3, the DTMC will
continually alternate (with probability 1) between each other at every step, i.e., 2→ 3→ 2→ 3→ 2→
· · · . Therefore, it is clear that

d(2) = gcd{n ∈ Z+ : P2,2 > 0} = gcd{2, 4, 6, 8, . . .} = 2,

d(3) = gcd{n ∈ Z+ : P3,3 > 0} = gcd{2, 4, 6, 8, . . .} = 2.

The above examples illustrate some kinds of periodic behaviour that can be exhibited by DTMCs. However, we
do observe that among the states within a given communication class, it seems as though the periodic behaviour
is consistent. This is not a coincidence, as the next theorem indicates.

Theorem 3.1. If i↔ j, then d(i) = d(j).

Proof: Since the result is clearly true when i = j, let us assume that i ̸= j. Since i ↔ j, we know by
definition that P

(n)
i,j > 0 for some n ∈ Z+ and P

(m)
j,i > 0 for some m ∈ Z+. Moreover, since state i is



CHAPTER 3. DISCRETE-TIME MARKOV CHAINS 51

accessible from state j and state j is accessible from state i, ∃s ∈ Z+ such that P
(s)
j,j > 0. Note that:

P
(n+m)
i,i ≥ P

(n)
i,j P

(m)
j,i > 0

and
P

(n+s+m)
i,i ≥ P

(n)
i,j P

(s)
j,j P

(m)
j,i > 0.

These two inequalities imply that d(i) divides both n + m and n + s + m. Therefore, it follows that d(i)
also divides their difference (n + s + m)− (n + m) = s. Since this holds true for any s which satisfies
P

(s)
j,j > 0, it must be the case that d(i) divides d(j). Using the same line of logic, it is straightforward to

show that d(j) divides d(i). Thus, d(i) = d(j).

Example 3.7. Consider a DTMC with TPM

P =


0 1 2

0 0 1
2

1
2

1 1
2 0 1

2
2 1

2
1
2 0

.

Find the communication classes of this DTMC and determine the period of each state.

Solution: State Transition Diagram

0

1

2

Clearly, there is one communication class, namely {0, 1, 2}. This is an irreducible DTMC. Note that

P
(1)
0,0 = 0,

P
(2)
0,0 ≥ P0,1P1,0 = 1

2 ×
1
2 = 1

4 > 0,

P
(3)
0,0 ≥ P0,1P1,2P2,0 = 1

2 ×
1
2 ×

1
2 = 1

8 > 0,

implying that
d(0) = gcd{n ∈ Z+ : P

(n)
0,0 > 0} = gcd{2, 3, . . .} = 1.

Thus, by Theorem 3.1, we know that

d(2) = d(1) = d(0) = 1.

Remark: As the previous example demonstrates, it is still possible to observe aperiodic behaviour even though
the main diagonal components of P are all zero. More generally, if d(i) = k, then this does not necessarily imply
that P

(k)
i,i > 0. Instead, it implies that if the DTMC is in state i at time 0, then it is impossible to observe the

DTMC in state i at time n ∈ Z+ if n is not a multiple of k (i.e., P
(n)
i,i = 0 for such n).

Week 5
6th to 20th October
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3.2 Transience and Recurrence

First Visit Probability

We now wish to take a closer look at the likelihood of a DTMC beginning in some state of returning to
that particular state. To that end, let us consider the probability that, starting from state i, the first visit of
the DTMC to state j occurs at time n ∈ Z+, to be denoted by

f
(n)
i,j = P(Xn = j, Xn−1 ̸= j, . . . , X2 ̸= j, X1 ̸= j |X0 = i) ∀i, j ∈ N.

Clearly, we see that f
(1)
i,j = Pi,j .

For n ≥ 2, however, the determination of f
(n)
i,j becomes more complicated, and so we wish to construct

a procedure which will enable us to compute f
(n)
i,j for such n. To do so, we consider the quantity P

(n)
i,j ,

n ∈ Z+, and condition on the time that the first visit to state j is made:

P
(n)
i,j = P(Xn = j |X0 = i)

=
n∑

k=1
P(Xn = j,first visit to state j occurs at time k |X0 = i)

=
n∑

k=1
P(Xn = j, Xk = j, Xk−1 ̸= j, . . . , X2 ̸= j, X1 ̸= j |X0 = i)

=
n∑

k=1
P(Xk = j, Xk−1 ̸= j, . . . , X2 ̸= j, X1 ̸= j |X0 = i)P(Xn = j |Xk = j)

=
n∑

k=1
f

(k)
i,j P

(n−k)
j,j , (3.2)

where we applied the Markov property in the second last equality.
We have: P

(n)
i,j =

∑n
k=1 f

(k)
i,j P

(n−k)
j,j ← (3.2).

From (3.2), we can write

P
(n)
i,j = f

(n)
i,j P

(0)
j,j +

n−1∑
k=1

f
(k)
i,j P

(n−k)
j,j = f

(n)
i,j +

n−1∑
k=1

f
(k)
i,j P

(n−k)
j,j ,

implying that

f
(n)
i,j = P

(n)
i,j −

n−1∑
k=1

f
(k)
i,j P

(n−k)
j,j , n ∈ Z+. (3.3)

For n ≥ 2, note that (3.3) yields a recursive means to compute f
(n)
i,j .

Transience and Recurrence

Define the related quantity:

fi,j = P(DTMC ever makes a future visit to state j |X0 = i).
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Note that

fi,j

=
∞∑

k=1
P(DTMC ever makes a future visit to state j, DTMC visits state j for 1th time at time k |X0 = i)

=
∞∑

k=1
P(DTMC visits state j for 1th time at time k |X0 = i)

=
∞∑

k=1
f

(k)
i,j ≤ 1.

This leads to the following important concept in the study of Markov chains.

Definition: State i is said to be transient if fi,i < 1. On the other hand, state i is said to be recurrent if
fi,i = 1.

visit
1

visit
2

· · · visit
k − 1

visit
k

· · ·

i

fi,i fi,i
. . .

fi,i 1− fi,i

Time

Xn

In what follows, we proceed to look at alternative ways of characterizing the notions of transience and
recurrence. As such, let us first define Mi to be a rv which counts the number of (future) times the DTMC
visits state i (disregarding the possibility of starting in state i at time 0). If we assume that fi,i < 1, then
the Markov property and stationary assumption jointly imply that

P(Mi = k |X0 = i) =
( k∏

n=1
fi,i

)
(1− fi,i) = fk

i,i(1− fi,i), k = 0, 1, 2, . . . , (3.4)

as the DTMC will return to state i, k times with probability fi,i, and then never return with probability
1− fi,i.
We have: P(Mi = k |X0 = i) = fk

i,i(1− fi,i), k = 0, 1, 2, . . .← (3.4).
We recognize (3.4) as the pmf of a GEOf (1− fi,i) rv, thereby implying that

E[Mi |X0 = i] = 1− (1− fi,i)
1− fi,i

= fi,i

1− fi,i
<∞ since fi,i < 1.

However, if fi,i = 1, then P(Mi = ∞ | X0 = i) = 1, immediately implying that E[Mi | X0 = i] = ∞.
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Therefore, an equivalent way of viewing transience/recurrence is as follows:

E[Mi |X0 = i]
{

<∞, iff state i is transient,
=∞, iff state i is recurrent.

Following further on the notion of Mi, define a sequence of indicator rvs {An}∞
n=1 such that

An =
{

0, if Xn ̸= i,

1, if Xn = i.

With this definition, note that Mi =
∑∞

n=1 An. Now,

E[Mi |X0 = i] = E

[ ∞∑
n=1

An

∣∣∣∣∣X0 = i

]

=
∞∑

n=1
E[An |X0 = i]

=
∞∑

n=1

[
0P(An = 0 |X0 = i) + 1P(An = 1 |X0 = i)

]
=

∞∑
n=1

P(Xn = i |X0 = i)

=
∞∑

n=1
P

(n)
i,i .

We have: E[Mi |X0 = i] =
∑∞

n=1 P
(n)
i,i .

Therefore, yet another equivalent way of characterizing transience/recurrence is as follows:
∞∑

n=1
P

(n)
i,i

{
<∞, iff state i is transient,
=∞, iff state i is recurrent.

Remark: A simple way of viewing these concepts is as follows: a recurrent state will be visited infinitely
often, whereas a transient state will only be visited finitely often.

As was the case concerning the periodicity of states within the same communication class, the next theorem
indicates that transience/recurrence is also a class property.

Theorem 3.2. If i↔ j and state i is recurrent, then state j is recurrent.

Proof: Since i↔ j, ∃m, n ∈ N such that P
(m)
i,j > 0 and P

(n)
j,i > 0. Also, since state i is recurrent we know

that∑∞
ℓ=1 P

(ℓ)
i,i =∞. Suppose that s ∈ Z+. Note that

P
(n+s+m)
j,j ≥ P

(n)
j,i P

(s)
i,i P

(m)
i,j .
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Look at
∞∑

k=1
P

(k)
j,j ≥

∞∑
k=n+m+1

P
(k)
j,j

=
∞∑

s=1
P

(n+s+m)
j,j let s = k − n−m

≥
∞∑

s=1
P

(n)
j,i P

(s)
i,i P

(m)
i,j

= P
(n)
j,i︸︷︷︸
>0

P
(m)
i,j︸ ︷︷ ︸
>0

∞∑
s=1

P
(s)
i,i︸ ︷︷ ︸

=∞

=∞.

Therefore,∑∞
k=1 P

(k)
j,j =∞ and state j is recurrent.

Remark: An obvious by-product of this theorem is that if i↔ j and state i is transient, then state j must also
be transient.

The following theorem serves as a companion result to Theorem 3.2.

Theorem 3.3. If i↔ j and state i is recurrent, then

fi,j = P(DTMC ever makes a future visit to state j |X0 = i) = 1.

Proof: Clearly, the result is true if i = j. Therefore, suppose that i ̸= j. Since i↔ j, the fact that state i is
recurrent implies that state j is recurrent by Theorem 3.2, and fj,j = 1. To prove that fi,j = 1, suppose
that fi,j < 1 and try to get a contradiction. Since i ↔ j, ∃n ∈ Z+, such that P

(n)
j,i > 0. Let ni be the

smallest such n satisfying P
(n)
j,i > 0. Thus, each time the DTMC visits state j, there is the possibility of

being in state i, ni time units later (with probability P
(ni)
j,i > 0). If we suppose that fi,j < 1, then this

implies that the probability of returning to state j after visiting state i in the future is not guaranteed (as
1− fi,j > 0). Therefore, we have:

1− fj,j = P(DTMC never makes a future visit to state j |X0 = j)

≥ P
(ni)
j,i︸ ︷︷ ︸
>0

(1− fi,j)︸ ︷︷ ︸
>0

> 0 =⇒ 1− fj,j > 0 =⇒ fj,j < 1,

which is a contradiction since fj,j = 1. Thus, it must hold true that fi,j = 1 when state i is recurrent and
i↔ j.

Remark: Based on the above result, we know that, starting from any state of a recurrent class, a DTMC will
visit each state of that class infinitely many times.

At this stage, a natural question to ask is “What do the results that we have accumulated thus far tell us about
the behaviour of states within the same communication class?” The answer would be:
(i) these states communicate with each other,
(ii) these states all have the same period,
(iii) these states are all either recurrent or all transient.
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In fact, in an irreducible DTMC, there is only one communication class and so all the states are either recurrent or
transient. When the assumption that the DTMC has a finite number of states is included, we obtain the following
important result.

Theorem 3.4. A finite-state DTMC has at least one recurrent state.

Proof: We wish to prove the existence of at least one recurrent state in a finite-state DTMC, or equivalently,
that not all states can be transient. Suppose that {0, 1, . . . , N} represents the states of the DTMC where
N < ∞. To prove that not all states can be transient, suppose they are all transient and try to get a
contradiction. Now, for each i = 0, 1, 2, . . . N , if state i is assumed to be transient, then we know that
after a finite amount of time (denoted by Ti), state i will never be visited again. As a result, after a finite
amount of time

T = max{T0, T1, . . . , TN}

has gone by, none of these states will be visited ever again. However, the DTMC must be in some state
after time T , but we have exhausted all states for the DTMC to be in. This is a contradiction. Thus, not all
states can be transient in a finite-state DTMC.

Remarks:
(1) Looking at the above result, it is useful to think of it in the following way. There must be at least one

recurrent state. After all, the DTMC has to spend its time somewhere, and if it visits each of its finitely
many states finitely many times, then where else could it possibly go?

(2) As an immediate consequence of Theorem 3.4, an irreducible, finite-state DTMC must be recurrent (i.e., all
states of the DTMC are recurrent).

Example 3.3. (continued) Recall that we considered the irreducible DTMC with TPM

P =


0 1 2 3

0 0 1 0 0
1 0 0 1 0
2 0 0 0 1
3 0.5 0 0.5 0

.

Determine whether each state is transient or recurrent.

Solution: Since this is a finite-state DTMC as well, each of states 0, 1, 2, and 3 is therefore recurrent.

Another interesting property concerning recurrence can also be deduced.

Theorem 3.5. If state i is recurrent and state i does not communicate with state j, then P
(k)
i,j = 0 ∀k ∈ Z+.

Proof: Let us assume that P
(k)
i,j > 0 for some k ∈ Z+. Let ki be the smallest k that satisfies P

(ki)
i,j > 0.

Then, P
(n)
j,i would be equal to 0 ∀n ∈ Z+, since otherwise, states i and j would communicate. However,

the DTMC, starting in state i, would be a positive probability of at least P
(ki)
i,j of never returning to state i

(by the nature of how ki was chosen). This contradicts the recurrence of state i. Hence, we must have
P

(k)
i,j = 0 ∀k ∈ Z+.
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Example 3.4. (continued) Recall our earlier DTMC with TPM

P =


0 1 2 3

0 1
3

2
3 0 0

1 1
2

1
4

1
8

1
8

2 0 0 1 0
3 3

4
1
4 0 0

.

Determine whether each state is transient or recurrent.

Solution: We previously found the communication classes for this DTMC were {0, 1, 3} and {2}.
∞∑

n=1
P

(n)
2,2 =

∞∑
n=1

1 =∞ =⇒ state 2 is recurrent.

Looking at the possible transitions that can take place among states 0, 1, and 3, we strongly suspect state
1 to be transient (since there is a positive probability of never returning to state 1 if a transition to state 2
occurs). To prove this formally, assume instead that state 1 is recurrent and try to get a contradiction.
Assuming that state 1 is recurrent, note that state 1 does not communicate with state 2. By Theorem 3.5,
we have P1,2 must be equal to 0. But in fact, we have P1,2 = 1/8 ̸= 0. This is a contradiction. Thus, state
1 must indeed be transient. Thus, state 1 must be transient, and so {0, 1, 3} is a transient class.

Remark: As the previous example illustrates, the contrapositive of Theorem 3.5 also provides a test for
transience, in that if ∃k ∈ Z+ such that P

(k)
i,j > 0 and states i and j do not communicate, then state i must be

transient. Moreover, this result implies that once a process enters a recurrent class of states, it can never leave
that class. For this reason, a recurrent class is often referred to as a closed class.

Example 3.8. Consider a DTMC with TPM

P =


0 1 2 3

0 1
4 0 3

4 0
1 0 1

3 0 2
3

2 0 1 0 0
3 0 2

5 0 3
5

.

Determine whether each state is transient or recurrent.

Solution: There are three communication classes, namely {0}, {1, 3}, and {2}.
∞∑

n=1
P

(n)
0,0 =

∞∑
n=1

(
1
4

)n

= 1/4
1− 1/4 = 1

3 <∞,

and hence state 0 is transient.
∞∑

n=1
P

(n)
2,2 =

∞∑
n=1

0 = 0 <∞,

and hence state 2 is transient.
On the other hand, concerning {1, 3}, we observe that

f
(1)
1,1 = P1,1 = 1

3 ,

and
f

(n)
1,1 = 2

3

(
3
5

)n−2(2
5

)
, n ≥ 2.
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Thus,

f1,1 =
∞∑

n=1
f

(n)
1,1

= 1
3 +

∞∑
n=2

2
3

(
3
5

)n−2(2
5

)
= 1

3 + 2
3

(
2
5

)
1

1− 3/5

= 1
3 + 2

3

(
2
5

)(
5
2

)
= 1.

By definition, state 1 is recurrent, and hence the class {1, 3} is recurrent.

Remark: Instead of showing that f1,1 = 1 in the previous example, we could have used an even simpler
argument to conclude that {1, 3} is a recurrent class. In particular, after establishing that {0} and {2} are
transient classes, this DTMC has a finite number of states, and so {1, 3} must be recurrent due to Theorem 3.4.

Random Walk

Example 3.9. Consider a DTMC {Xn, n ∈ N} whose state space S is the set of all integers (i.e., S = Z).
Furthermore, suppose that the TPM for this DTMC satisfies

Pi,i−1 = 1− p and Pi,i+1 = p ∀i ∈ Z where 0 < p < 1.

In other words, from any state, either a jump up by one unit or a jump down by one unit takes place in the
next transition. As such, Xn is expressible as Xn =

∑n
k=0 Yk where {Yk}∞

k=0 is an independent sequence
of rvs with Y0 = X0 and P(Yk = −1) = 1− p and P(Yk = 1) = p, k ∈ Z+. This DTMC is well-studied in
the literature and is the basis for many applications in a variety of areas (particularly in finance). It is
often referred to as the Random Walk or Drunkard’s Walk. Characterize the behaviour of this DTMC in
terms of its communication classes, periodicity, and transience/recurrence.

Solution: State Transition Diagram

· · · −2 −1 0 1 2 · · ·

Since 0 < p < 1, all states clearly communicate with each other. This implies that {Xn, n ∈ N} is an
irreducible DTMC. Hence, we can determine its periodicity (and likewise transience/recurrence) by
analysing any state we wish. Let us select state 0. Starting from state 0, note that we cannot possibly be
visited in an odd number of transitions, since we are guaranteed to have the number of up (down) jumps
exceed the number of down (up) jumps. Thus,

P
(1)
0,0 = P

(3)
0,0 = · · · = 0,

or equivalently
P

(2n−1)
0,0 = 0 ∀n ∈ Z+.

However, since it is clearly possible to return to state 0 in an even number of transitions, it immediately
follows that

P
(2n)
0,0 > 0 ∀n ∈ Z+.
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Hence,

d(0) = gcd{n ∈ Z+ : P
(n)
0,0 > 0}

= gcd{2, 4, 6, . . .}
= 2.

Finally, to determine whether state 0 is transient or recurrent, let us consider
∞∑

n=1
P

(n)
0,0 = P

(1)
0,0︸︷︷︸

=0

+P
(2)
0,0 + P

(3)
0,0︸︷︷︸

=0

+P
(4)
0,0 + · · ·

=
∞∑

n=1
P

(2n)
0,0

=
∞∑

n=1

(
2n

n

)
pn(1− p)n,

where the last equality follows from the fact that in order for the DTMC to return to state 0 from state 0
in 2n steps, there must be an equal number (n) of up and down jumps, and

(2n
n

)
represents the number

of ways these jumps could be arranged among the 2n steps.
Recall: (Ratio Test for Series). Suppose that∑∞

n=1 an is a series of positive terms and L = lim
n→∞

an+1
an

.

(i) If L < 1, the series converges.
(ii) If L > 1, the series diverges.
(iii) If L = 1, the test is inconclusive.
In our case, an =

(2n
n

)
pn(1− p)n.

L = lim
n→∞

an+1

an

= lim
n→∞

(2(n+1))!
(n+1)!(n+1)! p

n+1(1− p)n+1

(2n)!
n!n! pn(1− p)n

= lim
n→∞

(2n + 2)(2n + 1)
(n + 1)(n + 1) p(1− p)

= 4p(1− p).

A plot of L = 4p(1− p) reveals the following shape:

0.5 1

1

p

L
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Note that if p ̸= 1/2, then L < 1. By the ratio test, this implies that
∞∑

n=1

(
2n

n

)
pn(1− p)n <∞,

and so state 0 is therefore transient. Thus, the entire DTMC is transient when p ̸= 1/2. On the other
hand, if p = 1/2, then L = 1, and so the ratio test is inconclusive. To determine what is happening when
p = 1/2, we consider an alternative approach in which p = 1/2 and p ̸= 1/2 can both be handled. First,
recall that

fi,j = P(DTMC ever makes a future visit to state j |X0 = i).

