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Chapter 1

INTRODUCTION

Week 1

1.1 Notation and Nomenclature
EXAMPLE 1.1.1: Experiment 1 — List View vs. Tile View

Suppose that Nike, the athletic apparel company, is experimenting with their mobile shopping interface,
and they are interested in determining whether changing the user interface from list view to tile view
will increase the proportion of customers that proceed to checkout.

EXAMPLE 1.1.2: Experiment 2 — Ad Themes

Suppose that Nixon, the watch and accessories brand, is experimenting with four different video ads
that are to be shown on Instagram. The first has a surfing theme, the second has a rock climbing
theme, the third has a camping theme, and the fourth has an urban professional theme. Interest lies in
determining which of the four themes, on average, is watched the longest.

DEFINITION 1.1.3: Metric of interest

The metric of interest (MOI) is the statistic we wish the experiment investigates.

REMARK 1.1.4

Typically, we want to optimize for the metric of interest; that is, we would like to either maximize or
minimize it.

EXAMPLE 1.1.5: Metric of Interest

• Key performance indicators (KPIs): a statistic that quantifies something about a business.

– Click-through rates (CTRs).
– Bounce rate.
– Average time on page.
– 95th percentile page load time.

• Nike Example: checkout rate (COR).

• Nixon Example: average viewing duration (AVD).

3
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DEFINITION 1.1.6: Response variable

The response variable, denoted 𝑦, is the variable of primary interest.

REMARK 1.1.7

The response variable is what needs to be measured in order for the MOI to be calculated.

EXAMPLE 1.1.8: Response Variable

• Nike Example: binary indicator indicating whether a customer checked out.

• Nixon Example: the continuous measurement of viewing duration for each user.

DEFINITION 1.1.9: Factor

The factor, denoted 𝑥, is the variable(s) of secondary interest.

Also known as: covariates, explanatory variates, predictors, features, independent variables.

REMARK 1.1.10

We usually think the factors influence the response (dependent) variable.

EXAMPLE 1.1.11: Factor

• Nike Example: the factor is the visual layout.

• Nixon Example: the factor is the ad theme.

DEFINITION 1.1.12: Experimental conditions

The experimental conditions are the unique combinations of levels of one or more factors.

Also known as: treatments, variants, buckets.

DEFINITION 1.1.13: Levels

The levels are the values that a factor takes on in an experiment.

EXAMPLE 1.1.14: Levels

• Nike Example: {tile view, list view}.

• Nixon Example: {surfing, rock climbing, camping,business}.

DEFINITION 1.1.15: Experimental units

The experimental units are what is assigned to the experimental conditions, and on which we
measure the response variable.

EXAMPLE 1.1.16: Experimental Units

• Nike Example: Nike mobile customers.

• Nixon Example: Instagram users.
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REMARK 1.1.17

Often, in online experiments, the unit is a user/customer (i.e., person), but it does not have to be.

EXAMPLE 1.1.18

Uber matching algorithm experiment.

1.2 Experiments versus Observational Studies
DEFINITION 1.2.1: Experiment

An experiment is a collection of conditions defined by purposeful changes to one or more factors.
Here, we intervene in the data collection.

• The goal is to identify and quantify the differences in response variable values across conditions.

• In determining whether a factor significantly influences a response, like whether a video ad’s theme
significantly influences its AVD, it is necessary to understand how experimental units’ response when
exposed to each of the corresponding conditions.

• However, it would be nice if we could observe how the same units behave in each of the experimental
conditions, but we can’t. We only observe their response in a single condition.

• Counterfactual: the hypothetical and unobservable value of a unit’s response in a condition to which
they were not assigned. We may think of this as an “alternate reality.”

EXAMPLE 1.2.2

Nixon Example: the “camping” response variable for units assigned to the “surfing” condition.

• Because counterfactual outcomes cannot be observed, we require a proxy. Instead, we randomly assign
different units to different experimental conditions, and we compare their responses.

• Ideally, the only difference between the units in each condition is the fact that they are in different
conditions.

– We want the units to be as homogenous as possible, this will help facilitate causal inference
(establishing causal connections between variables).

– This is typically guaranteed by randomization.

• The key here is that we purposefully control the factors to observe the resulting effect on the response.
This facilitates causal conclusions.

• In an observational study, on the other hand, there is no measure of control in the data collection
process. Instead, we collect the data passively and the relationship between the response and factor(s)
is observed organically.

• This hinders our ability to establish causal connections between the factor(s) and the response variables.
However, sometimes we have no choice.

EXAMPLE 1.2.3: Unethical Experiments

– Unethical Experiment 1: In evaluating whether smoking lung cancer, it would be unethical
to have a ‘smoking’ condition in which we force the subjects to smoke.
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– Unethical Experiment 2: In dynamic pricing experiments, it would be unethical to show
different users different prices for the same products. For example, surge pricing in
Uber/Lyft.

– Unethical Experiment 3: In social contagion experiments, it would be unethical to show
some network users consistently negative content and others consistently positive content.
But Facebook did this anyway.

– Unethical Experiment 4: Mozilla conducted an investigation in which the company was
interested in determining whether Firefox users that installed an ad blocker were more
engaged with the browser. However, it would have been unethical to force users to install
an ad blocker, and so they were forced to perform an observational study with propensity
score matching instead.

Advantages Disadvantages

Experiment Causal inference is clean. Experiments might be unethical, risky,
or costly.

Observational
Study

No additional cost, risk, or ethical con-
cerns. Causal inference is muddy.

1.3 QPDAC: A Strategy for Answering Questions with Data

Question

Plan

DataAnalysis

Conclusion

Figure 1.1: QPDAC Cycle

Question: Develop a clear statement of the question that needs to be answered.

• It is important that this is clear and concise and widely communicated, so all stakeholders are on
the same page.

• The question should be quantifiable/measurable and typically stated in terms of the metric of
interest.

https://slate.com/technology/2014/06/facebook-unethical-experiment-it-made-news-feeds-happier-or-sadder-to-manipulate-peoples-emotions.html
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EXAMPLE 1.3.1

• Nike Example: “which visual layout, tile view or list view, corresponds to the highest checkout
rate?”

• Nixon Example: “which ad theme, camping, surfing, rock climbing, business, corresponds to
the highest average viewing duration?”

Plan: In this stage, we design the experiment, and all pre-experimental questions should be answered.

• Choose the response variable. This should be dictated by the Question and the metric of interest.

• Choose the factor(s): brainstorm all factors that might influence the response and make decisions
about whether and how they will be controlled in the experiment.

i Design factors: factors that we will manipulate in the experiment. The factors we’ve
discussed in the Nike and Nixon examples are design factors.

ii Nuisance factors: factors that we expect to influence the response, but whose effect we do
not care to quantify. Instead, we try to eliminate their effects with blocking.

iii Allowed-to-vary factors: factors that we cannot control and factors that we are unaware of
in an experiment.

– Nixon Example: users’ age, gender, nationality.

• Choose the experimental units. These are what we measure the response variable on.

• Choose the sample size and sampling mechanism.

– Sample size: how many units per experimental condition?
– Sampling mechanism: how are they selected?

Data: In this stage, we collect the data according to the Plan. It is extremely important that we do
this step correctly; the suitability and effectiveness of the analysis relies on the correctness of the data.
Computer scientists often use the phrase “garbage in, garbage out” to describe the phenomenon whereby
poor quality input will always provide faulty output.

• A/A Test: we assign units to one of two identical conditions.

– We do this to ensure the assignment of units to conditions is truly random.
– Two groups should be indistinguishable in terms of response distribution and other demo-

graphics.
– If things aren’t indistinguishable, there is a problem.
– Sample Ratio Mismatch Test: If the ratio of users (or any randomization unit) between

the variants is not close to the designed ratio, the experiment suffers from a Sample Ratio
Mismatch (SRM).
∗ Hypothesis test can be used to determine whether the proportion of units in each condition
match what would have been expected under random assignment.
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Analysis: In this stage, we statistically analyze Data to provide an objective answer to the Question.

• This is typically achieved by way of estimating parameters, fitting models, and carrying out
statistical hypothesis tests. This is where we spend most of our time in the course.

• If the experiment was well-designed, and we collected the data correctly, this step should be
straight-forward.

Conclusion: In this stage, we consider the results of the Analysis, and one must draw conclusions
about what has been learned.

• We clearly communicate these conclusions to all parties involved in — or impacted by — the
experiment.

• Communicating “wins” and “loses” will help to foster the culture of experimentation.

1.4 Fundamental Principles of Experimental Design

DEFINITION 1.4.1: Randomization

Randomization refers both to the manner in which we select experimental units for inclusion in the
experiment and the manner in which we assign them to experimental conditions.

REMARK 1.4.2

Typically, we don’t include the entire target/study population.

Thus, we have two levels of randomization:

• The first level of randomization exists to ensure the sample of units included in the experiment is
representative of those that were not.

– Allows us to generalize conclusions beyond just the experimental units to units in the population
not in the experiment.

• The second level of randomization exists to balance the effects of extraneous variables not under study
(i.e., the allowed-to-vary factors).

– Balancing the effects of allowed-to-vary factors makes our conditions homogenous and thus best
mimics the counterfactual, thereby making causal inference easy.