Let q = 1− p. Condition on the state of the DTMC at time 1 to get

f0,0 = P(DTMC ever makes a future visit to state 0 |X0 = 0)
= P(X1 = −1 |X0 = 0)P(DTMC ever makes a future visit to state 0 |X1 = −1, X0 = 0)

+ P(X1 = 1 |X0 = 0)P(DTMC ever makes a future visit to state 0 |X1 = 1, X0 = 0)
= qf−1,0 + pf1,0

We have
f0,0 = qf−1,0 + pf1,0 . (3.5)

If we let F0 represent the event that the DTMC ever makes a future visit to state 0, then

F0 =
∞⋃

i=1
{Xi = 0}.

So,

f1,0 = P(F0 |X0 = 1)
= P

(
F0 ∩ {X1 = 0}

∣∣X0 = 1
)

+ P
(
F0 ∩ {X1 = 2}

∣∣X0 = 1
)

= P(F0 |X1 = 0, X0 = 1)P(X1 = 0 |X0 = 1) + P(F0 |X1 = 2, X0 = 1)P(X1 = 2 |X0 = 1)
= P(X1 = 0 |X0 = 1) + P(X1 = 2 |X0 = 1)P(F0 |X1 = 2, X0 = 1)
= q + pP(F0 |X1 = 2) due to the Markov property

= q + pP
( ∞⋃

i=2
{Xi = 0} ∪ {X1 = 0}

∣∣∣∣X1 = 2
)

= q + pP
( ∞⋃

i=2
{Xi = 0}

∣∣∣∣X1 = 2
)

= q + pP(F0 |X0 = 2) due to the stationary assumption
= q + pf2,0 by definition.

Moreover, it follows that

f1,0 = q + pf2,0

= q + pf2,1f1,0

= q + pf1,0f1,0

= q + pf2
1,0. (3.6)

Rewriting (3.6), we end up with
pf2

1,0 − f1,0 + q = 0,
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which is a quadratic equation in f1,0. Applying the quadratic formula, we get that

f1,0 = 1±
√

1− 4pq

2p

=
1±

√
(p + q)2 − 4pq

2p
since p + q = 1

= 1±
√

p2 + 2pq + q2 − 4pq

2p

= 1±
√

p2 + 2pq + q2

2p

=
1±

√
(p− q)2

2p

= 1± |p− q|
2p

.

Let
r1 = 1 + |p− q|

2p
, and r2 = 1− |p− q|

2p

denote the two roots, and let us consider the case we are mostly interested in, which is when p = q (i.e.,
p = 1/2). In this case, r1 and r2 yield the same value, namely

1± |1/2− 1/2|
2(1/2) = 1,

and so it must be that f1,0 = 1. Similarly, it follows (via a symmetry argument) that f−1,0 = 1 when
p = 1/2. Therefore, for p = 1/2, (3.5) simplifies to become

f0,0 = 1
2(1) + 1

2(1) = 1,

implying that state 0 is recurrent by definition. Thus, we conclude that the DTMC is recurrent only when
p = 1/2. Out of mathematical interest, let us now attempt to determine f0,0 for p ̸= q. Consider the
special case when p < q. Then |p− q| = −(p− q) and the roots r1 and r2 simplify to become

r1 = 1− (p− q)
2p

= 1− p + q

2p
= 2q

2p
= q

p
> 1,

and
r2 = 1 + (p− q)

2p
= 1− q + p

2p
= 2p

2p
= 1.

Since 0 ≤ f1,0 ≤ 1, the root r1 must be inadmissible, thereby implying that r2 is the correct root to use
in this case. Moreover, by interchanging the up and down jump probabilities and applying the same
symmetry argument above, it readily follows that

f−1,0 = 1 for p > q.

Remark: For p > q, it can be shown that r2 is again the admissible root for f1,0, ultimately leading to
f1,0 = q/p (see Exercise 3.2.3). As an immediate consequence, we also have f−1,0 = p/q for p < q.
Combining our findings for p < q and p > q, we have that

f1,0 = 1− |p− q|
2p

and f−1,0 = 1− |q − p|
2q

.
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Therefore, (3.5) gives rise to

f0,0 = q

(
1− |q − p|

2q

)
+ p

(
1− |p− q|

2p

)
= 1− 1

2 |q − p| − 1
2 |p− q|

= 1− 1
2
(
|q − p|+ |p− q|

)
.

If p > q (i.e., 2q < 1), then

f0,0 = 1− 1
2
(
−(q − p) + (p− q)

)
= 1− 1

2(2p− 2q)

= 1− p + q

= 2q < 1. (3.7)

Therefore, state 0 is transient. On the other hand, if p < q (i.e., 2p < 1), it can be shown that f0,0 = 2p < 1
(see Exercise 3.2.4), implying also that state 0 is transient. Thus, if both cases are combined, we end up
obtaining

f0,0 = 2 min{p, q} < 1 for p ̸= q (i.e., p ̸= 1/2).
However, this formula even gives the correct result when p = q = 1/2. In general,

f0,0 = 2 min{p, 1− p}, 0 < p < 1.

Week 6
20th to 27th October

3.3 Limiting Behaviour of DTMCs
The concepts of periodicity and transience/recurrence play an important role in characterizing the limiting
behaviour of a DTMC. To demonstrate their influence, let us consider three examples with varying forms of
limiting behaviour.

Example 3.10. Consider a DTMC with TPM

P =


0 1 2

0 0 0 1
1 0 1 0
2 1 0 0

.

Determine if lim
n→∞

P (n) exists.

Solution: There are obviously two communication classes, namely {0, 2} and {1}. Each class is recurrent
with periods 2 and 1. Moreover, n ∈ Z+, note that

P (2n) =


0 1 2

0 1 0 0
1 0 1 0
2 0 0 1

, and P (2n−1) =


0 1 2

0 0 0 1
1 0 1 0
2 1 0 0

.
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As a result, lim
n→∞

P (n) does not exist since P (n) alternates between these two matrices. For example,
lim

n→∞
P

(n)
0,0 and lim

n→∞
P

(n)
0,2 do not exist. However, note that some limits do exist such as lim

n→∞
P

(n)
0,1 = 0 and

lim
n→∞

P
(n)
1,1 = 1.

Example 3.11. Consider a DTMC with TPM

P =


0 1 2

0 1
2

1
2 0

1 1
2

1
4

1
4

2 0 1
3

2
3

.

Determine if lim
n→∞

P (n) exists.

Solution: There is clearly only one communication class, and so the DTMC is irreducible. It is also
straightforward to verify the DTMC is aperiodic and recurrent. As we will soon learn, it can be shown that

lim
n→∞

P (n) =


0 1 2

0 4
11

4
11

3
11

1 4
11

4
11

3
11

2 4
11

4
11

3
11

.

Note that this limiting matrix has identical rows. This implies that P
(n)
i,j converges to a value as n→∞

which is the same for all initial states i. In other words, there is a limiting probability that the process will
be in state j as n→∞, and this probability is independent of the initial state i.

Example 3.12. Consider a DTMC with TPM

P =


0 1 2

0 1 0 0
1 1

3
1
2

1
6

2 0 0 1

.

Examine lim
n→∞

P (n), and explain why the limiting probability of being in a state can depend on the initial
state of this DTMC.

Solution: Clearly, there are 3 communication classes: {0}, {1}, {2}. As all the main diagonal elements of
P are positive, each state is aperiodic. Moreover, states 0 and 2 are recurrent states. In fact, for obvious
reasons states 0 and 2 are examples of what are known as absorbing states (i.e., P0,0 = P2,2 = 1). Finally,
since P1,0 = 1/3 > 0 and states 0 and 1 do not communicate, we can conclude that state 1 is transient by
the contrapositive statement of Theorem 3.5. It can be shown that (see Exercise 3.3.3)

lim
n→∞

P (n) =


0 1 2

0 1 0 0
1 2

3 0 1
3

2 0 0 1

.

In looking at the form of P (n) as n→∞, we would say that unlike the previous example, it can matter
from which state one begins in this DTMC.
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In the above example, note that the second column of the limiting matrix contains all zeros. Not surprisingly,
this is indicative of transient behaviour, implying that one will never end up in state 1 in the long run. This
property can be proven more formally in the next theorem.

Theorem 3.6. For any state i and transient state j of a DTMC, lim
n→∞

P
(n)
i,j = 0.

Proof: Recall that

f
(n)
i,j = P(Xn = j, Xn−1 ̸= j, . . . , X2 ̸= j, X1 ̸= j |X0 = i),

and
fi,j = P(DTMC ever makes a future visit to state j |X0 = i) =

∞∑
n=1

f
(n)
i,j .

Recall (3.2) from the previous section:

P
(n)
i,j =

n∑
k=1

f
(k)
i,j P

(n−k)
j,j .

Using (3.2) as our starting point, note that
∞∑

n=1
P

(n)
i,j =

∞∑
n=1

n∑
k=1

f
(k)
i,j P

(n−k)
j,j

=
∞∑

k=1

∞∑
n=k

f
(k)
i,j P

(n−k)
j,j

=
∞∑

k=1
f

(k)
i,j

∞∑
n=k

P
(n−k)
j,j

=
∞∑

k=1
f

(k)
i,j

∞∑
ℓ=0

P
(ℓ)
j,j let ℓ = n− k

= fi,j

(
1 +

∞∑
ℓ=1

P
(ℓ)
j,j

)

≤ 1
(

1 +
∞∑

ℓ=1
P

(ℓ)
j,j

)

= 1 +
∞∑

ℓ=1
P

(ℓ)
j,j︸ ︷︷ ︸

<∞

state j is transient

<∞.

By the nth term test for infinite series, we must have

lim
n→∞

P
(n)
i,j = 0.

Mean Recurrent Time
As the previous three examples show, there is variation in the limiting behaviour of a DTMC. In particular, it is
worthwhile to determine a set of conditions which ensure the “nice” limiting behaviour witnessed in Example
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3.11. To ascertain when such conditions exist, we need to distinguish between two kinds of recurrence. Let

Ni = min{n ∈ Z+ : Xn = i},

where state i is assumed to be recurrent. Clearly, the conditional rv Ni | (X0 = i) takes on values in Z+.
Moreover, its conditional pmf is given by

P(Ni = n |X0 = i) = f
(n)
i,i , n = 1, 2, 3, . . . .

We observe that this is indeed a pmf since ∑∞
n=1 f

(n)
i,i = fi,i = 1, as state i is recurrent. This leads to the

introduction of the following important quantity.

Definition: If state i is recurrent, then its mean recurrent time is given by

mi = E[Ni |X0 = i] =
∞∑

n=1
nf

(n)
i,i .

Positive and Null Recurrence
In words, mi represents the average time it takes the DTMC to make successive visits to state i. Two notions of
recurrence can now be defined based on the value of mi.

Definition: Suppose that state i is recurrent. State i is said to be positive recurrent if mi < ∞. On the
other hand, state i is said to be null recurrent if mi =∞.

Remark: A fair question to ask is whether it is even possible for a discrete probability distribution on Z+

to have an undefined mean (i.e., a mean of∞). To show that this is indeed possible, consider a rv X
with pmf

P(X = x) = 1
x(x + 1) , x = 1, 2, 3, . . . .

Let us first confirm that this is indeed a pmf:
∞∑

x=1

1
x(x + 1) = lim

n→∞

n∑
x=1

1
x(x + 1)

= lim
n→∞

n∑
x=1

(
1
x
− 1

x + 1

)

= lim
n→∞

{(
1− 1

2

)
+
(

1
2 −

1
3

)
+
(

1
3 −

1
4

)
+ · · ·+

(
1
n
− 1

n + 1

)}

= lim
n→∞

(
1− 1

n + 1

)
= 1.

However,
E[X] =

∞∑
x=1

x · 1
x(x + 1) =

∞∑
x=1

1
x + 1 =∞,

since the above harmonic series is known to diverge. In other words, a finite mean does not exist!
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Some Facts About Positive and Null Recurrence:
1. If i ↔ j and state i is positive recurrent, then state j is also positive recurrent. This means that

positive recurrence is also a class property. An obvious by-product of this result is that null recurrence
is a class property too.

2. In a finite-state DTMC, there can never be any null recurrent states.

Remarks:
(1) The above facts are provided without formal justification, as their proofs are rather lengthy and

depend on material beyond the scope of STAT 333.
(2) Positive recurrent, aperiodic states are referred to as ergodic states.

Stationary Distribution
Before stating the main result governing the “nice” limiting behaviour demonstrated in Example 3.11, we
introduce a special type of probability distribution.

Definition: A probability distribution {pi}∞
i=0 is called a stationary distribution of a DTMC if {pi}∞

i=0
satisfies the conditions∑∞

i=0 pi = 1 and pj =
∑∞

i=0 piPi,j ∀j ∈ N.

Remark: If we define the row vector

p = (p0, p1, . . . , pj , . . .),

then the above conditions can be represented in matrix form as

pe⊤ = 1 and p = pP,

where e⊤ = (1, 1, . . . , 1, . . .)⊤ denotes a column vector of ones (in general, the ⊤ notation will be used to
represent column vectors).

A logical question to ask is “Why is such a distribution called stationary?”
To answer this question, suppose that the initial conditions of the DTMC are given by α0 = p. As a result,
we have that α0,j = P(X0 = j) = pj ∀j ∈ N. Now, for any j ∈ N, note that

α1,j = P(X1 = j) =
∞∑

i=1
α0,iPi,j =

∞∑
i=0

piPi,j = pj = α0,j .

The above equation indicates that X1 has the same probability distribution as X0 when α0 = p. More
generally, it is straightforward to show (using mathematical induction) that each Xi, i ∈ Z+, is identically
distributed to X0, provided that α0 = p.
In other words, if a DTMC is started according to a stationary distribution, then the probability of being
in a given state remains unchanged (i.e., stationary) over time.

Remarks:
(1) In some texts, the stationary probability distribution is sometimes called the invariant probability

distribution or steady-state probability distribution.
(2) A known fact (which again we do not prove formally) is that a stationary distribution will not exist
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if all the states of the DTMC are either null recurrent or transient. On the other hand, an irreducible
DTMC is positive recurrent iff a stationary distribution exists.

(3) Stationary distributions are not necessarily unique. This happens when a DTMC has more than one
positive recurrent communication class. For instance, it is not difficult to verify that the DTMC in
Example 3.10 has an infinite number of stationary distributions (left as an upcoming exercise).

The Basic Limit Theorem
We are now in position to state the fundamental limiting theorem for DTMCs, generally referred to as the Basic
Limit Theorem (BLT).

Basic Limit Theorem: For an irreducible, recurrent, and aperiodic DTMC, lim
n→∞

P
(n)
i,j exists and is

independent of state i, satisfying

lim
n→∞

P
(n)
i,j = πj = 1

mj
∀i, j ∈ N.

If the DTMC also happens to be positive recurrent, then {πj}∞
j=0 is the unique, positive solution to the

system of linear equations defined by{
πj =

∑∞
i=0 πiPi,j ∀j ∈ N,∑∞

j=0 πj = 1.

Remarks:
(1) A formal proof of the BLT is beyond the scope of STAT 333. However, it is not difficult to understand

why {πj}∞
j=0 (if they exist) satisfies the above system of linear equations. Specifically, recall the

Chapman-Kolmogorov equations with m = n− 1, namely

P
(n)
i,j =

∞∑
k=0

P
(n−1)
i,k Pk,j ∀i, j ∈ N

Taking the limit as n→∞ of both sides of this equation and assuming that it is permissible to pass
the limit through the summation sign, we obtain

lim
n→∞

P
(n)
i,j = lim

n→∞

∞∑
k=0

P
(n−1)
i,k Pk,j .

πj =
∞∑

k=0
lim

n→∞
P

(n−1)
i,k Pk,j =

∞∑
k=0

πkPk,j∀j ∈ N,

which is precisely the above system of equations.
(2) If we define the row vector of limiting probabilities

π = (π0, π1, . . . , πj , . . .),

then the above system of linear equations can be written succinctly in matrix form as:{
π = πP,

πe⊤ = 1.

Therefore, if a DTMC is irreducible and ergodic, then the BLT states that the limiting probability
distribution is the unique stationary distribution.
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(3) When a DTMC has a finite number of states (i.e., suppose that the state space is {0, 1, . . . , N} where
N <∞), the BLT states that there are N + 1 linear equations to consider of the form

πj =
N∑

i=0
πiPi,j , j = 0, 1, . . . , N. (3.8)

Along with the condition∑N
j=0 πj = 1, this leads to N + 2 equations in N + 1 unknowns, of which

a unique solution must exist. In fact, the first N + 1 equations given by (3.8) are linearly dependent
(implying that there is a redundancy), and so we can drop any one of the equations given by (3.8)
and solve the remaining N + 1 equations to obtain a unique solution.

(4) If the conditions of the BLT are satisfied and state j happens to be null recurrent, then πj = 0 which
interestingly is similar to the limiting behaviour of a transient state.

Example 3.11. (continued) Recall that we previously considered a DTMC with TPM

P =


0 1 2

0 1
2

1
2 0

1 1
2

1
4

1
4

2 0 1
3

2
3

.

Find the limiting probabilities for this DTMC.

Solution: Clearly, the DTMC is irreducible, aperiodic, and positive recurrent. Therefore, the conditions
of the BLT are satisfied and π = (π0, π1, π2) is known to exist. To find π, we need to solve the system of
linear equations defined by

π = πP

(π0, π1, π2) = (π0, π1, π2)


1
2

1
2 0

1
2

1
4

1
4

0 1
3

2
3

, subject to πe⊤ = 1.

This leads to:

π0 = 1
2 π0 + 1

2 π1,

π1 = 1
2 π0 + 1

4 π1 + 1
3 π2,

π2 = 1
4 π1 + 2

3 π2,

1 = π0 + π1 + π2.

We may disregard any one of the first three equations, and so we select the equation for π1, as it involves
the most terms.

π0 = 1
2 π0 + 1

2 π1 =⇒ 1
2 π0 = 1

2 π1 =⇒ π0 = π1

π2 = 1
4 π1 + 2

3 π2 =⇒ 1
3 π2 = 1

4 π1 =⇒ π2 = 3
4 π1

1 = π0 + π1 + π2 =⇒ 1 = π1 + π1 + 3
4 π1 =⇒ π1 = 4

11

It immediately follows that π0 = 4
11 , and π2 = 3

4 ·
4

11 = 3
11 . Thus,

π = ( 4
11 , 4

11 , 3
11 ).
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Recall from earlier that

lim
n→∞

P (n) =


0 1 2

0 4
11

4
11

3
11

1 4
11

4
11

3
11

2 4
11

4
11

3
11

 =


0 1 2

0 π0 π1 π2
1 π0 π1 π2
2 π0 π1 π2

.

Hence, we observe that each row of P (n) converges to π as n→∞.

Doubly Stochastic TPM
Recall that the TPM of a DTMC is stochastic, with all row sums of P being equal to 1. However, a TPM is said
to be doubly stochastic if all column sums of P are also equal to 1 (i.e.,∑∞

i=0 Pi,j = 1 ∀j ∈ N). The following
theorem provides an interesting result concerning the limiting behaviour of a class of such DTMCs.

Theorem 3.7. Suppose that a finite-state DTMC with state space S = {0, 1, . . . , N − 1} is irreducible and
aperiodic. If the associated TPM is doubly stochastic, then the limiting probabilities {πj}N−1

j=0 exist and
are given by

πj = 1
N

, j = 0, 1, . . . , N − 1.

Proof: If the DTMC is irreducible and aperiodic, then a unique limiting probability distribution exists by
the BLT, as each state must also be positive recurrent due to there being a finite number of states. To
determine the limiting distribution, let us propose that

πj = 1
N

, j = 0, 1, . . . , N − 1.

Clearly,
N−1∑
j=0

πj =
N−1∑
j=0

1
N

= 1
N
·N = 1.

Moreover, for j = 0, 1, . . . , N − 1, note that
N−1∑
k=0

πkPk,j =
N−1∑
k=0

1
N

Pk,j

= 1
N

N−1∑
k=0

Pk,j︸ ︷︷ ︸
=1

where
N−1∑
k=0

Pk,j is sum of jth column of P

= 1
N

since the TPM is doubly stochastic
= πj .

Thus, we conclude that πj = 1
N , j = 0, 1, . . . , N − 1 is the unique limiting distribution.
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Alternative Interpretation

The primary interpretation of the limiting distribution of a DTMC is that after the process has been in
operation for a “long” period of time, the probability of finding the process in state j is πj (assuming
the conditions of the BLT are met). In such situations, however, another interpretation exists for πj .
Specifically, πj also represents the “long-run” mean fraction of time that the process spends in state j.
To see that this interpretation is valid, define the sequence of indicator random variables {Ak}∞

k=1 as
follows:

Ak =
{

0, if Xk ̸= j,

1, if Xk = j.