DEFINITION 1.4.3: Replication

Replication refers to the existence of multiple response observations within each experimental condition
and thus corresponds to the situation in which we assign more than one unit to each condition.

• Assigning multiple units to each condition provides assurance that the observed results are genuine,
and not just due to chance.

• For instance, consider the Nike experiment introduced previously. Suppose the CORs in the list view
and tile view conditions were 0.5 and 1 respectively. This conclusion would be a lot more convincing if
each condition had 𝑛 = 1000 units as opposed to 𝑛 = 2, where 𝑛 is the sample size in each condition.
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• How much replication do we need?

– How big a sample size do we need?
– Power analysis + sample size calculations will help answer this.

DEFINITION 1.4.4: Blocking

Blocking is the mechanism that we control the nuisance factors.

• To eliminate the influence of nuisance factors, we hold them fixed during the experiment.

• Thus, we run the experiment at fixed levels of the nuisance factors, i.e., within blocks.

EXAMPLE 1.4.5: GAP — Email Promotion

Consider an experiment in which the primary goal is to test different variations of the message
in the subject line with the goal of maximizing ‘open rate.’ However, suppose we know that the
‘open rate’ is also influenced by the “send time” (time of the day and the day of the week) of an
email.

We send all the emails at the same time of day and on the same day of week to control/eliminate
the effect of time/day nuisance factor. By blocking, in this way, the nuisance factor can’t confound
our conclusions.



Chapter 2

EXPERIMENTS WITH TWO
CONDITIONS

Week 2

Anatomy of an A/B Test
• One design factor at two levels.

• We now consider the design and analysis of an experiment consisting of two experimental conditions — or
what many data scientists broadly refer to as “A/B Testing” which is synonymous with “experimentation”
in data science.

– Canonical A/B test:

CLICK ME CLICK ME

Figure 2.1: Canonical Button Colour Test.

Here, the metric of interest might be click-through-rate, which we’re interested in maximizing.

• Other, more tangible examples:

– Amazon
∗ Checkout reassurances
∗ List view vs. tile view

– Airbnb
∗ Host landing page redesign
∗ Next available date

• Typically, the goal of such an experiment is to decide which condition is optimal with respect to some
metric of interest 𝜃. This could be a

– mean (e.g., average time on page, average purchase size, average revenue per customer)
– proportion (e.g., CTR, bounce rate, retention rate)
– variance
– quantile (e.g., median, 95th percentile of page load time)

10
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– technically any statistic that can be from sample data

• Consider the button-colour example: imagine the observed click-through-rates (CTR) of the two
conditions are: ̂𝜃1 = 0.12 (red) and ̂𝜃2 = 0.03 (blue).

– Obviously, ̂𝜃1 > ̂𝜃2, but does that mean that 𝜃1 > 𝜃2?

• Formally, we phrase such a question as a statistical hypothesis that we test using the data collected
from the experiment.

– H0: 𝜃1 = 𝜃2 versus HA: 𝜃1 ≠ 𝜃2 (two-sided).
– H0: 𝜃1 ≤ 𝜃2 versus HA: 𝜃1 > 𝜃2 (one-sided).
– H0: 𝜃1 ≥ 𝜃2 versus HA: 𝜃1 < 𝜃2 (one-sided).

• “Absence of evidence ≠ evidence of absence.”

• No matter which hypothesis is appropriate, the goal is always the same: based on the observed data,
we will decide to reject H0 or not reject H0.

• In order to draw such a conclusion, we will define a test statistic.

DEFINITION 2.0.1: Test statistic

The test statistic, denoted 𝑇, is a random variable that satisfies three properties:

(i) It must be a function of the observed data.

(ii) It must be a function of the parameters 𝜃1 and 𝜃2.

(iii) Its distribution must not depend on 𝜃1 or 𝜃2.

• Assuming the null hypothesis is true, the test statistic 𝑇 follows a particular distribution which we call
the null distribution. For example, 𝒩(0, 1), 𝑡(df), 𝐹(df1, df2), 𝜒2(df).

• We then calculate 𝑡, the observed value of the test statistic, and evaluate its extremity relative to the
null distribution.

– If 𝑡 is very extreme, this suggests that perhaps the null hypothesis is not true.
– If 𝑡 appears as though it could have come from the null distribution, then there is no reason to

disbelieve the null hypothesis.

• We formalize the extremity of 𝑡 using the 𝒑-value of the test.

DEFINITION 2.0.2: 𝑝-value

The probability of observing a value of the test statistic at least as extreme as the value we
observed, if the null hypothesis is true.

– Thus, the 𝑝-value formally quantifies how “extreme” the observed test statistic is.
– The more extreme the value of 𝑡, the smaller the 𝑝-value, and the more evidence we have against it.

• How “extreme” 𝑡 must be, and hence how small the 𝑝-value must be to reject H0, is determined by the
significance level of the test, denoted 𝛼.

– If 𝑝-value ≤ 𝛼, we reject H0.
– If 𝑝-value > 𝛼, we do not reject H0.
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REMARK 2.0.3

Common choices of 𝛼 are 0.05 and 0.01.

• In order to choose 𝛼, one must understand the two types of errors that can be made when drawing
conclusions in the context of a hypothesis test.

• Recall that by design, either H0 or HA is true. This means that there are four possible outcomes when
using data to decide which statement is true:

(1) No Error: H0 is true, and we correctly do not reject it.
(2) Type I Error: H0 is true, and we incorrectly reject it.
(3) Type II Error: H0 is false, and we incorrectly do not reject it.
(4) No Error: H0 is false, and we correctly reject it.

• We would like to reduce the likelihood of making either type of error.

– But there are different consequences of each type of error.
– So we may wish to treat them differently.

EXAMPLE 2.0.4: Pregnancy Test

H0: person is not pregnant versus HA: person is pregnant.

• Type I Error: a non-pregnant person is pregnant (false positive).

• Type II Error: a pregnant person is not pregnant (false negative).

EXAMPLE 2.0.5: Courtroom

Consider a courtroom analogy where we assume the defendant is innocent until proven guilty. Formally,
H0: the defendant is innocent versus HA: the defendant is guilty.

• Type I Error: sentencing an innocent person to jail.

• Type II Error: letting a guilty person go free.

DEFINITION 2.0.6: Significance level

The significance level of a test is 𝛼 = ℙ(Type I Error).

DEFINITION 2.0.7: Power

The power of a test is 1 − 𝛽 where 𝛽 = ℙ(Type II Error).

• Fortunately, it is possible to control the frequency in which these types of errors occur.

• It is desirable to have a test with a small significance level, and a large power.

2.1 Comparing Means in Two Conditions
• Here, we restrict attention to the situation in which we measure the response variable of interest on a

continuous scale.
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• We assume that the response observations collected in the two conditions follow normal distributions,
and in particular

𝑌𝑖1 ∼ 𝒩(𝜇1, 𝜎2) and 𝑌𝑖2 ∼ 𝒩(𝜇2, 𝜎2), 𝑖 = 1, 2, … , 𝑛𝑗 for 𝑗 = 1, 2.

– 𝑌𝑖𝑗 = response observation for unit 𝑖 in condition 𝑗.

• Using the observed data, we test hypotheses of the form:

– H0: 𝜇1 = 𝜇2 versus HA: 𝜇1 ≠ 𝜇2.
– H0: 𝜇1 ≤ 𝜇2 versus HA: 𝜇1 > 𝜇2.
– H0: 𝜇1 ≥ 𝜇2 versus HA: 𝜇1 < 𝜇2.

2.1.1 The Two-Sample 𝑡-Test

STATISTICAL TEST 2.1.1: Student’s 𝑡-test

• Purpose: Compare 𝜇1 versus 𝜇2 (assuming 𝜎1 = 𝜎2 are unknown).

• Test Statistic:

𝑇 =
( ̄𝑌1 − ̄𝑌2) −

0
⎴⎴⎴⎴(𝜇1 − 𝜇2)

�̂�√ 1
𝑛1

+ 1
𝑛2

∼ 𝑡(𝑛1 + 𝑛2 − 2)

– �̂� is our estimator.
– 𝑡(𝑛1 + 𝑛2 − 2) is our null distribution.

• Observed Version:
𝑡 =

( ̄𝑦1 − ̄𝑦2) − 0

�̂�√ 1
𝑛1

+ 1
𝑛2

= ̂𝜇1 − ̂𝜇2

�̂�√ 1
𝑛1

+ 1
𝑛2

– ̄𝑦𝑗 = 1
𝑛𝑗

𝑛𝑗

∑
𝑖=1

𝑦𝑖𝑗 = ̂𝜇𝑗.

– �̂�2 = (𝑛1 − 1)�̂�2
1 + (𝑛2 − 1)�̂�2

2
𝑛1 + 𝑛2 − 2

.

– �̂�2
𝑗 = 1

𝑛𝑗 − 1

𝑛𝑗

∑
𝑖=1

(𝑦𝑖𝑗 − ̄𝑦𝑗)
2.