The fraction of time the DTMC visits state j during the time interval from 1 to n inclusive is therefore
given by

1
n

n∑
k=1

Ak.

Looking at the quantity

E

[
1
n

n∑
k=1

Ak

∣∣∣∣∣X0 = i

]
,

which is interpreted as the mean fraction of time spent in state j during the time interval from 1 to n
inclusive, given that the process starts in state i, note that

E

[
1
n

n∑
k=1

Ak

∣∣∣∣∣X0 = i

]
= 1

n

n∑
k=1

E[Ak |X0 = i]

= 1
n

n∑
k=1

(
0 · P(Ak = 0 |X0 = i) + 1 · P(Ak = 1 |X0 = i)

)
= 1

n

n∑
k=1

P(Xk = j |X0 = i)

= 1
n

n∑
k=1

P
(k)
i,j .

We have: E
[ 1

n

∑n
k=1 Ak

∣∣X0 = i
]

= 1
n

∑n
k=1 P

(k)
i,j .

Recall: If {an}∞
n=1 is a real sequence such that an → a as n→∞, then 1

n

∑n
k=1 ak → a as n→∞.

Thus, if the conditions of the BLT are satisfied, then P
(n)
i,j → πj as n→∞. Therefore, applying the above

result with an = P
(n)
i,j and a = πj , we obtain

E

[
1
n

n∑
k=1

Ak

∣∣∣∣∣X0 = i

]
→ πj as n→∞,

implying that the long-run mean fraction of time spent in state j is also equal to πj .

Remark: If one begins in recurrent state j, we realize that the process spends one unit of time in state j
every Nj time units. On average, this amounts to one unit of time in state j every E[Nj |X0 = j] = mj

time units. If the conditions of the BLT are satisfied, then it makes sense intuitively that πj = 1/mj ,
as the BLT specifies. For a more formal justification in the positive recurrent case, let {N (n)

j }∞
n=1 be a

sequence of rvs where N
(n)
j represents the number of transitions between the (n− 1)th and nth visits into

state j, as illustrated in the diagram below. By the Markov property and the stationary assumption of
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the DTMC, {N (n)
j }∞

n=1 is actually an iid sequence of rvs with common mean mj < ∞. Therefore, the
long-run fraction of time spend in state j can be viewed as

πj = lim
n→∞

n∑n
i=1 N

(i)
j

= lim
n→∞

1
1
n

∑n
i=1 N

(i)
j

= 1
mj

,

where the last equality follows from the SLLN.

0 1st visit
back to
state j

2nd visit
back to
state j

· · ·
(n − 1)th

visit back to
state j

nth visit
back to
state j

Time
DTMC

begins in
state j

N
(1)
j

N
(2)
j · · ·

N
(n−1)
j

N
(n)
j

Week 7
1027 to 3rd November

3.4 Two Interesting Applications

3.4.1 Interesting Application #1: The Galton-Watson Branching Process
• The famous Galton-Watson Branching Process was first introduced by Francis Galton in 1889 as a simple

mathematical model for the propagation of family names.
• They were reinvented by Leo Szilard in the late 1930s as models for the proliferation of free neutrons in a

nuclear fission reaction.
• Such mathematical models (and their generalizations) continue to play an important role in both the

theory and applications of stochastic processes.

The Galton-Watson Branching Process

• In what follows, we assume that a population of individuals (which may represent people, organisms, free
neutrons, etc.) evolves in discrete time. Specifically, we define:

X0 ≡ population of the 0th (original) generation,

X1 ≡ population of the 1st generation,

...
Xn ≡ population of the nth generation,

...

• We assume that each individual in a generation produces a random number (possibly 0) of individuals,
called offspring, which go on and become part of the very next generation.

• In other words, it is always the offspring of a current generation which go on to form the next generation.
• We further assume that individuals produce offspring independently of all others according to the same

probability distribution, namely

αm = P(an individual produces m offspring), m = 0, 1, 2, . . . .
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• In addition, for purposes we will see later, we assume that α0 ∈ (0, 1) and α0 + α1 < 1.

• For j ∈ N, let Z
(j)
i be the number of offspring produced from individual i in the jth generation.

• Due to the earlier independence assumptions, {Z(j)
i }∞

i=1 is an iid sequence of rvs with αm = P(Z(j)
i = m)

for any j ∈ N. Moreover, let µ = E[Z(j)
i ] and σ2 = Var(Z(j)

i ) represent the (common) mean and variance,
respectively, of the number of offspring produced by a single individual.

• Based on the above assumptions, the Galton-Watson process {Xn, n ∈ N} is actually a DTMC taking values
in the state space S = N, since it follows that

Xn =
Xn−1∑
i=1

Z
(n−1)
i , (3.9)

implying that the Markov property and stationarity assumption are both satisfied.
• In this DTMC, we remark that P0,0 = 1, since state 0 is obviously an absorbing state.
• If we now consider state i, i ∈ Z+, then we can easily show that state i is transient as follows:

– Clearly, states 0 and i do not communicate.
– Note that Pi,0 = αi

0 > 0 (since α0 > 0).
– By the contrapositive of Theorem 3.5, state i must therefore be transient.

• Thus, since state 0 is recurrent and states 1, 2, 3, . . . are transient, the following conclusion can be drawn:
The population will either die out completely or its size will grow indefinitely (to∞).

• We have: Xn =
∑Xn−1

i=1 Z
(n−1)
i ← (3.9).

• Since (3.9) infers that Xn is expressible as a random sum, we can apply the results of Example 2.9 to obtain

E[Xn] = µE[Xn−1]

and
Var(Xn) = σ2 E[Xn−1] + µ2 Var(Xn−1).

• For convenience, let us henceforth assume that X0 = 1 (with probability 1). As it is understood that
X0 = 1, for ease of notation, we will suppress writing the condition “X0 = 1” in all expectations and
probabilities which follow.

The Galton-Watson Branching Process: Mean

• We have: E[Xn] = µE[Xn−1], X0 = 1 with probability 1.
• Now, let us consider E[Xn] for several values of n:

Take n = 1 =⇒ E[X1] = µE[X0] = µ,

Take n = 2 =⇒ E[X2] = µE[X1] = µ2,

Take n = 3 =⇒ E[X3] = µE[X2] = µ3.

Based on the above findings, it is straightforward to deduce that E[Xn] = µn, n ∈ N.
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The Galton-Watson Branching Process: Variance

• We have: Var(Xn) = σ2 E[Xn−1] + µ2 Var(Xn−1), X0 = 1 with probability 1. Similarly, we have
Take n = 1 =⇒ Var(X1) = σ2 E[X0] + µ2 Var(X0)︸ ︷︷ ︸

0

= σ2,

Take n = 2 =⇒ Var(X2) = σ2 E[X1] + µ2 Var(X1) = σ2µ + σ2µ2,

Take n = 3 =⇒ Var(X3) = σ2 E[X2] + µ2 Var(X3) = σ2µ2 + σ2µ3 + σ2µ4.

Continuing inductively, we find that

Var(Xn) = σ2µn−1
n−1∑
i=0

µi, n ∈ N,

which simplifies to give

Var(Xn) =
{

nσ2, if µ = 1,
σ2µn−1( 1−µn

1−µ

)
, if µ ̸= 1.

The Galton-Watson Branching Process: Extinction Probability

• Under the assumption that X0 = 1, let π0 denote the limiting probability that the population dies out. In
other words,

π0 = lim
n→∞

P(Xn = 0).

• Let us first consider the situation when µ < 1, which is referred to as the subcritical case. Clearly, as
n→∞, E[Xn] = µn and Var(Xn) = σ2µn−1( 1−µn

1−µ

)
both converge to 0. Therefore, we would expect that

if µ < 1, then π0 = 1. To prove this formally, note that

µn = E[Xn] =
∞∑

j=1
j P(Xn = j) ≥

∞∑
j=1

1 · P(Xn = j) = P(Xn ≥ 1) = 1− P(Xn = 0).

This implies that 1− µn ≤ P(Xn = 0) ≤ 1. Taking the limit as n→∞ leads to:
lim

n→∞
(1− µn) ≤ lim

n→∞
P(Xn = 0) ≤ lim

n→∞
1 =⇒ 1 ≤ π0 ≤ 1,

or simply, π0 = 1.
• On the other hand, suppose that µ ≥ 1. By conditioning on the number of offspring produced by the single

individual present in the population at time 0, we obtain

π0 = P(population dies out) =
∞∑

j=0
P(population dies out |X1 = j)αj .

However, with X1 = j, the population will eventually die out iff each of the j families started by the
members of the first generation eventually dies out.
As each family is assumed to act independently, and since the probability that any particular family dies
out is simply π0, it follows that P(population dies out |X1 = j) = πj

0 and our above equation becomes

π0 =
∞∑

j=0
πj

0αj . (3.10)

• We have: π0 =
∑∞

j=0 πj
0αj ← (3.10). Equivalently, z = π0 satisfies the equation

z = α̃(z), (3.11)
where α̃(z) =

∑∞
j=0 zjαj . Note that α̃(0) = α0 > 0 and α̃(1) =

∑∞
j=0 αj = 1. Consequently, z = 0 is not

a solution to (3.11), whereas z = 1 is a solution to (3.11).
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• The important question which needs to be addressed now is this: Is z = 1 the only solution to (3.11) on
[0, 1]?

• To answer this question, we observe the following facts concerning the function α̃(z):
(i) α̃(z) is clearly a continuous function of z on the interval [0, 1],
(ii) α̃′(z) = d

dz α̃(z) =
∑∞

j=1 jzj−1αj and α̃′(1) = jαj = µ,
(iii) α̃′(z) > 0 for z > 0 =⇒ α̃(z) is an increasing function of z on (0, 1].
(iv) α̃′′(z) = d

dz α̃′(z) =
∑∞

j=2 j(j − 1)zj−2αj ,
(v) α̃′′(z) > 0 for z > 0 since α0 + α1 < 1 =⇒ α̃(z) is concave up for z ∈ (0, 1].

• As a result of these facts, the following diagram depicts the behaviour of the function y = α̃(z) in relation
to y = z:

0
0

y = z

y

z

1

1

α0

z0

y = α̃(z) for µ > 1

y = α̃(z) for µ = 1

In other words, when µ = 1 (i.e., the so-called critical case), there is only one root in [0, 1], namely z = 1.
However, when µ > 1, there is a second root z = z0 ∈ (0, 1) which satisfies (3.11). Therefore, this now
raises the question: Is π0 = z0 or π0 = 1 when µ > 1?

• We have: z = α̃(z) =
∑∞

j=0 zjαj ← (3.11). Let z = z⋆ be any non-negative solution satisfying (3.11). It
is straightforward to show by mathematical induction that z⋆ ≥ P(Xn = 0), n ∈ N (left as an upcoming
exercise). As a result, it follows that

lim
n→∞

z⋆ ≥ lim
n→∞

P(Xn = 0) =⇒ z⋆ ≥ π0,

which implies that z = π0 is the smallest positive number satisfying (3.11). It is only when µ > 1 (referred
to as the supercritical case) that π0 is known to exist in the interval (0, 1).

Example 3.13. Given the following offspring probabilities, what is the probability that the population
dies out in the long run assuming that X0 = 1?
(a) α0 = 3/4, α1 = 1/8, α2 = 1/8.
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Solution: First, we calculate

µ = 0
(

3
4

)
+ 1
(

1
8

)
+ 2
(

1
8

)
= 3

8 .

Since µ < 1, the population will die out with probability 1.
(b) α0 = 1/5, α1 = 1/10, α2 = 7/10.

Solution: Again, we begin by calculating

µ = 0
(

1
5

)
+ 1
(

1
10

)
+ 2
(

7
10

)
= 1.5.

Since µ > 1, π0 ∈ (0, 1) is known to exist. To find π0, we solve (3.11):

z = α̃(z)

z =
∞∑

j=0
zjαj

z = 1
5 + z

(
1
10

)
+ z2

(
7
10

)
,

giving rise to a quadratic equation
7z2 − 9z + 2 = 0,

or equivalently (since we know z = 1 is always a solution to the above equation)

(7z − 2)(z − 1) = 0.

The two roots are z = 2/7 and z = 1. Thus, π0 = 2/7.

Remarks:
(1) In the case when X0 = n, n ∈ Z+, the population will die out iff the families of each of the n members of

the initial generation die out. As a result, it immediately follows that the extinction probability is simply
πn

0 .
(2) For certain choices of the offspring distribution, the Galton-Watson branching process is not very interesting

to analyse. For example, with X0 = 1 and αr = 1 for some r ∈ N, the evolution of the process is purely
deterministic (i.e., P(Xn = rn) = 1, n ∈ N). Another uninteresting case occurs when α0, α1 > 0 and
α0 + α1 = 1. In this situation, the population remains at its initial size X0 = 1 for a random number of
generations (according to a geometric distribution), before dying out completely.

3.4.2 Interesting Application #2: The Gambler’s Ruin Problem
• One of the most powerful ideas in the theory of DTMCs is that many fundamental probabilities and

expectations can be computed as the solutions of systems of linear equations.
• We have already seen one such example of this through the application of the BLT.
• In what follows, we will continue to illustrate this idea by deriving appropriate linear systems for a number

of key probabilities and expectations that arise in certain settings.
• To motivate this idea, let us consider a famous problem in stochastic processes known as the Gambler’s

Ruin Problem.
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The Gambler’s Ruin Problem

Example π ≈ 3.14. Consider a gambler who, at each play of a game, has probability p ∈ (0, 1) of winning
one unit and probability q = 1 − p of losing one unit. Assume that successive plays of the game are
independent. If the gambler initially begins with i units, what is the probability that the gambler’s fortune
will reach N units (N <∞) before reaching 0 units? This problem is often referred to as the Gambler’s
Ruin Problem, with state 0 representing bankruptcy and state N representing the jackpot.

Solution: For n ∈ N, define Xn as the gambler’s fortune after the nth play of the game, with X0 = i.
Clearly, {Xn, n ∈ N} is a DTMC with TPM

P =



0 1 2 3 · · · N − 2 N − 1 N
0 1 0 0 0 · · · 0 0 0
1 q 0 p 0 · · · 0 0 0
2 0 q 0 p · · · 0 0 0
... ... ... ... ... ... ... ...

N − 1 0 0 0 0 · · · q 0 p
N 0 0 0 0 · · · 0 0 1


.

Note that states 0 and N are treated as absorbing states, implying that they are both recurrent. States
{1, 2, . . . , N − 1} belong to the same communication class, and it is straightforward to verify that it is
a transient class (left as an upcoming exercise). Our goal is to determine G(i), i = 0, 1, . . . , N , which
represents the probability that starting with i units, the gambler’s fortune will eventually reach N units.
As a consequence, we can deduce that

lim
n→∞

P (n) =



0 1 2 3 · · · N − 2 N − 1 N
0 1 0 0 0 · · · 0 0 0
1 1−G(1) 0 0 0 · · · 0 0 G(1)
2 1−G(2) 0 0 0 · · · 0 0 G(2)
... ... ... ... ... ... ... ...

N − 1 1−G(N − 1) 0 0 0 · · · 0 0 G(N − 1)
N 0 0 0 0 · · · 0 0 1


.

From above, note that G(0) = 0 and G(N) = 1 (initial conditions). Moreover, by conditioning on the
outcome of the very first game, we readily obtain for i = 1, 2, . . . , N − 1:

G(i) = pG(i + 1) + qG(i− 1)
1 ·G(i) = pG(i + 1) + qG(i− 1)

(p + q)G(i) = pG(i + 1) + qG(i− 1)
pG(i) + qG(i) = pG(i + 1) + qG(i− 1)

p
[
G(i + 1)−G(i)

]
= q
[
G(i)−G(i− 1)

]
G(i + 1)−G(i) = q

p

[
G(i)−G(i− 1)

]
.

To determine whether an explicit solution is possible, consider several values of i as follows:

Take i = 1 =⇒ G(2)−G(1) = q

p

[
G(1)−G(0)

]
= q

p
G(1),

Take i = 2 =⇒ G(3)−G(2) = q

p

[
G(2)−G(1)

]
=
(

q

p

)2
G(1),

Take i = 3 =⇒ G(4)−G(3) = q

p

[
G(3)−G(2)

]
=
(

q

p

)3
G(1).
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Therefore, if we take i = k we get:

G(k + 1)−G(k) = q

p

[
G(k)−G(k − 1)

]
=
(

q

p

)k

G(1).

Note that the above k equations are linear in terms of G(1), G(2), . . . , G(k+1). Summing these k equations
yields:

G(k + 1)−G(1) =
k∑

i=1

(
q

p

)i

G(1)

G(k + 1) =
k∑

i=0

(
q

p

)i

G(1), for k = 0, 1, . . . , N − 1,

or equivalently,

G(k) =
k−1∑
i=0

(
q

p

)i

G(1), for k = 1, 2, . . . , N.

Applying the formula for a finite geometric series, we end up with

G(k) =


1− (q/p)k

1− (q/p) G(1), if p ̸= 1/2,

kG(1), if p = 1/2.

Plugging in k = N , we obtain for p ̸= 1/2:

1 = G(N) = 1− (q/p)N

1− (q/p) G(1) =⇒ G(1) = 1− (q/p)
1− (q/p)N

.

Similarly, for p = 1/2, we obtain:
G(1) = 1

N
.

Combining both cases, we ultimately get for k = 1, 2, . . . , N .

G(k) =


1− (q/p)k

1− (q/p)N
, if p ̸= 1/2,

k

N
, if p = 1/2.

In fact, this holds for k = 0, 1, 2, . . . , N .

Remarks:
(1) An interesting question to ask is what happens to the gambler’s probability of winning the jackpot, given

an initial fortune of i units, as N grows “larger” (i.e., N →∞)? In other words, what happens to the limit
of G(i) as N →∞. Looking at three cases based on the value of p, we see:

(i) When p = 1/2, G(i) = i

N
→ 0 as N →∞,

(ii) When p < 1/2, G(i) = 1− (q/p)i

1− (q/p)N
→ 0 as N →∞,

(iii) When p > 1/2, G(i) = 1− (q/p)i

1− (q/p)N
→ 1−

(
q

p

)i

as N →∞,
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since q/p > (<)1 when p < (>)1/2. Simply put, only when p > 1/2 does a positive probability exist that
the gambler’s fortune will increase indefinitely. Otherwise, the gambler is sure to go broke.

(2) In our study of the Random Walk in Example 3.9 featuring a DTMC on the state space Z with transition
probabilities analogous to those in the Gambler’s Ruin Problem, we previously showed that

f0,0 = (1− p)f−1,0 + pf1,0.

Suppose that p > 1/2. First, note that

f1,0 = P(Random Walk DTMC ever makes a future visit to state 0 starting from state 1)
= lim

N→∞
P(Gambler’s Ruin DTMC ends up in bankruptcy |X0 = 1)

= 1−
(

1−
(

1− p

p

)1
)

from case (iii) of Remark (1)

= 1− p

p
.

Similarly, we also have that

f−1,0 = P(Random Walk DTMC ever makes a future visit to state 0 starting from state −1)
= lim

N→∞
P(Gambler’s Ruin DTMC with “up” probability 1− p ends up in bankruptcy |X0 = 1)

= 1− 0 from case (ii) of Remark (1) since 1− p < 1/2
= 1.

Therefore, we end up ultimately obtaining

f0,0 = (1− p) · 1 + p

(
1− p

p

)
= 2(1− p),

which agrees with our earlier result. The same essential procedure can be adapted to verify that f0,0 = 2p
if p < 1/2.

Week 8
3rd to 10th November

3.5 Absorbing DTMCs
The Gambler’s Ruin Problem is actually an example of a more general problem which we turn our attention to
next. In particular, consider a DTMC {Xn, n ∈ N} with a finite number of states arranged specifically as follows:

0, 1, . . . , M − 1︸ ︷︷ ︸
transient states

, M, M + 1, . . . , N︸ ︷︷ ︸
absorbing states

.

The TPM for this DTMC can be expressed as:

P =



0 1 · · · M − 1 M M + 1 · · · N
0
1
...

M − 1
M

M + 1
...

N

Q R

0 I


,
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where

Q =


0 1 · · · M − 1

0 Q0,0 Q0,1 · · · Q0,M−1
1 Q1,0 Q1,1 · · · Q1,M−1
... ... ... ...

M − 1 QM−1,0 QM−1,1 · · · QM−1,M−1

,

R =


M M + 1 · · · N

0 R0,M R0,M+1 · · · R0,N

1 R1,M R1,M+1 · · · R1,N

... ... ... ...
M − 1 RM−1,M RM−1,M+1 · · · RM−1,N

,

0 is a matrix of zero dimension (N−M+1)×M , and I is an identity matrix of dimension (N−M+1)×(N−M+1).