• 𝑝-value Calculation:

– For H0: 𝜇1 = 𝜇2 versus HA: 𝜇1 ≠ 𝜇2, we compute 𝑝-value = ℙ(𝑇 ≥ |𝑡|) + ℙ(𝑇 ≤ −|𝑡|).
– For H0: 𝜇1 ≤ 𝜇2 versus HA: 𝜇1 > 𝜇2, we compute 𝑝-value = ℙ(𝑇 ≥ 𝑡).
– For H0: 𝜇1 ≥ 𝜇2 versus HA: 𝜇1 < 𝜇2, we compute 𝑝-value = ℙ(𝑇 ≤ 𝑡).

REMARK 2.1.2

In all cases above, 𝑇 ∼ 𝑡(𝑛1 + 𝑛2 − 2).
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2.1.2 When Assumptions are Invalid

STATISTICAL TEST 2.1.3: Welch’s 𝒕-test

• Purpose: Compare 𝜇1 versus 𝜇2 (assuming 𝜎1 ≠ 𝜎2 are unknown).

• Test Statistic: “Approximately,” we have

𝑇 =
( ̄𝑌1 − ̄𝑌2) −

0
⎴⎴⎴⎴(𝜇1 − 𝜇2)

√�̂�2
1

𝑛1
+ �̂�2

2
𝑛2

⋅∼ 𝑡(𝜈)

where

𝜈 =
(�̂�2

1
𝑛1

+ �̂�2
2

𝑛2
)

2

(�̂�2
1/𝑛1)2

𝑛1 − 1
+ (�̂�2

2/𝑛2)2

𝑛2

≈ min(𝑛1, 𝑛2) − 1

• Observed Version:
𝑡 =

( ̄𝑦1 − ̄𝑦2) − 0

√�̂�2
1

𝑛1
+ �̂�2

2
𝑛2

= ̂𝜇1 − ̂𝜇2

√�̂�2
1

𝑛1
+ �̂�2

2
𝑛2

• 𝑝-value Calculation: Same as Statistical Test 2.1.1, but where the null distribution is 𝑇 ∼ 𝑡(𝜈).

STATISTICAL TEST 2.1.4: 𝐹-test for Variances

• Purpose:

– H0: 𝜎2
1 = 𝜎2

2 versus HA: 𝜎2
1 ≠ 𝜎2

2.
– H0: 𝜎2

1/𝜎2
2 = 1 versus HA: 𝜎2

1/𝜎2
2 ≠ 1.

• Test Statistic:
𝑇 = �̂�2

1
�̂�2

2
∼ 𝐹(𝑛1 − 1, 𝑛2 − 1)

• Observed Version:
𝑡 = �̂�2

1
�̂�2

2
∈ R

• 𝑝-value Calculation:

– If 𝑡 ≥ 1, then 𝑝-value = ℙ(𝑇 ≥ 𝑡) + ℙ(𝑇 ≤ 1/𝑡).
– If 𝑡 < 1, then 𝑝-value = ℙ(𝑇 ≤ 𝑡) + ℙ(𝑇 ≥ 1/𝑡).

REMARK 2.1.5

In all cases above, 𝑇 ∼ 𝐹(𝑛1 − 1, 𝑛2 − 1).
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2.1.3 Example: Instagram Ad Frequency

EXAMPLE 2.1.6: Instagram Ad frequency

• Suppose that you are a data scientist at Instagram, and you are interested in running an
experiment to learn about the influence of ad frequency on user engagement.

• Currently, users see an ad every 8 posts in their social feed, but, in order to increase ad revenue,
your manager is pressuring your team to show an ad every 5 posts.

– Condition 1: 7:1 Ad Frequency
– Condition 2: 4:1 Ad Frequency

• You are justifiably nervous about this change, and you worry that this will substantially decrease
user engagement and hurt the overall user experience.

• The metric of interest you choose to optimize for is 𝜇 = average session time (where 𝑦 = the
length of time a user engages within the app, in minutes).

• The hypothesis here is:
H0: 𝜇1 ≤ 𝜇2 versus HA: 𝜇1 > 𝜇2

• The data summaries are:

– 𝑛1 = 500, ̂𝜇1 = ̄𝑦1 = 4.916, �̂�1 = 𝑠1 = 0.963.
– 𝑛2 = 500, ̂𝜇2 = ̄𝑦2 = 3.052, �̂�2 = 𝑠2 = 0.995.

𝐹-test:

• 𝑡 = �̂�2
1/�̂�2

2 = (0.963)2/(0.995)2 = 0.938.

• 𝑝-value = ℙ(𝑇 ≤ 0.938) + ℙ(𝑇 ≥ 1/0.938) = 0.472 where 𝑇 ∼ 𝐹(499, 499).