Absorbing DTMCs: Absorption Probability
• In what follows, let i be a transient state (i.e., 0 ≤ i ≤M − 1) and assume that X0 = i.
• Let T = min{n ∈ Z+ : M ≤ Xn ≤ N} be the absorption time rv.
• For M ≤ k ≤ N (i.e., k is an absorbing state), consider the absorption probability into state k from state i

defined by
Ui,k = P(XT = k |X0 = i).

Conditioning on the state of the DTMC at time 1, note that

Ui,k = P(XT = k |X0 = i)

=
N∑

j=0
P(XT = k |X1 = j, X0 = i)P(X1 = j |X0 = i)

=
M−1∑
j=0

P(XT = k |X1 = j, X0 = i)Pi,j +
N∑

j=M

P(XT = k |X1 = j, X0 = i)Pi,j

=
M−1∑
j=0

Pi,j P(XT = k |X1 = j, X0 = i) + Pi,k,

since it follows that for M ≤ j ≤ N , T | (X1 = j, X0 = i) is degenerate at 1, and so P(XT = k |
X1 = j, X0 = i) = δj,k, where δj,k denotes the Kronecker delta function given

δj,k =
{

0, if j ̸= k,

1, if j = k.

For 0 ≤ j ≤M − 1, however, note that

P(XT = k |X1 = j, X0 = i) = P(XT = k |X0 = j) = Uj,k.

To see this, let Ti denote the remaining number of transitions until absorption given that the DTMC is
currently in transient state i. Clearly, T | (X0 = i) ∼ Ti. Moreover, for transient state j, we have

T | (X1 = j, X0 = i) ∼ (1 + Tj) | (X1 = j),

due to the Markov property.
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• We have: T | (X1 = j, X0 = i) ∼ (1 + Tj) | (X1 = j). Therefore,
P(XT = k |X1 = j, X0 = i) = P(X1+Tj

= k |X1 = j)
= P(XTj

= k |X0 = j) due to the stationary assumption
= P(XT = k |X0 = j)
= Uj,k,

where the second last equality holds due to Tj and T being equivalent in distribution under the condition
X0 = j. As a result, we ultimately end up with

Ui,k = Pi,k +
M−1∑
j=0

Pi,jUj,k = Ri,k +
M−1∑
j=0

Qi,jUj,k ∀0 ≤ i ≤M − 1, M ≤ k ≤ N (3.12)

In other words, to determine Ui,k for a particular pair of values for i and k, the system of M linear equations
given by (3.12) must be solved, yielding solutions for U0,k, U1,k, . . . , UM−1,k.

Example 3.12. (continued) Recall the earlier DTMC we considered having TPM

P =


0 1 2

0 1 0 0
1 1

3
1
2

1
6

2 0 0 1

.

We previously claimed that

lim
n→∞

P (n) =


0 1 2

0 1 0 0
1 2

3 0 1
3

2 0 0 1

.

Show that the absorption probabilities from transient state 1 into states 0 and 2 are equal to lim
n→∞

P
(n)
1,0

and lim
n→∞

P
(n)
1,2 , respectively.

Solution: First, relabel the states of this DTMC as follows:
0⋆ = state 1 in the original DTMC,

1⋆ = state 0 in the original DTMC,

2⋆ = state 2 in the original DTMC.

As a result, the “new” TPM corresponding to states {0⋆, 1⋆, 2⋆} looks like:

P =


0⋆ 1⋆ 2⋆

0⋆ 1
2

1
3

1
6

1⋆ 0 1 0
2⋆ 0 0 1

,

so that
Q =

[ 1
2
]

, R =
[ 1

3
1
6
]

.

Using (3.12) we find that U0⋆,1⋆ and U0⋆,2⋆ to be

U0⋆,1⋆ = R0⋆,1⋆ + Q0⋆,0⋆U0⋆,1⋆ = 1
3 + 1

2U0⋆,1⋆ =⇒ U0⋆,1⋆ = 2
3 = lim

n→∞
P

(n)
1,0 ,

and
U0⋆,2⋆ = R0⋆,2⋆ + Q0⋆,0⋆U0⋆,2⋆ = 1

6 + 1
2U0⋆,2⋆ =⇒ U0⋆,2⋆ = 1

3 = lim
n→∞

P
(n)
1,2 .
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Remarks:
(1) If we define U = [Ui,k] to be the M × (N −M + 1) matrix of absorption probabilities, then (3.12) can be

expressed more succinctly in matrix form as

U = R + QU,

or equivalently,
(I −Q)U = R.

A known mathematical fact is that the matrix I −Q is invertible, and so an explicit (matrix) solution for U
is given by

U = (I −Q)−1R. (3.13)
In the previous example, note that

U =
[
U0⋆,1⋆ U0⋆,2⋆

]
=
(

1− 1
2

)−1 [ 1
3

1
6
]

= 2
[ 1

3
1
6
]

=
[ 2

3
1
3
]

Absorbing DTMCs: Limiting Behaviour
(2) As demonstrated in the previous example, the limiting behaviour of the general DTMC we are considering

can be characterized as follows:

lim
n→∞

P (n) =



0 1 · · · M − 1 M M + 1 · · · N
0 0 0 · · · 0 U0,M U0,M+1 · · · U0,N

1 0 0 · · · 0 U1,M U1,M+1 · · · U1,N

... ... ... ... ... ... ...
M − 1 0 0 · · · 0 UM−1,M UM−1,M+1 · · · UM−1,N

M 0 0 · · · 0 1 0 · · · 0
M + 1 0 0 · · · 0 0 1 · · · 0

... ... ... ... ... ... ...
N 0 0 · · · 0 0 0 · · · 1


.

Another way to see this is through the use of Exercise 3.5.1, which states that

P (n) =

Qn

n−1∑
i=0

QiR

0 I

, n ∈ Z+.

Therefore, it follows that

lim
n→∞

P (n) =

 lim
n→∞

Qn

(
lim

n→∞

n−1∑
i=0

Qi

)
R

0 I

.
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However, lim
n→∞

Qn = 0 (as Q has only transient states). Moreover, note that

(I −Q)
(

lim
n→∞

n−1∑
i=0

Qi

)
= lim

n→∞

n−1∑
i=0

(I −Q)Qi

= lim
n→∞

n−1∑
i=0

(Qi −Qi+1)

= lim
n→∞

(
(Q0 −Q1) + (Q1 −Q2) + · · ·+ (Qn−1 −Qn)

)
= lim

n→∞
(I −Qn)

= I − lim
n→∞

Qn

= I.

We have: U = (I −Q)−1R← (3.13). Therefore, we have that
∞∑

i=0
Qi = lim

n→∞

n−1∑
i=0

Qi = (I −Q)−1I = (I −Q)−1,

which yields a formula for an infinite geometric series of matrices. From (3.13), we obtain

lim
n→∞

P (n) =
[
0 U
0 I

]
.

Absorbing DTMCs: Gambler’s Ruin Problem
(3) In the Gambler’s Ruin Problem, if we reorder the states 0, 1, 2, . . . , N − 1, N as

1, 2, . . . , N − 1︸ ︷︷ ︸
transient

, N, 0︸︷︷︸
absorbing

,

then Ui,N = G(i) and Ui,0 = 1−G(i), i = 1, 2, . . . , N − 1.

Absorbing DTMCs: Absorption Probability

Example 3.15. Consider a DTMC with TPM

P =


0 1 2 3

0 0.4 0.3 0.2 0.1
1 0.1 0.3 0.3 0.3
2 0 0 1 0
3 0 0 0 1

.

Suppose that the DTMC begins in state 1. What is the probability that the DTMC ultimately ends up in
state 3? How would this probability change if the DTMC begins in state 0 with probability 3/4 and in
state 1 with probability 1/4?

Solution: First, we wish to calculate U1,3. In this example,

Q =
[ 0 1

0 0.4 0.3
1 0.1 0.3

]
, R =

[ 2 3
0 0.2 0.1
1 0.3 0.3

]
, U =

[ 2 3
0 U0,2 U0,3
1 U1,2 U1,3

]
.
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Since U = (I −Q)−1R, we need to find the inverse of

I −Q =
[

0.6 −0.3
−0.1 0.7

]
.

Recall: For a 2× 2 matrix

A =
[
a b
c d

]
=⇒ A−1 = 1

ad− bc

[
d −b
−c a

]
, provided that ad− bc ̸= 0.

Applying this formula, we get:

(I −Q)−1 =
[

70
39

10
13

10
39

20
13

]
.

Therefore,

U = (I −Q)−1R =
[ 2 3

0 23
39

16
39

1 20
39

19
39

]
.

Thus, U1,3 = 19/39 ≃ 0.487. Under the alternative set of conditions, we should calculate:

P(DTMC ultimately ends up in state 3) = P(X0 = 0)P(DTMC ultimately ends up in state 3 |X0 = 0)
+ P(X0 = 1)P(DTMC ultimately ends up in state 3 |X0 = 1)

= 3
4U0,3 + 1

4U1,3

= 3
4 ·

16
39 + 1

4 ·
19
39

= 67
156 ≃ 0.429.

Exercise: Use (3.12) to solve the linear system of equations for U0,3 and U1,3.

An interesting feature of the above methodology is that it can even be used for DTMCs in which the set of
absorbing states are replaced by one or more recurrent classes. The following example demonstrates the basic
idea.

Example 3.16. Consider a DTMC with TPM

P =



0 1 2 3 4
0 0.4 0.3 0.2 0.1 0
1 0.1 0.3 0.3 0.3 0
2 0 0 1 0 0
3 0 0 0 0.7 0.3
4 0 0 0 0.4 0.6

.

Suppose that the DTMC begins in state 1. What is the probability that the DTMC ultimately ends up in
state 3?

Solution: We wish to determine lim
n→∞

P
(n)
1,3 . To do this, let us group states 3 and 4 together as a single
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state, which will be denoted by 3⋆. As a result of this grouping, our revised TPM has the form:

P =


0 1 2 3⋆

0 0.4 0.3 0.2 0.1
1 0.1 0.3 0.3 0.3
2 0 0 1 0

3⋆ 0 0 0 1

,

which is identical to the TPM from Example 3.15. Using the results of Example 3.15, we know that
U1,3⋆ = 19

39 . However, once in state 3⋆, the DTMC will remain in recurrent class {3, 4} with associated
TPM

U =
[ 3 4

3 0.7 0.3
4 0.4 0.6

]
.

For this “smaller” DTMC, the conditions of the BLT are satisfied, meaning that we can determine the
limiting probabilities π3 and π4 by solving:

(π3, π4) = (π3, π4)
[
0.7 0.3
0.4 0.6

]
, subject to π3 + π4 = 1.

This leads to π3 = 4/7 and π4 = 3/7. Thus, it ultimately follows that

lim
n→∞

P
(n)
1,3 = U1,3⋆ · π3 = 19

39 ·
4
7 = 76

273 ≃ 0.278.

Absorbing DTMCs: Mean Absorption Time

Next, for 0 ≤ i ≤ M − 1, let vi = E[T |X0 = i] be the mean absorption time from state i. Once again,
conditioning on the state of the DTMC at time 1, we get

vi = E[T |X0 = i]

=
M−1∑
j=0

E[T |X1 = j, X0 = i]Pi,j +
N∑

j=M

E[T |X1 = j, X0 = i]Pi,j

=
M−1∑
j=0

E[T |X1 = j, X0 = i]Pi,j +
N∑

j=M

1 · Pi,j ,

since T | (X1 = j, X0 = i) is degenerate at 1 for M ≤ j ≤ N . For 0 ≤ j ≤M −1, our previous arguments
lead to

T | (X1 = j, X0 = i) ∼ (1 + Tj) | (X1 = j) ∼ 1 + T | (X0 = j),

which implies that

vi =
M−1∑
j=0

(
1 + E[T |X0 = j]

)
Pi,j +

N∑
j=M

1 · Pi,j

= 1 +
M−1∑
j=0

Pi,jvj

= 1 +
M−1∑
j=0

Qi,jvj . (3.14)
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We have: vi = 1 +
∑M−1

j=0 Qi,jvj ← (3.14). If we now define the M ×1 column vector of mean absorption
times

v⊤ =


v0
v1
...

vM−1

 ,

then (3.14) yields in matrix form
v⊤ = e⊤ + Qv⊤.

Therefore, an explicit (matrix) solution for v⊤ is

v⊤ = (I −Q)−1e⊤.

Example 3.12. (continued) Recall the modified TPM

P ⋆ =


0⋆ 1⋆ 2⋆

0⋆ 1/2 1/3 1/6
1⋆ 0 1 0
2⋆ 0 0 1

.

What is the mean absorption time for this DTMC, given that it begins in state 0⋆?

Solution: Using the matrix equation for v⊤ = [v0⋆ ], we have

v0⋆ = (I −Q)−1e⊤ =
(

1− 1
2

)−1
(1) = 2.

Looking at this particular TPM, given that the DTMC initially begins in state 0⋆, each transition will
return to state 0⋆ with probability of 1/2, or become absorbed into one of the two absorbing states with
probability 1/3 + 1/6 = 1/2. Therefore, the number of transitions required for absorption to occur simply
follows a geometric distribution, namely

T | (X0 = 0⋆) ∼ GEOt

(
1
2

)
=⇒ E[T |X0 = 0⋆] = 1

1/2 = 2.

Example 3.15. (continued) If the DTMC with TPM

P =


0 1 2 3

0 0.4 0.3 0.2 0.1
1 0.1 0.3 0.3 0.3
2 0 0 1 0
3 0 0 0 1

,

begins in state 1, how long, on average, does it take to end up in either of states 2 or 3?

Solution: Since we have two transient states, we wish to find v1 where

v⊤ =
[
v0
v1

]
.
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Note that

v⊤ = (I −Q)−1e⊤

=
[

70
39

10
13

10
39

20
13

] [
1
1

]
,

and so
v1 = 10

39 + 20
13 = 70

39 ≃ 1.79.

Absorbing DTMCs: Mean Number of Transient State Visits

As before, assume that X0 = i where 0 ≤ i ≤ M − 1. Let ℓ be a transient state as well, so that
0 ≤ ℓ ≤M − 1. Define the following sequence of indicator rvs {An}∞

n=0 such that

An =
{

0, if Xn ̸= ℓ,

1, if Xn = ℓ.

We are interested in computing the quantity

Wi,ℓ = E

[
T −1∑
n=0

An

∣∣∣∣∣X0 = i

]
,

which represents the mean number of times that state ℓ is visited (including time 0) prior to absorption given
that X0 = i. To begin, note that

Wi,ℓ = E

[
T −1∑
n=0

An

∣∣∣∣∣X0 = i

]

= E

[
A0 +

T −1∑
n=1

An

∣∣∣∣∣X0 = i

]

= E[A0 |X0 = i] + E

[
T −1∑
n=1

An

∣∣∣∣∣X0 = i

]

= 0 · P(A0 = 0 |X0 = i) + 1 · P(A0 = 1︸ ︷︷ ︸
X0=ℓ

|X0 = i) + E

[
T −1∑
n=1

An

∣∣∣∣∣X0 = i

]

= δi,ℓ + E

[
T −1∑
n=1

An

∣∣∣∣∣X0 = i

]
.

To find E
[∑T −1

n=1 An

∣∣∣X0 = i
]
, we condition on the state of the DTMC at time 1 to obtain

E

[
T −1∑
n=1

An

∣∣∣∣∣X0 = i

]
=

M−1∑
j=0

E

[
T −1∑
n=1

An

∣∣∣∣∣X1 = j, X0 = i

]
Pi,j +

N∑
j=M

E

[
T −1∑
n=1

An

∣∣∣∣∣X1 = j, X0 = i

]
Pi,j .

When M ≤ j ≤ N , note that

E

[
T −1∑
n=1

An

∣∣∣∣∣X1 = j, X0 = i

]
= E

[1−1∑
n=1

An

∣∣∣∣∣X1 = j, X0 = i

]
= 0,
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since T | (X1 = j, X0 = i) is degenerate at 1. When 0 ≤ j ≤M − 1, recall that

T | (X1 = j, X0 = i) ∼ (1 + Tj) | (X1 = j)

and
Tj ∼ T | (X0 = j),

where Tj denotes the remaining number of transitions until absorption given that the DTMC is currently
in transient state j. Therefore,

M−1∑
j=0

E

[
T −1∑
n=1

An

∣∣∣∣∣X1 = j, X0 = i

]
Pi,j =

M−1∑
j=0

E

1+Tj−1∑
n=1

An

∣∣∣∣∣∣X1 = j

Pi,j

=
M−1∑
j=0

E

 Tj∑
n=1

An

∣∣∣∣∣∣X1 = j

Pi,j

=
M−1∑
j=0

E

Tj−1∑
m=0

Am+1

∣∣∣∣∣∣X1 = j

Pi,j .

M−1∑
j=0

E

[
T −1∑
n=1

An

∣∣∣∣∣X1 = j, X0 = i

]
Pi,j

=
M−1∑
j=0

E

Tj−1∑
m=0

Am+1

∣∣∣∣∣∣X1 = j

Pi,j

=
M−1∑
j=0

Pi,j E

Tj−1∑
m=0

Am

∣∣∣∣∣∣X0 = j

 due to the stationary assumption

=
M−1∑
j=0

Pi,j E

[
T −1∑
m=0

Am

∣∣∣∣∣X0 = j

]
since Tj | (X0 = j) ∼ T | (X0 = j)

=
M−1∑
j=0

Qi,jWj,ℓ.

Therefore, we ultimately end up with

Wi,ℓ = δi,ℓ +
M−1∑
j=0

Qi,jWj,ℓ, 0 ≤ i, ℓ ≤M − 1. (3.15)

In matrix notation, define the M ×M matrix W = [Wi,ℓ], so that (3.15) in matrix form then becomes

W = I + QW.

Solving for W leads to

W −QW = I

(I −Q)W = I

W = (I −Q)−1.
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Remark: From our earlier result, we recognize that

v⊤ = (I −Q)−1e⊤ = We⊤.

In other words, by summing the rows of W (i.e., adding up the mean number of times each of the individual
transient states is visited), we actually obtain the mean number of transitions to reach absorption.

Absorbing DTMCs: Visitation Probability
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Finally, let us again consider 0 ≤ i, ℓ ≤M − 1 and recall that
fi,ℓ = P(DTMC ever makes a future visit to state ℓ |X0 = i)

= P(Xn = ℓ for some 1 ≤ n ≤ T − 1 |X0 = i).

Using an elementary conditioning argument (as well as the Markov and stationary properties of the
DTMC), note that

Wi,ℓ = E

[
T −1∑
n=0

An

∣∣∣∣∣X0 = i

]

= E

[
T −1∑
n=0

An

∣∣∣∣∣X0 = i, Xn = ℓ for some 1 ≤ n ≤ T − 1
]

︸ ︷︷ ︸
state ℓ is visited possibly at time 0 and then at some point later on

·fi,ℓ

+ E

[
T −1∑
n=0

An

∣∣∣∣∣AnX0 = i, Xn ̸= ℓ for some 1 ≤ n ≤ T − 1
]

︸ ︷︷ ︸
only possible visit to state ℓ is at time 0

·(1− fi,ℓ)

= (δi,ℓ + Wℓ,ℓ) · fi,ℓ + δi,ℓ · (1− fi,ℓ)
= δi,ℓ + Wℓ,ℓfi,ℓ.

This immediately leads to
fi,ℓ = Wi,ℓ − δi,ℓ

Wℓ,ℓ
.

Remark: For ℓ = i, the probability of the DTMC visiting state i in the future (given that X0 = i) is

fi,i = Wi,i − δi,i

Wi,i
= 1− 1

Wi,i
,

where Wi,i is the expected number of visits to state i (including time 0) before absorption. From the above
relation,

Wi,i = 1
1− fi,i

.

However, recall that for transient state i, the random number Mi of future visits to state i, given X0 = i,
has conditional pmf given by (3.4), namely

P(Mi = k |X0 = i) = fk
i,i(1− fi,i), k = 0, 1, 2, . . . ,

which we recognize as the pmf of a GEOf (1− fi,i) rv. Therefore, the expected number of future visits to
state i is

E[Mi |X0 = i] = 1− (1− fi,i)
1− fi,i

= 1
1− fi,i

− 1 = Wi,i − 1,

which is in agreement with the definition of Wi,i, since we count the initial visit to state i occurring at
time 0.