• This 𝑝-value is larger than any ordinary 𝛼, so we do not reject H0: 𝜎2
1 = 𝜎2

2, and so we
continue with Student’s 𝑡-test.

Student’s 𝑡-test:

• �̂�2 = 499(0.963)2 + 499(0.995)2

998
= (0.979)2.

• 𝑡 = 4.916 − 3.052

0.979√ 1
500 + 1

500

= 30.101.

• 𝑝-value = ℙ(𝑇 ≥ 30.101) = 1.838 × 10−142 where 𝑇 ∼ 𝑡(998).

• This 𝑝-value is much smaller than any typical 𝛼, and so we reject H0: 𝜇1 ≤ 𝜇2, and conclude
that increasing ad frequency significantly reduces average session duration.

[R Code] Comparing_two_means

https://github.com/Hextical/university-notes/blob/master/year-3/semester-3/STAT 430/code/W2/Comparing_two_means.R
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2.2 Comparing Proportions in Two Conditions
• Here, we restrict attention to the situation in which the response variable of interest is binary, indicating

whether an experimental unit did, or did not, perform some action of interest. In cases like these, we let

𝑌𝑖𝑗 = {
1 if unit 𝑖 in condition 𝑗 performs an action of interest
0 if unit 𝑖 in condition 𝑗 does not perform an action of interest

𝑖 = 1, 2, … , 𝑛𝑗

𝑗 = 1, 2

• Because the 𝑌𝑖𝑗’s are binary, it is common to assume that they follow a Bernoulli distribution; that is,
𝑌𝑖𝑗 ∼ Binomial(1, 𝜋𝑗) where 𝜋𝑗 represents the probability that 𝑌𝑖𝑗 = 1. That is, the probability that
unit 𝑖 from condition 𝑗 performs the “action of interest.”

• Using the observed data, we test hypotheses of the form:

– H0: 𝜋1 = 𝜋2 versus HA: 𝜋1 ≠ 𝜋2.
– H0: 𝜋1 ≤ 𝜋2 versus HA: 𝜋1 > 𝜋2.
– H0: 𝜋1 ≥ 𝜋2 versus HA: 𝜋1 < 𝜋2.

2.2.1 𝑍-tests for Proportions

STATISTICAL TEST 2.2.1: 𝑍-test for Proportions

• Purpose: Compare 𝜋1 versus 𝜋2.

• Test Statistic: “Approximately,” we have

𝑇 =
( ̄𝑌1 − ̄𝑌2) −

0
⎴⎴⎴⎴(𝜋1 − 𝜋2)

√ ̂𝜋(1 − ̂𝜋)( 1
𝑛1

+ 1
𝑛2

)

⋅∼ 𝒩(0, 1)

where ̂𝜋 = 𝑛 ̂𝜋1 + 𝑛2 ̂𝜋2
𝑛1 + 𝑛2

= # units who performed action
total # units in exp.

and ̂𝜋𝑗 = ̄𝑦𝑗.

• Observed Version:

𝑡 =
( ̄𝑦1 − ̄𝑦2) − 0

√ ̂𝜋(1 − ̂𝜋)( 1
𝑛1

+ 1
𝑛2

)

= ̂𝜋1 − ̂𝜋2

√ ̂𝜋(1 − ̂𝜋)( 1
𝑛1

+ 1
𝑛2

)

• 𝑝-value Calculation: The 𝑝-values are calculated in the same way as in the 𝑡-tests, except here
that 𝑇 ∼ 𝒩(0, 1).

2.2.2 Example: Optimizing Optimizely
EXAMPLE 2.2.2: Optimizing Optimizely

• During a website redesign, Optimizely was interested in how new versions of certain pages
influenced things like conversion and engagement relative to the old version.

• One outcome they were interested in was whether the redesigned homepage lead to a significant
increase in the number of new accounts created.

– Condition 1: original homepage.
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– Condition 2: redesigned homepage.

• The metric of interest here is 𝜋 = conversion rate (where 𝑦 = 1 if a homepage visitor signed up
and 0 otherwise).

• The hypothesis tested here is:
H0: 𝜋1 ≥ 𝜋2 versus HA: 𝜋1 < 𝜋2

• We summarize the data from this experiment in a 2 × 2 contingency table:

Condition
1 2

Conversion Yes 280 399 679
No 8592 8243 16835

8872 8642 17514

• ̂𝜋1 = 280/8872 = 0.032 and ̂𝜋2 = 399/8642 = 0.046. Thus,

̂𝜋 = 8872(0.032) + 8642(0.046)
17514

= 0.039

𝑡 = 0.032 − 0.046
√(0.039)(1 − 0.039)(1/8872 + 1/8642)

= −5.007

• 𝑝-value = ℙ(𝑇 ≤ −5.007) = 2.758 × 10−7 where 𝑇 ∼ 𝒩(0, 1).

• We reject H0 and conclude that the redesigned homepage significantly increases conversion rate.

• [R Code] Comparing_two_proportions

2.3 Power Analysis and Sample Size Calculations
• Used to control Type II Error.

• Power analyses help determine required sample sizes.

• Suppose, for illustration, that we are interested in testing the hypothesis:
H0: 𝜃1 = 𝜃2 versus HA: 𝜃1 ≠ 𝜃2

• Suppose, also for illustration, that the test statistic associated with this test has the form:

𝑇 =
( ̄𝑌1 − ̄𝑌2) −

0
⎴⎴⎴(𝜃1 − 𝜃2)

√𝕍(𝑌1)
𝑛

+ 𝕍(𝑌2)
𝑛

∼ 𝒩(0, 1)

DEFINITION 2.3.1: Rejection region

The rejection region, denoted ℛ, is all the values of the observed test statistic 𝑡 that would lead to
the rejection of H0:

ℛ = {𝑡 ∶ H0 is rejected}

• If 𝑡 ∈ ℛ, we reject H0.

https://github.com/Hextical/university-notes/blob/master/year-3/semester-3/STAT 430/code/W2/Comparing_two_proportions.R
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1−α

α 2α 2

−|t| −zα 2 −|t| |t|zα 2|t|0

p−value, we do not reject H0

p−value, we reject H0

Rejection Region

Figure 2.2: H0: 𝜃1 = 𝜃2 versus HA: 𝜃1 ≠ 𝜃2
ℛ = {𝑡 ∶ 𝑡 ≤ −𝑧𝛼/2 or 𝑡 ≥ 𝑧𝛼/2}

Rejection Region

1−α

α

zα0

Figure 2.3: H0: 𝜃1 ≤ 𝜃2 versus HA: 𝜃1 > 𝜃2
ℛ = {𝑡 ∶ 𝑡 ≥ 𝑧𝛼}

Rejection Region

1−α

α

−zα 0

Figure 2.4: H0: 𝜃1 ≥ 𝜃2 versus HA: 𝜃1 < 𝜃2
ℛ = {𝑡 ∶ 𝑡 ≤ −𝑧𝛼}
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• If 𝑡 ∈ ℛ𝑐, we do not reject H0.

• Defining Type I and Type II error rates in terms of a rejection region is also useful:

– 𝛼 = ℙ(Type I Error) = ℙ(Reject H0 | H0 is true) = ℙ(𝑇 ∈ ℛ | H0 is true).
– 𝛽 = ℙ(Type II Error) = ℙ(Do Not Reject H0 | H0 is false) = ℙ(𝑇 ∈ ℛ𝑐 | H0 is false).

1 − 𝛽 = Power
= 1 − ℙ(Type II Error)
= 1 − ℙ(𝑇 ∈ ℛ𝑐 | H0 is false)
= ℙ(𝑇 ∈ ℛ | H0 is false)

= ℙ(𝑇 ≥ 𝑧𝛼/2 ∪ 𝑇 ≤ −𝑧𝛼/2 ∣ H0 is false)

= ℙ(𝑇 ≥ 𝑧𝛼/2 ∣ H0 is false) + ℙ(𝑇 ≤ −𝑧𝛼/2 ∣ H0 is false)

= ℙ⎛⎜⎜
⎝

̄𝑌1 − ̄𝑌2

√ 𝕍(𝑌1)+𝕍(𝑌2)
𝑛

≥ 𝑧𝛼/2 ∣ H0 is false⎞⎟⎟
⎠

+ ℙ⎛⎜⎜
⎝

̄𝑌1 − ̄𝑌2

√ 𝕍(𝑌1)+𝕍(𝑌2)
𝑛

≤ −𝑧𝛼/2 ∣ H0 is false⎞⎟⎟
⎠

Assuming H0 is true, 𝜃1 − 𝜃2 = 0 and
̄𝑌1 − ̄𝑌2

√ 𝕍(𝑌1)+𝕍(𝑌2)
𝑛

∼ 𝒩(0, 1). However, H0 is false, which means that

𝜃1 − 𝜃2 = 𝛿 for some 𝛿 ≠ 0. Thus,
( ̄𝑌1 − ̄𝑌2) − 𝛿

√ 𝕍(𝑌1)+𝕍(𝑌2)
𝑛

∼ 𝒩(0, 1)