Example 3.15. (continued) Recall the DTMC with TPM

P =


0 1 2 3

0 0.4 0.3 0.2 0.1
1 0.1 0.3 0.3 0.3
2 0 0 1 0
3 0 0 0 1

.

Given X0 = 1, what is the average number of visits to state 0 prior to absorption? Also, what is the
probability that the DTMC ever makes a visit to state 0?
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Solution: First, we wish to find W1,0 where

W =
[ 0 1

0 W0,0 W0,1
1 W1,0 W1,1

]
.

From our earlier calculations,

W = (I −Q)−1

=
[

70
39

10
13

10
39

20
13

]
.

Thus, W1,0 = 10/39 ≃ 0.257. Lastly, we calculate

f1,0 = W1,0 − δ1,0

W0,0
= (10/39)− 0

(70/39) = 10
39 ×

39
70 = 1

7 ≃ 0.143.



Chapter 4

The Exponential Distribution and the
Poisson Process

Week 9
10th to 17th November

4.1 Properties of the Exponential Distribution

Basic Distributional Results
If a rv X has an exponential distribution with parameter λ > 0 (i.e., X ∼ EXP(λ) where λ is often referred to as
the “rate”), then we have the following basic distributional results in place:

• pdf: f(x) = λe−λx, x > 0,
• cdf: F (x) = P(X ≤ x) =

∫ x

0 λe−λy dy = 1− e−λx, x ≥ 0,
• tpf: F̄ (x) = P(X > x) = 1− F (x) = e−λx, x ≥ 0,
• mgf: ϕX(t) = E[etX ] =

∫∞
0 etxλe−λx dx = λ

λ−t

∫∞
0 (λ− t)e−(λ−t)x dx = λ

λ−t , t < λ,
• mean: E[X] = 1/λ,
• variance: Var(X) = 1/λ2.

Minimum of Independent Exponentials

Minimum of Independent Exponentials: Let {Xi}n
i=1 be a sequence of independent rvs where

Xi ∼ EXP(λi), i = 1, 2, . . . , n. Define Y = min{X1, X2, . . . , Xn} to be the smallest order statistic
of {X1, X2, . . . , Xn}. Clearly, Y takes on possible values in the state space S = (0,∞). To determine the
distribution of Y , consider its tpf:

F̄Y (y) = P(Y > y)
= P

(
min{X1, X2, . . . , Xn} > y

)
= P(X1 > y, X2 > y, . . . , Xn > y)
= P(X1 > y)P(X2 > y) · · ·P(Xn > y) by independence
= e−λ1ye−λ2y · · · e−λny provided that y ≥ 0
= e−(−λ1+λ2+···+λn)y︸ ︷︷ ︸

tpf of an EXP
(∑n

i=1
λi

)
rv

, y ≥ 0.

91
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Therefore, Y = min{X1, X2, . . . , Xn} ∼ EXP(
∑n

i=1 λi).

Remark: As a special case of this result, if we additionally assume that X1, X2, . . . , Xn are iid EXP(λ) rvs,
then Y = min{X1, X2, . . . , Xn} ∼ EXP(nλ).

Example 4.1. Let {Xi}n
i=1 be a sequence of independent rvs where Xi ∼ EXP(λi), i = 1, 2, . . . , n.

(a) For j ∈ {1, 2, . . . , n}, determine P
(
Xj = min{X1, X2, . . . , Xn}

)
.

Solution: We wish to determine

P
(
Xj = min{X1, X2, . . . , Xn}

)
= P(Xj < X1, Xj < X2, . . . , Xj < Xn)︸ ︷︷ ︸

(n−1)-fold intersection

=
∫ ∞

0
P(Xj < X1, Xj < X2, . . . , Xj < Xn |Xj = x)λje−λjx dx

=
∫ ∞

0
P(X1 > x, X2 > x, . . . , Xn > x)λje−λjx dx since Xj is independent of {Xi}n

i=1 i ̸= j

=
∫ ∞

0
P(X1 > x)P(X2 > x) · · ·P(Xn > x)λje−λjx dx

=
∫ ∞

0
e−λ1xe−λ2x · · · e−λnxλje−λjx dx

= λj∑n
i=1 λi

∫ ∞

0

( n∑
i=1

λi

)
e−
(∑n

i=1
λi

)
x

︸ ︷︷ ︸
EXP(λ1 + λ2 + · · · + λn) pdf

dx

= λj∑n
i=1 λi

. (4.1)

(b) Show that the condition rv X1 | (X1 < X2 < · · · < Xn) is identically distributed to the rv
min{X1, X2, . . . , Xn}.
Solution: Let Y = X1 | (X1 < X2 < · · · < Xn). The tpf of Y is given by

F̄Y (y) = P(X1 > y |X1 < X2 < · · · < Xn)

= P(y < X1 < X2 < · · · < Xn)
P(X1 < X2 < · · · < Xn) , y ≥ 0. (4.2)

Note that

P(y < X1 < X2 < · · · < Xn)

=
∫ ∞

y

∫ ∞

x1

∫ ∞

x2

· · ·
∫ ∞

xn−1

( n∏
i=1

λie
−λixi

)
dxn · · · dx3 dx2 dx1

=
n−1∏
i=1

λi

∫ ∞

y

e−λ1x1

∫ ∞

x1

e−λ2x2×

×
∫ ∞

x2

e−λ3x3 · · ·
∫ ∞

xn−2

e−λn−1xn−1

∫ ∞

xn−1

λne−λnxn dxn dxn−1 · · · dx3 dx2 dx1

=
∏n−1

i=1 λi∏n−1
i=1 (

∑n
j=i λj)

e−
(∑n

i=1
λi

)
y. (4.3)



CHAPTER 4. THE EXPONENTIAL DISTRIBUTION AND THE POISSON PROCESS 93

Using (4.3), we immediately obtain:

P(X1 < X2 < · · · < Xn) = P(0 < X1 < X2 < · · · < Xn)

=
∏n−1

i=1 λi∏n−1
i=1 (

∑n
j=i λj)

. (4.4)

Therefore, substituting (4.3) and (4.4) into (4.2) yields

F̄Y (y) = e−
(∑n

i=1
λi

)
y, y ≥ 0,

which is the tpf of an EXP
(∑n

i=1 λi

)
rv. Since

min{X1, X2, . . . , Xn} ∼ EXP
( n∑

i=1
λi

)
,

it follows that
Y = X1 | (X1 < X2 < · · · < Xn) ∼ min{X1, X2 . . . , Xn}.

Remarks:
(1) In the case when n = 2, note that the result from part (a) simplifies to become

P
(
X1 = min{X1, X2}

)
= P(X1 < X2) = λ1

λ1 + λ2
,

which agrees with the result of Example 2.11.
(2) Interestingly, looking at the derivation in part (b), we see that

P(X1 < X2 < · · · < Xn)

= λ1

λ1 + λ2 + · · ·+ λn
· λ2

λ2 + λ3 + · · ·+ λn
· · · λn−2

λn−2 + λn−1 + λn
· λn−1

λn−1 + λn

=
n−1∏
i=1

P
(
Xi = min{Xi, Xi+1, . . . , Xn}

)
.

Memoryless Property

Memoryless Property: A rv X is memoryless iff

P(X > y + z |X > y) = P(X > z) ∀y, z ≥ 0.

Note that if we express P(X > y + z | X > y) as P(X − y > z | X > y) and think of X as being the
lifetime of some component, then the memoryless property (or sometimes referred to as the forgetfulness
property) states that the distribution of the remaining lifetime is independent of the time the component
has already lasted.
In other words, such a probability distribution is independent of its history.

An equivalent way to define the memoryless property is given by the following theorem.
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Theorem 4.1. X is memoryless iff P(X > y + z) = P(X > y)P(X > z) ∀y, z ≥ 0.

Proof: ( =⇒ ) Note

P(X > y + z |X > y) = P(X > y + z, X > y)
P(X > y)

= P(X > y + z)
P(X > y) .

If X is memoryless, then

P(X > y + z |X > y) = P(X > z) ∀y, z ≥ 0,

and so

P(X > z) = P(X > y + z)
P(X > y)

P(X > y + z) = P(X > z)P(X > y).

(⇐= ) Conversely, if P(X > y + z) = P(X > y)P(X > z) ∀y, z ≥ 0, then

P(X > y + z |X > y) = P(X > y + z)
P(X > y)

= P(X > y)P(X > z)
P(X > y)

= P(X > z).

By definition, X is memoryless.

This leads to the main result concerning the exponential distribution.

Theorem 4.2. An exponential distribution is memoryless.

Proof: Suppose that X ∼ EXP(λ). For y, z ≥ 0, we have

P(X > y + z) = e−λ(y+z)

= e−λye−λz

= P(X > y)P(X > z).

Thus, by Theorem 4.1, X is memoryless.

The Exponential Distribution

Example 4.2. Suppose that a computer has 3 switches which govern the transfer of electronic im-
pulses. These switches operate simultaneously and independently of one another, with lifetimes that are
exponentially distributed with mean lifetimes of 10, 5, and 4 years, respectively.
(a) What is the probability that the time until the very first switch breakdown exceeds 6 years?

Solution: Let Xi represent the lifetime of switch i, i = 1, 2, 3. We know that Xi ∼ EXP(λi) where
λ1 = 1/10, λ2 = 1/5, and λ3 = 1/4. The time until the 1st breakdown is defined by the rv
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Y = min{X1, X2, X3}. Since the lifetimes are independent of each other,

Y ∼ EXP(λ), λ = 1
10 + 1

5 + 1
4 = 11

20 .

We wish to calculate:
P(Y > 6) = e−(11/20)(6) = e−3.3 ≃ 0.0369.

(b) What is the probability that switch 2 outlives switch 1?
Solution: We simply want to compute

P(X1 < X2) = λ1

λ1 + λ2
= (1/10)

(1/10) + (1/5) = 1
3 ≃ 0.33̄.

(c) What is the probability that switch 1 has the longest lifetime, followed next by switch 3 and then
switch 2?
Solution: We wish to calculate

P(X2 < X3 < X1).

To do so, let Y1 = X2, Y2 = X3, Y3 = X1, so that

Yi ∼ EXP(λ⋆
i ), i = 1, 2, 3,

with λ⋆
1 = 1/5, λ⋆

2 = 1/4, and λ⋆
3 = 1/10. Therefore,

P(X2 < X3 < X1) = P(Y1 < Y2 < Y3)

=
∏3−1

i=1 λ⋆
i∏3−1

i=1 (
∑3

j=i λ⋆
j )

by (4.4)

= (1/5)(1/4)
(1/5 + 1/4 + 1/10)(1/4 + 1/10)

= 1/20
(11/20)(7/20)

= 20
77 ≃ 0.26.

(d) If switch 3 is known to have lasted 2 years, what is the probability it will last at most 3 more years?
Solution: We wish to calculate

P(X3 ≤ 5 |X3 > 2) = 1− P(X3 > 5 |X3 > 2)
= 1− P(X3 > 2 + 3 |X3 > 2)
= 1− P(X3 > 3) due to the memoryless property
= 1− e−(1/4)(3)

= 1− e−0.75 ≃ 0.528.

(e) Considering only switches 1 and 2, what is the expected amount of time until they have both suffered
a breakdown?
Solution: We wish to solve for

E
[
max{X1, X2}

]
.

We note the following useful identity:

min{X1, X2}+ max{X1, X2} = X1 + X2.
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Taking expectations of the above equality, we ultimately obtain:

E
[
max{X1, X2}

]
= E[X1] + E[X2]− E

[
min{X1, X2}

]
= 10 + 5− 1

1/10 + 1/5

= 15− 10
3

= 35
3 ≃ 11.66̄.

Memoryless Property
Remarks:
(1) The exponential distribution is the unique continuous distribution possessing the memoryless property

(incidentally, the geometric distribution is the unique discrete distribution which is memoryless, which is
not all that surprising in light of Exercise 2.2.3).
To prove this statement, suppose that X is a continuous rv satisfying the memoryless property. Let
F̄ (x) = P(X > x), which is a continuous function of x. By Theorem 4.2, it follows that

F̄ (y + z) = F̄ (y)F̄ (z) ∀y, z ≥ 0.

Note that
F̄

(
2
n

)
= F̄

(
1
n

+ 1
n

)
= F̄ 2

(
1
n

)
.

As a result, it immediately follows that F̄ (m/n) = F̄ m(1/n). Furthermore,

F̄ (1) = F̄

(
1
n

+ 1
n

+ · · ·+ 1
n

)
= F̄ n

(
1
n

)
,

or equivalently
F̄

(
1
n

)
=
(
F̄ (1)

)1/n
.

Thus, F̄ (x) =
(
F̄ (1)

)x for all rational values of x, and by the continuity of F̄ (x), this implies that
F̄ (x) =

(
F̄ (1)

)x ∀x ≥ 0. However, note that we can write

F̄ (x) = eln(F̄ (1))x

= ex ln(F̄ (x)) = e−λx,

where λ = − ln
(
F̄ (1)

)
> 0. In other words,

F (x) = P(X ≤ x) = 1− e−λx,

which shows that X is exponentially distributed.
(2) The memoryless property of the exponential distribution even holds in a broader setting. Specifically, if

X ∼ EXP(λ), then
P(X > Y + Z |X > Y ) = P(X > Z), (4.5)

where Y and Z are independently distributed non-negative valued rvs which are both independent of X.
The equality defined by (4.5) is referred to as the generalized memoryless property.
To prove that the above result holds, note that

P(X > Y + Z |X > Y ) = P(X > Y + Z, X > Y )
P(X > Y ) .
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Without loss of generality, assume that Y and Z are independent continuous rvs, so that

P(X > Y + Z, X > Y )

=
∫ ∞

0
P(X > Y + Z, X > Y | Y = y)fY (y) dy

=
∫ ∞

0
P(X > y + Z, X > y)fY (y) dy since X, Y , and Z are independent rvs

=
∫ ∞

0
P(X > y + Z)fY (y) dy

=
∫ ∞

0

(∫ ∞

0
P(X > y + Z | Z = z)fZ(z) dz

)
fY (y) dy

=
∫ ∞

0

(∫ ∞

0
P(X > y + z)fZ(z) dz

)
fY (y) dy since X and Z are independent rvs

=
∫ ∞

0

(∫ ∞

0
e−λ(y+z)fZ(z) dz

)
fY (y) dy

=
∫ ∞

0

(∫ ∞

0
e−λzfZ(z) dz

)
e−λyfY (y) dy

=
∫ ∞

0
P(X > Z)e−λyfY (y) dy

= P(X > Z)
∫ ∞

0
e−λyfY (y) dy

= P(X > Z)P(X > Y ),

since we have for independent continuous rvs Y (and similarly for Z)

P(X > Y ) =
∫ ∞

0
P(X > y)fY (y) dy =

∫ ∞

0
e−λyfY (y) dy.

Thus,

P(X > Y + Z |X > Y ) = P(X > Y + Z, X > Y )
P(X > Y ) = P(X > Z)P(X > Y )

P(X > Y ) = P(X > Z).

(3) The generalized memoryless property implies that (X − Y ) | (X > Y ) ∼ EXP(λ) regardless of the
distribution Y . To see this, let Z be a rv with a degenerate distribution at z. In this case, (4.5) becomes

P(X > Y + z |X > Y ) = P(X > z) = e−λz,

since X ∼ EXP(λ). Thus,
P(X − Y > z |X > Y ) = e−λz,

and so
(X − Y ) | (X > Y ) ∼ EXP(λ).

The Exponential Distribution

Example 4.3. Let X1 and X2 be independent rvs where Xi ∼ EXP(λi), i = 1, 2. Given X1 < X2, show
that X1 and X2 −X1 are conditionally independent rvs.
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Solution: Consider the following conditional joint cdf:

P(X1 ≤ x, X2 −X1 ≤ y |X1 < X2) = P(X1 ≤ x, X2 −X1 ≤ y, X1 < X2)
P(X1 < X2)

= P(X1 ≤ x, X1 ≥ X2 − y, X1 < X2)
P(X1 < X2)

= P(X1 ≤ x, X1 ≥ X2 − y, X1 < X2)
λ1

λ1+λ2

= λ1 + λ2

λ1
P(X1 ≤ x, X1 ≥ X2 − y, X1 < X2)

= λ1 + λ2

λ1
P
(
X2 − y ≤ X1 ≤ min{x, X2}

)
, ∀x, y ≥ 0.

Suppose that x ≤ y. It follows that

P
(
X2 − y ≤ X1 ≤ min{x, X2}

)
=
∫ ∞

0
P
(
X2 − y ≤ X1 ≤ min{x, X2}

∣∣X2 = w
)
fX2(w) dw

=
∫ ∞

0
P
(
w − y ≤ X1 ≤ min{x, w}

)
fX2(w) dw since X1 and X2 are independent

=
∫ x

0
P
(
w − y︸ ︷︷ ︸

<0

≤ X1 ≤ min{x, w}︸ ︷︷ ︸
=w

)
fX2(w) dw +

∫ y

x

P
(
w − y︸ ︷︷ ︸

<0

≤ X1 ≤ min{x, w}︸ ︷︷ ︸
=x

)
fX2(w) dw

+
∫ y+x

y

P
(
w − y︸ ︷︷ ︸

>0

≤ X1 ≤ min{x, w}︸ ︷︷ ︸
=x

)
fX2(w) dw +

∫ ∞

y+x

P
(
w − y︸ ︷︷ ︸

>x

≤ X1 ≤ min{x, w}︸ ︷︷ ︸
=x

)
︸ ︷︷ ︸

=0

fX2(w) dw

=
∫ x

0
P(X1 ≤ w)λ2e−λ2w dw + P(X2 ≤ x)

∫ y

x

λ2e−λ2w dw

+
∫ y+x

y

[
P(X1 > w − y)− P(X1 > x)

]
λ2e−λ2w dw

=
∫ x

0
(1− e−λ1w)λ2e−λ2w dw + (1− e−λ1x)(e−λ2x − e−λ2y) +

∫ y+x

y

(e−λ1(w−y) − e−λ1x)λ2e−λ2w dw

= λ1

λ1 + λ2

(
1− e−λ2y − e−(λ1+λ2)x + e−λ2ye−(λ1+λ2)x

)
. (4.6)

Similarly, it can be shown that (4.6) also holds true in the case when y ≤ x (Exercise 4.1.2). Therefore,
in general, we have:

P(X1 ≤ x, X2 −X1 ≤ y |X1 < X2) = λ1 + λ2

λ1
· λ1

λ1 + λ2

(
1− e−λ2y − e−(λ1+λ2)x + e−λ2ye−(λ1+λ2)x

)
= 1− e−λ2y − e−(λ1+λ2)x + e−λ2ye−(λ1+λ2)x

= (1− e−(λ1+λ2)x)(1− e−λ2y)
= P(X1 ≤ x |X1 < X2)P(X2 −X1 ≤ y |X1 < X2), ∀x, y ≥ 0,

where we applied the result of Example 4.1 (b) (i.e., X1 | (X1 < X2) ∼ min{X1, X2}) and the
(generalized) memoryless property (i.e., (X2 − X1) | (X2 > X1) ∼ X2) to obtain the last equality.
Thus, by definition, X1 and X2 −X1 are conditionally (given X1 < X2) independent rvs.
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The Erlang Distribution

The Erlang Distribution: Recall that if X ∼ Erlang(n, λ) where n ∈ Z+ and λ > 0, then its pdf is of the
form

f(x) = λnxn−1e−λx

(n− 1)! , x > 0.

Letting n = 1, then above pdf simplifies to become f(x) = λe−λx, x > 0, which is the EXP(λ) pdf. To
obtain the corresponding cdf of an Erlang(n, λ) rv, we consider

F (x) = P(X ≤ x) =
∫ x

0

λnyn−1e−λy

(n− 1)! dy = λn

(n− 1)!

∫ x

0
yn−1e−λy dy, x ≥ 0.

We have: F (x) = λn

(n−1)!
∫ x

0 yn−1e−λy dy. Assume that n ≥ 2 and apply integration by parts, that is,∫
u dv = uv −

∫
v du,

to the above integral. In particular, choose

u = yn−1 =⇒ du

dy
= (n− 1)yn−2 =⇒ du = (n− 1)yn−2 dy,

and
dv = e−λy dy =⇒

∫
1 dv =

∫
e−λy dy =⇒ v = − 1

λ
e−λy,

so that ∫ x

0
yn−1e−λy dy =

[
− 1

λ
yn−1e−λy

]y=x

y=0
+ (n− 1)

λ

∫ x

0
yn−2e−λy dy

= − 1
λ

xn−1e−λx + (n− 1)
λ

∫ x

0
yn−2e−λy dy.

Therefore,

F (x) = λn

(n− 1)!

(
− 1

λ
xn−1e−λx + (n− 1)

λ

∫ x

0
yn−2e−λy dy

)
= λn−1

(n− 2)!

∫ x

0
yn−2e−λy dy − (λx)n−1

(n− 1)! e−λx.

If we continue to apply integration by parts until the “y-term” in the integrand has a power of zero, then
it is possible to show that

F (x) = 1− e−λx
n−1∑
j=0

(λx)j

j! , x ≥ 0. (4.7)

Remark: Substituting n = 1 into (4.7), we immediately obtain

F (x) = 1− e−λx
1−1∑
j=0

(λx)j

j! = 1− e−λx, x ≥ 0,

which is clearly the cdf of an EXP(λ) rv.
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To determine the mgf of X ∼ Erlang(n, λ), we consider

ϕX(t) =
∫ ∞

0
etx · λnxn−1e−λx

(n− 1)! dx

= λn

(n− 1)!

∫ ∞

0
xn−1e−λ̃x dx where we define λ̃ = λ− t

= λn

λ̃n

∫ ∞

0

λ̃nxn−1e−λ̃x

(n− 1)!︸ ︷︷ ︸
Erlang(n, λ̃) pdf

dx provided that λ̃ = λ− t > 0

=
(

λ

λ− t

)n

, t < λ.

However, note that
ϕX(t) =

(
λ

λ− t

)n

=
n∏

i=1

(
λ

λ− t

)
, t < λ,

is the product of n terms, where each term is the mgf of an EXP(λ) rv. Let {Yi}n
i=1 be the iid sequence of

EXP(λ) rvs, with ϕYi
(t) = λ

λ−t , t < λ, for i = 1, 2, . . . , n. Since ϕX(t) =
∏n

i=1 ϕYi
(t), it follows that an

Erlang distribution can be viewed as the distribution of a sum of iid exponential rvs. As a result, the mean,
and variance of an Erlang(n, λ) rv X are simply obtained as

E[X] = E

[
n∑

i=1
Yi

]
=

n∑
i=1

E[Yi] = n

λ

and
Var(X) = Var

( n∑
i=1

Yi

)
=

n∑
i=1

Var(Yi) = n

λ2 .

Week 10
17th to 24th November

4.2 The Poisson Process

Counting Process

Definition: A counting process
{

N(t), t ≥ 0
}
is a stochastic process in which N(t) represents the number

of events that happen (or occur) by time t, where the index t measures time over a continuous range.
Some examples of counting processes

{
N(t), t ≥ 0

}
might include:

(1) N(t) represents the number of automobile accidents at a specified intersection by week t,
(2) N(t) represents the number of births by year t in Canada,
(3) N(t) represents the number of visits to a particular webpage by time t,
(4) N(t) represents the number of customers who enter a store by time t,
(5) N(t) represents the number of accident claims reported to an insurance company by time t.

Basic Properties of Counting Processes:
(1) N(0) = 0.
(2) N(t) is a non-negative integer ∀t ≥ 0 (i.e., N(t) ∈ N ∀t ≥ 0).
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(3) If s < t, then N(s) ≤ N(t).
(4) N(t)−N(s) counts the number of events to occur in the time interval (s, t] for s < t.

Independent and Stationary Increments
We now introduce two important properties associated with counting processes.

Definition: A counting process
{

N(t), t ≥ 0
}
has independent increments if N(t1)−N(s1) is independent

of N(t2)−N(s2) whenever (s1, t1] ∩ (s2, t2] = ∅ for all choices of s1, t1, s2, t2 (i.e., the number of events
in non-overlapping time intervals are assumed to be independent of each other).

Definition: A counting process
{

N(t), t ≥ 0
}
has stationary increments if the distribution of the number

of events in (s, s + t] (i.e., N(s + t)−N(s)) depends only on t, the length of the time interval. In this
case, N(s + t)−N(s) has the same probability distribution as N(0 + t)−N(0) = N(t), the number of
events occurring in the interval [0, t].

Remark: As the diagram below indicates, the assumption of stationary and independent increments is
essentially equivalent to stating that, at any point in time, the process

{
N(t), t ≥ 0

}
probabilistically restarts

itself.

0
Time

Future Evolution of the Process

“New” Time 0

Some Arbitrary Point in Time

Now Irrelevant

o(h) Function
Before introducing the formal definition of a Poisson process, we first introduce a few mathematical tools which
are needed.

Definition: A function y = f(x) is said to be “o(h)” (i.e., of order h) if

lim
h→0

f(h)
h

= 0.

Remark: An o(h) function y = f(x) is one in which f(h) approaches 0 faster than h does.

Examples:
(1) y = f(x) = x. Note that

lim
h→0

f(h)
h

= lim
h→0

h

h
= lim

h→0
1 ̸= 0.

Thus, y = x is not of order h.
(2) y = f(x) = x2. Note that

lim
h→0

f(h)
h

= lim
h→0

h2

h
= lim

h→0
h = 0.



CHAPTER 4. THE EXPONENTIAL DISTRIBUTION AND THE POISSON PROCESS 102

Thus, y = x2 is of order h. In fact, the function of the form y = xr is clearly of order h provided
that r > 1.

(3) Suppose that
{

fi(x)
}n

i=1 is a sequence of o(h) functions. Consider the linear combination of o(h)
functions, namely y =

∑n
i=1 cifi(x), and note that

lim
h→0

∑n
i=1 cifi

h
=

n∑
i=1

ci lim
h→0

fi(h)
h︸ ︷︷ ︸

=0

= 0.

Thus, a linear combination of o(h) functions is still of order h.
Remark: In most cases, this result is actually true when n =∞.

Poisson Process

Definition: A counting process
{

N(t), t ≥ 0
}
is said to be a Poisson process at rate λ if the following three

conditions hold true:
(1) The process has both independent and stationary increments.
(2) For h > 0, P

(
N(h) = 1

)
= λh + o(h).

(3) For h > 0, P
(
N(h) ≥ 2

)
= o(h).

Remarks:
(1) Condition (2) in the above definition implies that in a “small” interval of time, the probability of a

single event occurring is essentially proportional to the length of the interval.
(2) Condition (3) in the above definition implies that two or more events occurring in a “small” interval

of time is rare.
(3) Conditions (2) and (3) yield

P
(
N(h) = 0

)
= 1− P

(
N(h) > 0

)
= 1− P

(
N(h) = 1

)
− P

(
N(h) ≥ 2

)
= 1−

(
λh + o(h)

)
− o(h)

= 1− λh− o(h)− o(h)
= 1− λh + o(h).

Ultimately, for a Poisson process
{

N(t), t ≥ 0
}
at rate λ, we would like to know the distribution of the rv

N(s + t)−N(s), representing the number of events occurring in the interval (s, s + t], s, t ≥ 0. Since a Poisson
process has stationary increments, this rv has the same probability distribution as N(t). The following theorem
specifies the distribution of N(t).

Theorem 4.3. If
{

N(t), t ≥ 0
}
is a Poisson process at rate λ, then N(t) ∼ POI(λt).

Proof: For t ≥ 0, let
ϕt(u) = E[euN(t)]︸ ︷︷ ︸

mgf of N(t)

.
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For h ≥ 0, consider

ϕt+h(u) = E[euN(t+h)]

= E[eu
(

N(t+h)−N(t)+N(t)
)
]

= E[eu
(

N(t+h)−N(t)
)
euN(t)]

= E[eu
(

N(t+h)−N(t)
)
]E[euN(t)] due to independent increments

= E[euN(h)]E[euN(t)] due to stationary increments
= ϕt(u)ϕh(u). (4.8)

Note that for j ≥ 2,

0 ≤ P
(
N(h) = j

)
≤ P

(
N(h) ≥ 2

)
=⇒ 0 ≤

P
(
N(h) = j

)
h

≤
P
(
N(h) ≥ 2

)
h

.

Letting h→ 0, we obtain:

0 ≤ lim
h→0

P
(
N(h) = j

)
h

≤ lim
h→0

P
(
N(h) ≥ 2

)
h

= 0,

since P
(
N(h) ≥ 2

)
is an o(h) function by condition (3). Therefore, by the Squeeze Theorem

P
(
N(h) = j

)
h

= 0 =⇒ P
(
N(h) = j

)
is of order h for j ≥ 2.

Using this result, we obtain

ϕh(u) = E[euN(h)]

=
∞∑

j=0
euj · P

(
N(h) = j

)
= eu(0) P

(
N(h) = 0

)
+ eu(1) P

(
N(h) = 1

)
+

∞∑
j=2

euj P
(
N(h) = j

)
=
(
1− λh + o(h)

)
+ eu

(
λh + o(h)

)
+

∞∑
j=2

cj P
(
N(h) = j

)
︸ ︷︷ ︸

=o(h)

where cj = euj

= 1− λh + euλh + o(h).

Returning to (4.8), we now have

ϕt+h(u) = ϕt(u)
(
1− λh + euλh + o(h)

)
= ϕt(u)− λhϕt(u) + euλhϕt(u) + o(h)

ϕt+h(u)− ϕt(u) = λhϕt(u)(eu − 1) + o(h)
ϕt+h(u)− ϕt(u)

h
= λhϕt(u)(eu − 1)

h
+ o(h)

h
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Letting h→ 0, we obtain:

lim
h→0

ϕt+h(u)− ϕt(u)
h

= lim
h→0

λ(eu − 1)ϕt(u) + lim
h→0

o(h)
h

d
dt

ϕt(u) = λ(eu − 1)ϕt(u)

d
ds

ϕs(u) = λ(eu − 1)ϕs(u) let t = s

d
ds ϕs(u)
ϕs(u) = λ(eu − 1)

d
ds

ln
(
ϕs(u)

)
= λ(eu − 1)

d
(

ln
(
ϕs(u)

))
= λ(eu − 1) ds∫ t

0
d
(

ln
(
ϕs(u)

))
=
∫ t

0
λ(eu − 1) ds[

ln
(
ϕs(u)

)]s=t

s=0
= λ(eu − 1)t

ln
(
ϕt(u)

)
− ln

(
ϕ0(u)

)
= λ(eu − 1)t.

Recall:

ϕ0(u) = E[eu

=0︷ ︸︸ ︷
N(0)] = 1.

It follows that

ln
(
ϕt(u)

)
= λ(eu − 1)t

ϕt(u) = eλ(eu−1)t

= eλt(eu−1), u ∈ R.

We recognize this function as the mgf of a POI(λt) rv. By the mgf uniqueness property, N(t) ∼ POI(λt).

Remark: As a direct consequence of Theorem 4.3, for all s, t ≥ 0, we have

P
(
N(s + t)−N(s) = k

)
= P

(
N(t) = k

)
= e−λt(λt)k

k! , k = 0, 1, 2, . . . .

Interarrival Times

Interarrival Times: Define T1 to be the elapsed time (from time 0) until the first event occurs. In general,
for i ≥ 2, let Ti be the elapsed time between the occurrences of the (i− 1)th event and the ith event. The
sequence {Ti}∞

i=1 is called the interarrival or interevent time sequence. The diagram below depicts the
relationship between N(t) and {Ti}∞

i=1.

A very important result linking a Poisson process to its interarrival time sequence now follows.

Theorem 4.4. If
{

N(t), t ≥ 0
}
is a Poisson process at rate λ > 0, then {Ti}∞

i=1 is a sequence of iid EXP(λ)
rvs.
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Proof: We begin by considering the rv T1. For t ≥ 0, note that

P(T1 > t) = P(no events occur before time t)
= P

(
N(t) = 0

)
= e−λt(λt)0

0!
= e−λt,

which is the tpf an EXP(λ) rv. Thus, T1 ∼ EXP(λ). Next, for s > 0, and t ≥ 0, consider

P(T2 > t | T1 = s) = P
(
T2 > t

∣∣N(w) = 0 ∀w ∈ [0, s) and N(s) = 1
)

= P
(
no events occur in (s, s + t]︸ ︷︷ ︸

N(s+t)−N(s)=0

∣∣N(w) = 0 ∀w ∈ [0, s) and N(s) = 1
)

= P
(
N(s + t)−N(s) = 0

)
due to independent increments

= P
(
N(t) = 0

)
due to stationary increments

= e−λt,

which is independent of s. Thus, T1 and T2 are independent rvs and

P(T2 > t) = P(T2 > t | T1 = s)
= e−λt,

implying that T2 ∼ EXP(λ). Carrying out this process inductively, this desired result is established.

Waiting Times

For n ∈ Z+, define Sn to be the total elapsed time until the nth event occurs. In other words, Sn denotes
the arrival time of the nth event, or the waiting time until the nth event occurs. Clearly, Sn =

∑n
i=1 Ti.

If
{

N(t), t ≥ 0
}
is a Poisson process at rate λ, then {Ti}∞

i=1 is a sequence of iid EXP(λ) rvs by Theorem
4.4, implying that

Sn =
n∑

i=1
Ti ∼ Erlang(n, λ).

From our earlier results on the Erlang distribution, we have E[Sn] = n/λ, Var(Sn) = n/λ2, and

P(Sn > t) = e−λt
n−1∑
j=0

(λt)j

j! , t ≥ 0.

Remarks:
(1) The above formula for the tpf of Sn could have been obtained without reference to the Erlang
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distribution. In particular, note that

P(Sn > t) = P(arrival time of the nth event occurs after time t)
= P(at most n− 1 events occur by time t)
= P

(
N(t) ≤ n− 1

)
=

n−1∑
j=0

e−λt(λt)j

j! since N(t) ∼ POI(λt)

= e−λt
n−1∑
j=0

(λt)j

j! .

(2) If {Xi}∞
i=1 represents an iid sequence of EXP(λ) rvs and one constructs a counting process

{
N(t), t ≥

0
}
defined by N(t) = max{n ∈ N :

∑n
i=1 Xi ≤ t}, then

{
N(t), t ≥ 0

}
is actually a Poisson process

at rate λ. In other words,
{

N(t), t ≥ 0
}
has both independent and stationary increments (due to

the memoryless property that the sequence of rvs {Xi}∞
i=1 processes), in addition to the fact that

P
(
N(t) ≤ k

)
= P

(k+1∑
i=1

Xi > t

)
= e−λt

k∑
j=0

(λt)j

j! since
k+1∑
i=1
∼ Erlang(k + 1, λ),

which subsequently leads to

P
(
N(t) = k

)
= P

(
N(t) ≤ k

)
− P

(
N(t) ≤ k − 1

)
= e−λt

k∑
j=0

(λt)j

j! − e−λt
k−1∑
j=0

(λt)j

j!

= e−λt(λt)k

k! , k = 0, 1, 2, . . . .

Poisson Process

Example 4.4. At a local insurance company, suppose that fire damage claims come into the company
according to a Poisson process at rate 3.8 expected claims per year.
(a) What is the probability that exactly 5 claims occur in the time interval (3.2, 5] (measured in years)?

Solution: Let N(t) be the number of claims arriving to the company in the interval [0, t]. Since{
N(t), t ≥ 0

}
is a Poisson process with λ = 3.8, we want to find

P
(
N(5)−N(3.2) = 5

)
=

e−3.8(1.8)(3.8(1.8)
)5

5! ≃ 0.134.

(b) What is the probability that the time between the 2nd and 4th claims is between 2 and 5 months?
Solution: Let T be the time between the 2nd and 4th claims. Thus, T = T3 +T4 where Ti ∼ EXP(3.8)
for i = 3, 4. Since T3 and T4 are independent rvs, we have T ∼ Erlang(2, 3.8). Recall that

P(T > t) = e−3.8t
2−1∑
j=0

(3.8t)j

j!

= e−3.8t(1 + 3.8t), t ≥ 0.
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We wish to calculate

P
(

1
6 < T <

5
12

)
= P

(
T >

1
6

)
− P

(
T >

5
12

)
≃ 0.337.

Week 11
1124 to 1st December

4.3 Further Properties of the Poisson Process
In this section, we shed further light on a number of interesting and important mathematical properties associated
with the Poisson process. To begin with, the binomial distribution also arises in the context of Poisson processes,
as the following theorem establishes.

Connection to Binomial Distribution

Theorem 4.5. If
{

N(t), t ≥ 0
}
is a Poisson process at rate λ, then

N(s) |
(
N(t) = n

)
∼ BIN(n, s/t), s < t.

Proof: We wish to determine the conditional distribution of N(s) |
(
N(t) = n

)
for s < t. Clearly,

N(s) |
(
N(t) = n

)
takes on values in the set {0, 1, 2, . . . , n}. Therefore, for m = 0, 1, 2, . . . , n, note that

P
(
N(s) = m

∣∣N(t) = n
)

=
P
(
N(s) = m, N(t) = n

)
P
(
N(t) = n

)
=

P
(
N(s) = m, N(t)−N(s) + N(s) = n

)
P
(
N(t) = n

)
=

P
(
N(s) = m, N(t)−N(s) = n−m

)
P
(
N(t) = n

)
=

P
(
N(s) = m

)
P
(
N(t)−N(s) = n−m

)
P
(
N(t) = n

) by independent increments

=
e−λs(λs)m

m! · e−λ(t−s)(λ(t−s))n−m

(n−m)!
e−λt(λt)n

n!

=
(

n

m

) (λs)m
(
λ(t− s)

)n−m

(λt)m(λt)n−m

=
(

n

m

)(
s

t

)m(
1− s

t

)n−m

,

which we recognize as the pmf of a BIN(n, s/t) rv.

Comparison of Event Occurrences

Suppose now that
{

N1(t), t ≥ 0
}
and

{
N2(t), t ≥ 0

}
are independent Poisson processes at rates λ1 and

λ2, respectively. Let S
(1)
m be the arrival time of the mth event for

{
N1(t), t ≥ 0

}
. Likewise, let S

(2)
n be the

arrival time of the nth event for
{

N2(t), t ≥ 0
}
.
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Based on our knowledge of arrival times, we know that S
(1)
m =

∑m
i=1 T

(1)
i where {T (1)

i }∞
i=1 is a sequence of

iid EXP(λ1) rvs. Similarly, S
(2)
n =

∑n
j=1 T

(2)
j where {T (2)

j }∞
j=1 is a sequence of iid EXP(λ2) rvs. Moreover,

the sequences {T (1)
i }∞

i=1 and {T (2)
j }∞

j=1 are independent.
We are interested in the probability that the mth event from the first process happens before the nth event
of the second process, or equivalently, P(S(1)

m < S
(2)
n ).

Before looking at the general case, let us first examine a couple of special cases:
• Take m = n = 1:

P(S(1)
1 < S

(2)
1 ) = P(T (1)

1 < T
(2)
1 ) = λ1

λ1 + λ2
.

• Take m = 2, n = 1:

P(S(1)
2 < S

(2)
1 ) = P(T (1)

1 < T
(2)
1 )P(S(1)

2 < S
(2)
1 | T (1)

1 < T
(2)
1 )

+ P(T (1)
1 > T

(2)
1 )P(S(1)

2 < S
(2)
1 | T (1)

1 > T
(2)
1 )︸ ︷︷ ︸

=0

= P(T (1)
1 < T

(2)
1 )P(T (1)

1 + T
(1)
2 < T

(2)
1 | T (1)

1 < T
(2)
1 )

= P(T (1)
1 < T

(2)
1 )P(T (2)

1 − T
(1)
1 < T

(1)
2 | T (1)

1 < T
(2)
1 )

= P(T (1)
1 < T

(2)
1 )P(T (2)

1 > T
(1)
2 ) due to the generalized memoryless property

=
(

λ1

λ1 + λ2

)(
λ1

λ1 + λ2

)
=
(

λ1

λ1 + λ2

)2
.

In the general case, we realize, through the continued application of the memoryless property, that
P(S(1)

m < S
(1)
n ) is equivalent to the probability of observing m “successes” (where the success probability

is λ1/(λ1 + λ2)) occur before the n “failures” (where the failure probability is λ2/(λ1 + λ2)) in a sequence
of independent Bernoulli trials.
Specifically, in a sequence of m + j Bernoulli trials (in which m are “successes” and j are “failures”), the
(m + j)th trial must always be a “success” (i.e., the mth one) and the number of “failures” j must be no
larger than n− 1, which ultimately leads to

P(S(1)
m < S(1)

n ) =
n−1∑
j=0

(
m + j − 1

m− 1

)(
λ1

λ1 + λ2

)m(
λ2

λ1 + λ2

)j

. (4.9)

Further Properties of the Poisson Process

Example 4.4. (continued) At a local insurance company, suppose that fire damage claims come into the
company according to a Poisson process at rate 3.8 expected claims per year.
(c) If exactly 12 claims have occurred within the first 5 years, how many claims, on average, occurred

within the first 3.5 years? How would this change if no claim history of the first 5 years was given?
Solution: We want to calculate E

[
N(3.5)

∣∣N(5) = 12
]
. Using the binomial result of Theorem 4.5



CHAPTER 4. THE EXPONENTIAL DISTRIBUTION AND THE POISSON PROCESS 109

with s = 3.5, t = 5, and n = 12, we obtain

E
[
N(3.5)

∣∣N(5) = 12
]

= 12
(

3.5
5

)
= 42

5 = 8.4.

On the other hand,
E
[
N(3.5)

]
= (3.8)(3.5) = 13.3 ̸= 8.4,

implying that conditioning on knowledge of N(5) does affect the mean of N(3.5).
(d) At another competing insurance company, suppose that fire damage claims arrive to the company

according to a Poisson process with rate 2.9 expected claims per year. What is the probability that 3
claims arrive to this company before 2 claims arrive to the other (first) company? Assume that the
insurance companies operate independently of each other.
Solution: Let N1(t) denote the number of claims arriving to the first company by time t, whereas
N2(t) denotes the number of claims arriving to this new (second) company by time t. We are
assuming that

{
N1(t), t ≥ 0

}
(i.e., a Poisson process with rate λ1 = 3.8) and

{
N2(t), t ≥ 0

}
(i.e., a

Poisson process with rate λ2 = 2.9) are independent processes. Using (4.9), we are able to calculate

P(3 claims arrive to company 2 before 2 claims arrive to company 1)

= P(S(2)
3 < S

(1)
2 )

= 1− P(S(1)
2 < S

(2)
3 )

= 1−
3−1∑
j=0

(
2 + j − 1

2− 1

)(
3.8

3.8 + 2.9

)2( 2.9
3.8 + 2.9

)j

≃ 0.219.

Splitting and Merging Poisson Processes

The next property we examine concerns the classification (i.e., splitting) of events from a Poisson process
into (potentially) several types.
For a Poisson process

{
N(t), t ≥ 0

}
at rate λ, suppose that events can independently be classified as being

one of the k possible types, with probability pi of being type i, i = 1, 2, . . . , k, with∑k
i=1 pi = 1.

Let
{

Ni(t), t ≥ 0
}
be the associated counting process for type-i events, i = 1, 2, . . . , k. Clearly, by

construction,∑k
i=1 Ni(t) = N(t).

First, for s, t ≥ 0 and i = 1, 2, . . . , k, note that

P
(
Ni(s + t)−Ni(s) = mi

)
=

∞∑
n=mi

P
(
Ni(s + t)−Ni(s) = mi

∣∣N(s + t)−N(s) = n
)
P
(
N(s + t)−N(s) = n

)
=

∞∑
n=mi

(
n

mi

)
pmi

i (1− pi)n−mi P
(
N(t) = n

)
by the stationary increments property of

{
N(t), t ≥ 0

}
=

∞∑
n=mi

P
(
Ni(t) = mi

∣∣N(t) = n
)
P
(
N(t) = n

)
= P

(
Ni(t) = mi

)
,
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which proves that
{

Ni(t), t ≥ 0
}
also has the stationary increments property.

Next, suppose that (s1, t1] and (s2, t2] are non-overlapping time intervals.
For i = 1, 2, . . . , k, note that by the independent increments property of

{
N(t), t ≥ 0

}
, the number of

events in each of these time intervals, N(t1)−N(s1) and N(t2)−N(s2), are independent.
Therefore, in combination with the fact that the classification of each event is an independent process, it
must hold that the number of type-i events to occur in these intervals, Ni(t1)−Ni(s1) and Ni(t2)−Ni(s2),
are also independent, implying that

{
Ni(t), t ≥ 0

}
possesses the independent increments property too.

Finally, consider

P
(
N1(t) = m1, N2(t) = m2, . . . , Nk(t) = mk

)
=

∞∑
n=0

P
(
N1(t) = m1, N2(t) = m2, . . . , Nk(t) = mk

∣∣N(t) = n
)
P
(
N(t) = n

)
= P

(
N1(t) = m1, N2(t) = m2, . . . , Nk(t) = mk

∣∣∣∣N(t) =
k∑

j=1
mj

)
︸ ︷︷ ︸

MN
(∑k

j=1
mj ,p1,p2,...,pk

)
probability

P
(

N(t) =
k∑

j=1
mj

)

= (m1 + m2 + · · ·+ mk)!
m1!m2! · · ·mk! pm1

1 pm2
2 · · · pmk

k

e−λt(λt)m1+m2+···+mk

(m1 + m2 + · · ·+ mk)!

=
(

e−λp1t(λp1t)m1

m1!

)(
e−λp2t(λp2t)m2

m2!

)
· · ·
(

e−λpkt(λpkt)mk

mk!

)
=

k∏
i=1

P
(
Ni(t) = mi

)
.

Thus, N1(t), N2(t), . . . , Nk(t) are independent Poisson random variables.
As a result, we have

P
(
Ni(h) = 1

)
= e−λpih(λpih)1

1!

= λpih

∞∑
j=0

(−λpih)j

j!

= λpih(1− λpih + o(h))
= λpih + o(h),

P
(
Ni(h) ≥ 2

)
= 1− P

(
Ni(h) = 0

)
− P(Ni(h) = 1)

= 1− e−λpih(λpih)0

0! − λpih− o(h)

= 1−
(
1− λpih + o(h)

)
− λpih− o(h)

= o(h).

By definition, we have shown that
{

N1(t), t ≥ 0
}

,
{

N2(t), t ≥ 0
}

, . . . ,
{

Nk(t), t ≥ 0
}
are independent

Poisson processes in which
{

Ni(t), t ≥ 0
}
has rate λpi, i = 1, 2, . . . , k.
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Example 4.4. (continued) At a local insurance company, suppose that fire damage claims come into the
company according to a Poisson process at rate 3.8 expected claims per year.
(e) Suppose that fire damage claims can be categorized as being either commercial, business, or

residential. At the first insurance company, past history suggests that 15% of the claims are
commercial, 25% of them are business, and the remaining 60% are residential. Over the course of
the next 4 years, what is the probability that the company experiences fewer than 5 claims in each
of the 3 categories?
Solution: Let Nc(t) be the number of commercial claims by time t. Likewise, let Nb(t) and Nr(t)
represent the number of business and residential claims by time t, respectively. It follows that:

Nc(4) ∼ POI(3.8 · 0.15 · 4 = 2.28),
Nb(4) ∼ POI(3.8 · 0.25 · 4 = 3.8),
Nr(4) ∼ POI(3.8 · 0.6 · 4 = 9.12).

We wish to calculate

P
(
Nc(4) < 5, Nb(4) < 5, Nr(4) < 5

)
= P

(
Nc(4) < 5

)
P
(
Nb(4) < 5

)
P
(
Nr(4) < 5

)
since Nc(4), Nb(4), and Nr(4) are independent

=
( 4∑

i=0

e−2.28(2.28)i

i!

)( 4∑
i=0

e−3.8(3.8)i

i!

)( 4∑
i=0

e−9.12(9.12)i

i!

)
≃ (0.91857)(0.66784)(0.05105)
≃ 0.0313.

Remark: It is also possible to merge independent Poisson processes together. In particular, if
{

N1(t), t ≥
0
}

,
{

N2(t), t ≥ 0
}

, . . . ,
{

Nm(t), t ≥ 0
}
are m independent Poisson processes at respective rates λ1, λ2, . . . , λm,

then it is straightforward to show that
{

N(t), t ≥ 0
}
, where N(t) =

∑m
i=1 Ni(t), is also a Poisson process at

rate∑m
i=1 λi.

Conditional Distribution of Arrival Times
Theorem 4.5 indicated that the conditional distribution of N(s) |

(
N(t) = n

)
, where s < t is Binomial with n

trials and success probability s/t. In other words, it is possible to view each event that occurred within [0, t] as
being independent of the others, and the probability of any one event landing within the interval [0, s] as being
governed by the cdf of a U(0, t) rv evaluated at s. The idea that we can view s/t as a uniform probability is no
coincidence. In fact, the following result confirms this notion.

Theorem 4.6. Suppose that
{

N(t), t ≥ 0
}
is a Poisson process at rate λ. Given N(t) = 1, the conditional

distribution of the first arrival time is uniformly distributed on (0, t) (i.e., S1 |
(
N(t) = 1

)
∼ U(0, t)).

Proof: In order to identify the conditional distribution of S1 |
(
N(t) = 1

)
, we consider the cdf of

S1 |
(
N(t) = 1

)
, to be denoted by

G(s) = P
(
S1 ≤ s

∣∣N(t) = 1
)
, 0 < s < t.
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Note that

G(s) = P
(
S1 ≤ s

∣∣N(t) = 1
)

=
P
(
S1 ≤ s, N(t) = 1

)
P
(
N(t) = 1

)
=

P
(
1 event in [0, s] ∩ 0 events in (s, t]

)
P
(
N(t) = 1

)
=

P
(
N(s) = 1, N(t)−N(s) = 0

)
P
(
N(t) = 1

)
=

P
(
N(s) = 1

)
P
(
N(t)−N(s) = 0

)
P
(
N(t) = 1

)
due to the independent increments property

=
e−λs(λs)1

1! · e−λ(t−s)(λ(t−s))0

0!
e−λt(λt)

1!

= s

t
.

However, this is the cdf of a U(0, t) rv. Thus, S1 |
(
N(t) = 1

)
∼ U(0, t).

Theorem 4.6 specifies how S1 behaves distributionally when N(t) = 1. A natural question to ask is: How are
the n arrival times S1, S2, . . . , Sn distributed if it is known that exactly n arrival times have occurred by time t?

Before we can address this more general question, we must first familiarize ourselves with some distributional
results about order statistics.

In what follows, let {Yi}n
i=1 be an iid sequence of rvs having a common continuous distribution on (0,∞)

with cdf F (y) = P(Yi ≤ y) and pdf f(y) = F ′(y) for each i = 1, 2, . . . , n.

Order Statistics

Definition: The sequence of random variables {Y(1), Y(2), . . . , Y(n)} are called the order statistics of
{Y1, Y2, . . . , Yn}, satisfying:

Y(1) ≡ 1st smallest among {Y1, Y2, . . . , Yn},
Y(2) ≡ 2nd smallest among {Y1, Y2, . . . , Yn},

...
Y(n) ≡ nth smallest among {Y1, Y2, . . . , Yn}.

Remark: By its very definition, we observe that Y(1) < Y(2) < · · · < Y(n), and moreover, Y(1) =
min{Y1, Y2, . . . , Yn} and Y(n) = max{Y1, Y2, . . . , Yn}.

We wish to determine the joint distribution of the random vector (Y(1), Y(2), . . . , Y(n)). Let the joint cdf of
(Y(1), Y(2), . . . , Y(n)) be denoted by

G(y1, y2, . . . , yn) = P(Y(1) ≤ y1, Y(2) ≤ y2, . . . , Y(n) ≤ yn).

Also, define
g(y1, y2, . . . , yn) = ∂nG(y1, . . . , yn)

∂y1 ∂y2 · · · ∂yn
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to be the corresponding joint pdf of {Y(1), Y(2), . . . , Y(n)}.
To begin, consider the case when n = 2 and assume 0 < y1 < y2 <∞. Note that

P(Y(1) ≤ y1, y1 < Y(2) ≤ y2) = P(Y(1) ≤ y1, Y(2) ≤ y2)− P(Y(1) ≤ y1, Y(2) ≤ y1)
= G(y1, y2)−G(y1, y1),

and so
G(y1, y2) = P(Y(1) ≤ y1, y1 < Y(2) ≤ y2) + G(y1, y1)

∂2G(y1, y2)
∂y1 ∂y2

=
∂2 P(Y(1) ≤ y1, y1 < Y(2) ≤ y2)

∂y1 ∂y2
+ ∂2G(y1, y1)

∂y1 ∂y2︸ ︷︷ ︸
=0

g(y1, y2) =
∂2 P(Y(1) ≤ y1, y1 < Y(2) ≤ y2)

∂y1 ∂y2
.

As a result of the above equality, the joint pdf of Y(1) and Y(2) can be obtained by taking the partial
derivatives of the quantity P(Y(1) ≤ y1, y1 < Y(2) ≤ y2) with respect to y1 and y2. This fact is true for
general n (as can be readily verified), so that

g(y1, y2, . . . , yn) =
∂n P(Y(1) ≤ y1, y1 < Y(2) ≤ y2, . . . , yn−1 < Y(n) ≤ yn)

∂y1 ∂y2 · · · ∂yn
,

where 0 < y1 < y2 < · · · < yn <∞.
If we now examine the case when n = 2 again, with 0 < y1 < y2 <∞, we see that

P(Y(1) ≤ y1, y1 < Y(2) ≤ y2)
= P

(
Y(1) ≤ y1, y1 < Y(2) ≤ y2, {Y1 < Y2} ∪ {Y1 > Y2}

)
= P(Y(1) ≤ y1, y1 < Y(2) ≤ y2, Y1 < Y2) + P(Y(1) ≤ y1, y1 < Y(2) ≤ y2, Y1 > Y2)
= P(Y1 ≤ y1, y1 < Y2 ≤ y2, Y1 < Y2) + P(Y2 ≤ y1, y1 < Y1 ≤ y2, Y1 > Y2)
= P(Y1 ≤ y1, y1 < Y2 ≤ y2) + P(Y2 ≤ y1, y1 < Y1 ≤ y2)
= 2P(Y1 ≤ y1, y1 < Y2 ≤ y2) since Y1 and Y2 are identically distributed
= 2P(Y1 ≤ y1)P(y1 < Y2 ≤ y2) since Y1 and Y2 are independent rvs
= 2F (y1)

(
F (y2)− F (y1)

)
.

As a result, we subsequently obtain

g(y1, y2) =
∂2 P(Y(1) ≤ y1, y1 < Y(2) ≤ y2)

∂y1 ∂y2

= ∂2

∂y1 ∂y2

[
2F (y1)

(
F (y2)− F (y1)

)]
= 2f(y1)f(y2), 0 < y1 < y2 <∞.

To verify that this is indeed a joint pdf, note that∫ ∞

0

∫ ∞

0
g(y1, y2) dy1 dy2 =

∫ ∞

0
2f(y2)

∫ y2

0
f(y1) dy1 dy2 =

∫ ∞

0
2f(y2)F (y2) dy2.

Let
u = F (y2) =⇒ du

dy2
= f(y2) =⇒ du = f(y2) dy2,

so that ∫ ∞

0

∫ ∞

0
g(y1, y2) dy1 dy2 = 2

∫ 1

0
u du = 2

[
u2

2

]u=1

u=0
= 1.
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Remarks:
(1) The above results can be extended beyond the n = 2 case. In fact, it can be shown that the joint pdf

of (Y(1), Y(2), . . . , Y(n)) is given by

g(y1, y2, . . . , yn) = n!
n∏

i=1
f(yi), 0 < y1 < y2 < · · · < yn <∞, (4.10)

the marginal cdf of Y(i), i = 1, 2, . . . , n is given by

Gi(yi) = P(Y(i) < yi) = 1−
i−1∑
j=0

(
n

j

)
F (yi)j

(
1− F (yi)

)n−j
, 0 ≤ yi <∞,

and the marginal pdf of Y(i) is given by

gi(yi) = G′
i(yi) = n!

(n− i)!(i− 1)!F (yi)i−1f(yi)
(
1− F (yi)

)n−i
, 0 < yi <∞. (4.11)

(2) If {Yi}n
i=1 happens to be a sequence of iid U(0, t) rvs, then (4.10) and (4.11) simplify to become

g(y1, y2, . . . , yn) = n!
tn

, 0 < y1 < y2 < · · · < yn < t, (4.12)

and
gi(yi) = n!yi−1

i (t− yi)n−i

(n− i)!(i− 1)!tn
, 0 < yi < t.

Conditional Distribution of Arrival Times
With these results in place, we are now in position to state another important result concerning the Poisson
process.

Theorem 4.7. Let {N(t), t ≥ 0} be a Poisson process at rate λ. Given N(t) = n, the conditional joint
distribution of the n arrival times is identical to the joint distribution of the n order statistics from the
U(0, t) distribution. In other words,

(S1, S2, . . . , Sn) |
(
N(t) = n

)
∼ (Y(1), Y(2), . . . , Y(n)),

where {Yi}n
i=1 is an iid sequence of U(0, t) rvs.
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Proof: For 0 < s1 < s2 < · · · < sn < t, consider

P
(
S1 ≤ s1, s1 < S2 ≤ s2, . . . , sn−1 < Sn ≤ sn

∣∣N(t) = n
)

=
P
(
S1 ≤ s1, s1 < S2 ≤ s2, . . . , sn−1 < Sn ≤ sn

∣∣N(t) = n
)

P
(
N(t) = n

)
=

P
(
N(s1) = 1, N(s2)−N(s1) = 1, . . . , N(sn)−N(sn−1) = 1, N(t)−N(s) = 0

)
P
(
N(t) = n

)
=

P
(
N(s1) = 1

)
P
(
N(s2)−N(s1) = 1

)
· · ·P

(
N(sn)−N(sn−1) = 1

)
P
(
N(t)−N(s) = 0

)
P
(
N(t) = n

)
due to the independent increments property of the Poisson process

{
N(t), t ≥ 0

}
=

(e−λs1λs1)
(
e−λ(s2−s1)λ(s2 − s1)

)
· · ·
(
e−λ(sn−sn−1)λ(sn − sn−1)

)(
e−λ(t−s)(λs1)

)
e−λt(λt)n/n!

= n!s1(s2 − s1) · · · (sn − sn−1)
tn

.

Thus, the joint pdf of (S1, S2, . . . , Sn) given that N(t) = n, can be obtained via differentiation, thereby
yielding

∂n P
(
S1 ≤ s1, s1 < S2 ≤ s2, . . . , sn−1 < Sn ≤ sn

∣∣N(t) = n
)

∂s1 ∂s2 · · · ∂sn
= n!

tn
, 0 < s1 < s2 < · · · < sn < t.

Note that the form above agrees with that of (4.12), and hence the result is proven.

Remark: What this result essentially implies is that under the condition that n events have occurred by time
t in a Poisson process, the n times at which those events occur are distributed independently and uniformly over
the interval [0, t].

S1

S2

S3

t

N(t) = n
X X X X

n uniformly distributed event times0
Time

Example 4.5. Cars arrive to a toll bridge according to a Poisson process at rate λ, where each car pays a
toll of $1 upon arrival. Calculate the mean and variance of the total amount collected by time t, discounted
back to time 0 where α > 0 is the discount rate per unit time.

Solution: Let N(t) count the number of cars arriving to the toll bridge by time t, where N(t) ∼ POI(λt).
If Si denotes the arrival time of the ith car of the toll bridge, i ∈ Z+, then the discounted value (i.e., back
to time 0) of $1 paid by the ith arrival time is given by

1 · e−αSi = e−αSi ,

as demonstrated by the following diagram:
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0 S1 S2 · · · Si
0

$1
e−αS1 e−αS2 e−αSi

Time

Di
sc
ou

nt
ed

Va
lu
e

If T represents the (discounted) total amount collected by time t, then T =
∑N(t)

i=1 e−αSi . We wish to find
E[T ] and Var(T ). To find E[T ], note that

E[T ] = E

N(t)∑
i=1

e−αSi


=

∞∑
n=1

E

N(t)∑
i=1

e−αSi

∣∣∣∣∣∣N(t) = n

P
(
N(t) = n

)
since t = 0 if N(t) = 0

=
∞∑

n=1
E

[
n∑

i=1
e−αSi

∣∣∣∣∣N(t) = n

]
P
(
N(t) = n

)
.

By Theorem 4.7,
(S1, S2, . . . , Sn) |

(
N(t) = n

)
∼ (Y(1), Y(2), . . . , Y(n)),

where (Y(1), Y(2), . . . , Y(n)) are the n order statistics from U(0, t) distribution. As a result,

E[T ] =
∞∑

n=1
E

[
n∑

i=1
e−αY(i)

]
P
(
N(t) = n

)
=

∞∑
n=1

E

[
n∑

i=1
e−αYi

]
P
(
N(t) = n

)
since

n∑
i=1

e−αY(i) =
n∑

i=1
e−αYi , Yi ∼ U(0, t) ∀i

=
∞∑

n=1
nE[e−αY1 ]P

(
N(t) = n

)
.

Clearly,

E[e−αY1 ] =
∫ t

0
e−αy 1

t
dy

= 1
t

[
−e−αy

α

]y=t

y=0

= 1− e−αt

αt
.
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Therefore,

E[T ] = 1− e−αt

αt

∞∑
n=1

nP
(
N(t) = n

)
︸ ︷︷ ︸

E
[

N(t)
]

= 1− e−αt

αt
λt

= λ

α
(1− e−αt).

To determine Var(T ), we once again apply Theorem 4.7 to first obtain:

Var
(
T
∣∣N(t) = n

)
= Var

( n∑
i=1

e−αYi

)

= Var
(

n∑
i=1

e−αYi

)
since

n∑
i=1

e−αY(i) =
n∑

i=1
e−αYi

=
n∑

i=1
Var(e−αYi)

= n Var(e−αY1),

due to the independence and iid nature of {Yi}n
i=1. Note that

Var(e−αY1) = E
[
(e−αY1)2]− (E[e−αY1 ]

)2

= E
[
(e−2αY1)

]
− (1− e−αt)2

α2t2

= 1− e−2αt

2αt
− (1− e−αt)2

α2t2 ,

and so

Var
(
T
∣∣N(t)

)
= Var

(
T
∣∣N(t) = n

)∣∣∣
n=N(t)

= N(t)
(

1− e−2αt

2αt
− (1− e−αt)2

α2t2

)
.

Finally, applying the conditional variance formula, we get

Var(T ) = Var
(
E
[
T
∣∣N(t)

])
+ E

[
Var
(
T
∣∣N(t)

)]
= Var

(
N(t) · 1− e−αt

αt

)
+ E

[
N(t)

(
1− e−2αt

2αt
− (1− e−αt)2

α2t2

)]
= (1− e−αt)2

α2t2 Var
(
N(t)

)︸ ︷︷ ︸
=λt

+
(

1− e−2αt

2αt
− (1− e−αt)2

α2t2

)
E
[
N(t)

]︸ ︷︷ ︸
=λt

= λ

2α
(1− e−2αt).

Example 4.6. Satellites are launched at times according to a Poisson process at rate 3 per year. During
the past year, it was observed that only two satellites were launched. What is the joint probability that the
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first of these two satellites was launched in the first 5 months of the year and the second satellite was
launched prior to the last 2 months of the year?

Solution: Let {N(t), t ≥ 0} be the Poisson process at rate λ = 3 governing satellite launches. We are
interested in calculating

P
(

S1 ≤
5
12 , S2 ≤

5
6

∣∣∣∣N(1) = 2
)

.

To do so, we use Theorem 4.7 (specifically, (4.12)), to obtain the joint conditional pdf of (S1, S2) |(
N(1) = 2

)
as

g(s1, s2) = 2!
12 = 2, 0 < s1 < s2 < 1,

which we integrate over the shaded region:

5/12 1

5/6

1

s1

s2

Thus,

P
(

S1 ≤
5
12 , S2 ≤

5
6

∣∣∣∣N(1) = 2
)

=
∫ 5/12

0

∫ 5/6

s1

g(s1, s2) ds2 ds1

=
∫ 5/12

0

∫ 5/6

s1

2 ds2 ds1

= 2
∫ 5/12

0

(
5
6 − s1

)
ds1

= 2
[

5
6s1 −

s2
1
2

]s1=5/12

s1=0

= 2
(

25
72 −

25
288

)
= 2× 25

96
= 25

48
≃ 0.521.

Week 12
1st to 7th December
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4.4 Two Important Generalizations

The Non-homogeneous Poisson Process
Oftentimes, we find the Poisson process difficult to apply in applications of real-life phenomena, largely due to
the fact that the Poisson process assumes a constant arrival rate of λ for all time. In what follows, we consider a
more general type of process in which the arrival rate is allowed to vary as a function of time.

Definition: The counting process
{

N(t), t ≥ 0
}
is a non-homogeneous (or non-stationary) Poisson process

with rate function λ(t) if the following three conditions hold true:
(1)

{
N(t), t ≥ 0

}
has independent increments.

(2) P
(
N(t + h)−N(t) = 1

)
= hλ(t) + o(h).

(3) P
(
N(t + h)−N(t) ≥ 2

)
= o(h).

Many applications that generate random points in time are modelled more realistically with non-homogeneous
processes. For instance:

• The rate of customers entering a supermarket is not the same during the entire day.
• The average arrival rate of vehicles on a highway fluctuates between its maximum during rush hours and

its minimum during low traffic times.
The mathematical cost of this generalization, however, is that we lose the stationary increments property.

For s1, s2 ≥ 0, the following theorem specifies the distribution of N(s1 + s2)−N(s1).

Theorem 4.8. If
{

N(t), t ≥ 0
}
is a non-homogeneous Poisson process with rate function λ(t), then

N(s1 + s2)−N(s1) ∼ POI
(
m(s1 + s2)−m(s1)

)
where the mean value function m(t) is given by

m(t) =
∫ t

0
λ(τ) dτ, t ≥ 0.

Proof: Let ϕu(s1, s2) = E
[
eu
(

N(s1+s2)−N(s1)
)]

, which is the mgf of N(s1 + s2)−N(s1), where u serves
as the argument of the mgf. For h ≥ 0, we first note that

ϕu(s1, s2 + h) = E
[
eu
(

N(s1+s2+h)−N(s1)
)]

= E
[
eu
(

N(s1+s2+h)−N(s1+s2)+N(s1+s2)−N(s1)
)]

= E
[
eu
(

N(s1+s2+h)−N(s1+s2)
)
eu
(

N(s1+s2)−N(s1)
)]

= E
[
eu
(

N(s1+s2+h)−N(s1+s2)
)]

E
[
eu
(

N(s1+s2)−N(s1)
)]

due to independent increments
= ϕu(s1 + s2, h)ϕu(s1, s2). (4.13)

Applying a similar approach to that used in the proof of Theorem 4.3, it can be shown that (4.13) ultimately
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give rise to the first-order differential equation (see Exercise 4.4.1).
d

ds2
ϕu(s1, s2) = λ(s1 + s2)(eu − 1)ϕu(s1, s2)

d
dt

ϕu(s1, t) = λ(s1 + t)(eu − 1)ϕu(s1, t) let s2 = t

d
dt ϕu(s1, t)
ϕu(s1, t) = λ(s1 + t)(eu − 1)

d
dt

ln
(
ϕu(s1, t)

)
= λ(s1 + t)(eu − 1)

d ln
(
ϕu(s1, t)

)
= λ(s1 + t)(eu − 1) dt∫ s2

0
d ln
(
ϕu(s1, t)

)
=
∫ s2

0
λ(s1 + t)(eu − 1) dt[

ln
(
ϕu(s1, t)

)]t=s2

t=0
= (eu − 1)

∫ s2

0
λ(s1 + t)(eu − 1) dt

ln
(
ϕu(s1, s2)

)
− ln

(
ϕu(s1, 0)

)
= (eu − 1)

∫ s1+s2

s1

λ(τ) dτ.

However,
ϕu(s1, 0) = E

[
eu
(

N(s1)−N(s1)
)]

= E[eu·0] = E[e0] = 1.

ln
(
ϕu(s1, s2)

)
= (eu − 1)

∫ s1+s2

s1

λ(τ) dτ

ϕu(s1, s2) = e
(eu−1)

∫ s1+s2
s1

λ(τ) dτ
, u ∈ R.

Since ∫ s1+s2

s1

λ(τ) dτ =
∫ s1+s2

0
λ(τ) dτ −

∫ s1

0
λ(τ) dτ

= m(s1 + s2)−m(s1).

Thus, we have
ϕu(s1, s2) = e(eu−1)

(
m(s1+s2)−m(s1)

)
, u ∈ R,

which is the mgf of a POI
(
m(s1 + s2)−m(s1)

)
rv. By the mgf uniqueness property,

N(s1 + s2)−N(s1) ∼ POI
(
m(s1 + s2)−m(s1)

)
.

Remarks:
(1) As a direct consequence of Theorem 4.8, for all s, t ≥ 0, we have

P
(
N(s + t)−N(s) = n

)
= e−

(
m(s+t)−m(s)

) (
m(s + t)−m(s)

)n

n! , n = 0, 1, 2, . . . .

(2) If the rate function λ(τ) = λ ∀τ ≥ 0, then note that∫ s+t

s

λ(τ) dτ =
∫ s+t

s

λ dτ = λ(s + t− s) = λt

and
P
(
N(s + t)−N(s) = n

)
= e−λt(λt)n

n! , n = 0, 1, 2, . . . .
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This is expected, since
{

N(t), t ≥ 0
}
simplifies to become the standard (i.e., stationary) Poisson process.

Example 4.7. Requests for technical support within the statistics department occur according to a
non-homogeneous Poisson process

{
N(t), t ≥ 0

}
having rate function

λ(t) =


5t/2, if 0 ≤ t < 1,

t2/2 + 2, if 1 ≤ t < 4,

(9− t)(t− 2), if 4 ≤ t ≤ 9,

where t is measured in hours from the start of the workday. What is the probability that four requests
occur in the first two hours of the workday and ten more occur in the final two hours of the workday?

Solution: The plot below provides a visual depiction of the rate function in use:

1 4 5 9

5/2

10

12

t

λ(t)

We wish to calculate
P
(
N(2) = 4, N(9)−N(7) = 10

)
.

Using the independent increments property, we first have

P
(
N(2) = 4, N(9)−N(7) = 10

)
= P

(
N(2) = 4

)
P(N(9)−N(7) = 10).

Now, we need to calculate

m(2)−m(0) =
∫ 2

0
λ(t) dt

=
∫ 1

0

5t

2 dt +
∫ 2

1

t2

2 + 2 dt

=
[

5t2

4

]t=1

t=0
+
[

t3

6 + 2t

]t=2

t=1

= 53
12 .
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Also,

m(9)−m(7) =
∫ 9

7
λ(t) dt

=
∫ 9

7
(9− t)(t− 2) dt

=
∫ 9

7
(−18 + 11t− t2) dt

=
[
−18t + 11t2

t
− t3

3

]t=9

t=7

= 34
3 .

As a result, it follows that

P
(
N(2) = 4

)
= e−

(
m(2)−m(0)

) (
m(2)−m(0)

)4

4!

= e−53/12(53/12)4

4! ,

and

P
(
N(9)−N(7) = 10

)
= e−

(
m(9)−m(7)

) (
m(9)−m(7)

)10

10!

= e−34/3(34/3)10

10! .

Finally,

P
(
N(2) = 4, N(9)−N(7) = 10

)
= P

(
N(2) = 4

)
P(N(9)−N(7) = 10)

= e−53/12(53/12)4

4! · e−34/3(34/3)10

10!
≃ 0.0221.

The Compound Poisson Process
Another restriction we might wish to relax concerns the assumption that arrivals in a Poisson process occur
strictly one after the other.

For instance, vehicles crossing the Canada-USA border would usually have more than just one passenger on
board. Individuals arriving to a sporting event often arrive in groups of two or more.

There are also applications where each arrival might generate a random monetary amount. For example,
in an insurance company where claims occur according to a Poisson process, the claim sizes themselves are
(random) amounts of money, and one would typically be interested in the total amount of money paid out by the
insurance company by time t.

In any of the above scenarios, each arrival in a Poisson process comes with an associated real-valued rv that
represents the value of the arrival in a sense.

This gives rise to the following definition.

Definition: Let {Yi}∞
i=1 be an iid sequence of rvs. Let

{
N(t), t ≥ 0

}
be a Poisson process at rate λ,

independent of each Yi, i = 1, 2, 3, . . .. If X(t) =
∑N(t)

i=1 Yi, then the process
{

X(t), t ≥ 0
}
is a compound
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Poisson process.

Remarks:
(1) The above definition is another way of generalizing the Poisson process, since if we choose the

distribution of each Yi to be degenerate at 1 (i.e., Yi = 1 with probability 1 ∀i ∈ Z+), then{
X(t), t ≥ 0

}
and {N(t), t ≥ 0} are identical processes.

(2) The compound Poisson process
{

X(t), t ≥ 0
}
inherits the independent and stationary increments

properties from the Poisson processes
{

N(t), t ≥ 0
}
. To see this formally, let (s1, t1] and (s2, t2] be

time intervals such that t1 ≤ s2 (resulting in (s1, t1] ∩ (s2, t2] = ∅). Making use of the assumptions
concerning {Yi}∞

i=1 and {N(t), t ≥ 0}, note that

P
(
X(t1)−X(s1) ≤ a1, X(t2)−X(s2) ≤ a2

)
= P

(N(t1)∑
i=1

Yi −
N(s1)∑

i=1
Yi ≤ a1,

N(t2)∑
i=1

Yi −
N(s2)∑

i=1
Yi ≤ a2

)

= P
( N(t1)∑

i=N(s1)+1

Yi ≤ a1,

N(t2)∑
i=N(s2)+1

Yi ≤ a2

)

=
∞∑

m1=0

∞∑
n1=0

∞∑
m2=0

∞∑
n2=0

P
( N(t1)∑

i=N(s1)+1

Yi ≤ a1,

N(t2)∑
i=N(s2)+1

Yi ≤ a2

∣∣∣∣ N(s1) = m1, N(t1)−N(s1) = n1,
N(s2)−N(t1) = m2, N(t2)−N(s2) = n2

)
× P

(
N(s1) = m1, N(t1)−N(s1) = n1, N(s2)−N(t1) = m2, N(t2)−N(s2) = n2

)
=

∞∑
m1=0

∞∑
n1=0

∞∑
m2=0

∞∑
n2=0

P
(m1+n1∑

i=m1+1
Yi ≤ a1,

m1+n1+m2+n2∑
i=m1+n1+m2+1

Yi ≤ a2

)
× P

(
N(s1) = m1

)
P
(
N(t1)−N(s1) = n1

)
P
(
N(s2)−N(t1) = m2

)
P
(
N(t2)−N(s2) = n2

)
=
{ ∞∑

n1=0
P(

n1∑
i=1

Yi ≤ a1)P
(
N(t1 − s1) = n1

)}{ ∞∑
n2=0

P(
n2∑

i=1
Yi ≤ a2)P

(
N(t2 − s2) = n2

)}

= P
(N(t1−s1)∑

i=1
Yi ≤ a1

)
P
(N(t2−s2)∑

i=1
Yi ≤ a2

)
= P

(
X(t1 − s1) ≤ a1

)
P
(
X(t2 − s2) ≤ a2

)
.

(3) For t > 0, determining the probability distribution of X(t) is, generally speaking, a challenging
mathematical problem. On the other hand, the mean and variance of X(t) are readily accessible. In
particular, by making use of the results for the mean and variance of a random sum (see Example
2.9), we immediately obtain

E
[
X(t)

]
= E

[
N(t)

]
E[Y1] = λtE[Y1]

and

Var
(
X(t)

)
= Var(Y1)E

[
N(t)

]
+ E[Y1]2 Var

(
N(t)

)
= λt

(
Var(Y1)− E[Y1]2

)
= λtE[Y 2

1 ].
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Example 4.8. Claims received by an insurance company occur according to a Poisson process at a rate of
30 claims per year. Individual claim amounts, which are assumed to be independent, are known to be
either $1000, $2000, or $3000. Company records indicate that one year ago, the average total amount
paid out was $56000 and that the standard deviation of the total amount paid out was $11000. Based on
this information, how likely was it that an individual claim of $3000 took place last year?

Solution: Let N(t) represent the number of claims received by the company by time t (measured in
years), which is known to have a POI(30t) distribution in the past year. In addition, let Yi, i ∈ Z+, be the
size of the ith individual claim amount (measured in thousands of dollars), having pmf of the form

P(Yi = y) =


α, if y = 1,

β, if y = 2,

1− α− β, if y = 3.

Therefore, X(t) =
∑N(t)

i=1 Yi represents the total amount paid out (measured in thousands of dollars) by
time t. We have:

E
[
X(1)

]
= 30E[Y1] = 56 =⇒ E[Y1] = 56

30 = 28
15 .

That is,
α + 2β + 3(1− α− β) = 28

15 =⇒ 30α + 15β = 17. (4.14)

Furthermore,
Var
(
X(1)

)
= (30)E[Y 2

1 ] = 112 =⇒ E[Y 2
1 ] = 121

30 .

That is,
α + 4β + 9(1− α− β) = 121

30 =⇒ 240α + 150β = 149. (4.15)

The above equations (4.14) and (4.15) are linear, and can be solved to find α and β as follows:

10× (4.14)− (4.15) =⇒ 60α = 21 =⇒ α = 7
20 . (4.16)

Plugging (4.16) into (4.14) leads to

30× 7
20 + 15β = 7 =⇒ β = 13

30 .

From above, the desired probability is simply

1− α− β = 1− 7
20 −

13
30 = 13

60 ≃ 0.217.



Appendix A

Useful Documents

A.1 List of Acronyms
iff if and only if
gcd greatest common divisor
rv random variable
pmf probability mass function
pdf probability density function
cdf cumulative distribution function
tpf tail probability function
mgf moment generating function
iid independent and identically distributed
SLLN Strong Law of Large Numbers
a.s. almost surely
DTMC discrete-time Markov chain
TPM transition probability matrix
BLT Basic Limit Theorem (for DTMCs)

125
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A.2 Special Symbols
→ approaches
=⇒ implies
Ω sample space for a probability model
P( · ) probability function
∅ null event (or empty set)
∪ union operator
∩ intersection operator
Ac complement of A
⊆ is a subset of
R set of all real numbers
Z set of all integers {0,±1,±2, . . .}
Z+ set of positive integers {1, 2, . . .}
N set of non-negative integers {0, 1, 2, . . .}
S state space of a rv (or a DTMC)
≈ approximately equal to
∼ has the probability distribution of
E[ · ] expected value operator
a row vector notation
a⊤ column vector notation
[Ai,j ] matrix A with the elements of the form Ai,j

I identity matrix (of appropriate dimension)
0 zero matrix (of appropriate dimension)
e⊤ vector of ones (of appropriate dimension)
T index set of a stochastic process
n! n factorial(

n
x

)
n choose x

(n)x n taken to x terms
δi,j 1 if i = j, 0 if i ̸= j (Kronecker delta)
|x| absolute value of x
⌊x⌋ greatest integer less than or equal to x
exp{x} exponential function ex
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A.3 Results for Some Fundamental Probability Distributions

DU(a, b) p(x) = 1
b−a+1 , x = a, a + 1, . . . , b a+b

2
(b−a)(b−a+2)

12

BIN(n, p) p(x) =
(

n
x

)
px(1− p)n−x, x = 0, 1, . . . , n np np(1− p)

BERN(p) p(x) = px(1− p)1−x, x = 0, 1 p p(1− p)

HG(N, r, n) p(x) = (r
x)(N−r

n−x)
(N

n) , x = max{0, n−N + r}, . . . , min{n, r} nr
N

nr(N−r)(N−n)
N2(N−1)

POI(λ) p(x) = e−λλx

x! , x = 0, 1, 2, . . . λ λ

NBt(k, p) p(x) =
(

x−1
k−1
)
pk(1− p)x−k, x = k, k + 1, k + 2, . . . k

p
k(1−p)

p2

GEOt(p) p(x) = (1− p)x−1p, x = 1, 2, 3, . . . 1
p

1−p
p2

NBf (k, p) p(x) =
(

x+k−1
k−1

)
pk(1− p)x, x = 0, 1, 2, . . . k(1−p)

p
k(1−p)

p2

GEOf (p) p(x) = (1− p)xp, x = 0, 1, 2, . . . 1−p
p

1−p
p2

U(a, b) f(x) = 1
b−a , a < x < b a+b

2
(b−a)2

12

Beta(m, n) f(x) = (m+n−1)!
(m−1)!(n−1)! x

m−1(1− x)n−1, 0 < x < 1 m
m+n

mn
(m+n)2(m+n+1)

Erlang(n, λ) f(x) = λnxn−1e−λx

(n−1)! , x > 0 n
λ

n
λ2

EXP(λ) f(x) = λe−λx, x > 0 1
λ

1
λ2

Discrete
Distribution

Probability Mass Function
of X

Mean
E[X]

Variance
Var(X)

Continuous
Distribution

Probability Mass Function
of X

Mean
E[X]

Variance
Var(X)

“DU” stands for Discrete Uniform “BIN” stands for Binomial
“BERN” stands for Bernoulli “HG” stands for Hypergeometric
“POI” stands for Poisson “NBt” stands for Negative Binomial (for trials)
“GEOt” stands for Geometric (for trials) “NBf ” stands for Negative Binomial (for failures)
“GEOf ” stands for Geometric (for failures) “U” stands for (Continuous) Uniform
“EXP” stands for Exponential
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