Therefore, we need to account for this. Let 𝑍 ∼ 𝒩(0, 1), then

1 − 𝛽 = ℙ⎛⎜⎜
⎝

( ̄𝑌1 − ̄𝑌2) − 𝛿

√ 𝕍(𝑌1)+𝕍(𝑌2)
𝑛

≥ 𝑧𝛼/2 − 𝛿

√ 𝕍(𝑌1)+𝕍(𝑌2)
𝑛

⎞⎟⎟
⎠

+ ℙ⎛⎜⎜
⎝

( ̄𝑌1 − ̄𝑌2) − 𝛿

√ 𝕍(𝑌1)+𝕍(𝑌2)
𝑛

≤ −𝑧𝛼/2 − 𝛿

√ 𝕍(𝑌1)+𝕍(𝑌2)
𝑛

⎞⎟⎟
⎠

= ℙ⎛⎜⎜
⎝

𝑍 ≥ 𝑧𝛼/2 − 𝛿

√ 𝕍(𝑌1)+𝕍(𝑌2)
𝑛

⎞⎟⎟
⎠

+ ℙ⎛⎜⎜
⎝

𝑍 ≤ −𝑧𝛼/2 − 𝛿

√ 𝕍(𝑌1)+𝕍(𝑌2)
𝑛

⎞⎟⎟
⎠

Think about what happens to these terms when 𝛿 is positive versus negative. Without loss of generality,
assume 𝛿 > 0, in which case

1 − 𝛽 = ℙ⎛⎜⎜
⎝

𝑍 ≥ 𝑧𝛼/2 − 𝛿

√ 𝕍(𝑌1)+𝕍(𝑌2)
𝑛

⎞⎟⎟
⎠

We know that ℙ(𝑍 ≥ 𝑧1−𝛽) = 1 − 𝛽, therefore

𝑧1−𝛽 = 𝑧𝛼/2 − 𝛿

√ 𝕍(𝑌1)+𝕍(𝑌2)
𝑛

Doing some algebra yields

𝑛 =
(𝑧𝛼/2 − 𝑧1−𝛽)2[𝕍(𝑌1) + 𝕍(𝑌2)]

𝛿2

• 𝕍(𝑌1) and 𝕍(𝑌2) are the variances of the response in the two conditions. This needs to be guessed or
determined by historical information.

• 𝛿 = 𝜃1 − 𝜃2 is called the minimum detectable effect (MDE).
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DEFINITION 2.3.2: Minimum detectable effect (MDE)

The minimum detectable effect, denoted 𝛿, is the smallest difference between conditions (i.e,
between 𝜃1 and 𝜃2) that we find to be practically relevant and that we would like to detect as
being statistically significant.

Week 3

2.4 Permutation and Randomization Tests
• All the previous tests have made some kind of distributional assumption for the response measurements,

such as 𝑌𝑖𝑗 ∼ 𝒩(𝜇𝑗, 𝜎2) or 𝑌𝑖𝑗 ∼ Binomial(1, 𝜋𝑗).

• It would be preferable to have a test that does not rely on any assumptions.

• This is precisely the purpose of permutation and randomization tests.

– These tests are non-parametric and rely on resampling.
– The motivation is that if H0: 𝜃1 = 𝜃2 is true, any random rearrangement of the data is equally

likely to have been observed. If H0 is true, then we have a single population/distribution from
which our data has been drawn.

– With 𝑛1 and 𝑛2 units in each condition, there are

(𝑛1 + 𝑛2
𝑛1

) = (𝑛1 + 𝑛2
𝑛2

)

arrangements of the 𝑛1 + 𝑛2 observations into two groups of size 𝑛1 and 𝑛2 respectively.

𝑛1 = 𝑛2 = 50 ⟹ (𝑛1 + 𝑛2
𝑛1

) = (100
50

) = 1.009 × 1029

• A true permutation test considers all possible rearrangements of the original data.

– The test statistic 𝑡 is calculated on the original data and on every one of its rearrangements.
– This collection of test statistic values generate the empirical null distribution.

• In a randomization test, we do not consider all possible rearrangements.

– We just consider a large number 𝑁 of them.
– We use this in practice instead of a permutation test because the exact permutation tests have too

many permutations to consider.

Randomization Test Algorithm

1. Collect response observations in each condition.

{𝑦11, 𝑦21, … , 𝑦𝑛11} → ̂𝜃1

{𝑦12, 𝑦22, … , 𝑦𝑛22} → ̂𝜃2

2. Calculate the test statistic 𝑡 on the original data.

𝑡 = ̂𝜃1 − ̂𝜃2 or 𝑡 =
̂𝜃1
̂𝜃2
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3. Pool all the observations together and randomly sample (without replacement) 𝑛1 observations
which will be assigned to “Condition 1” and the remaining 𝑛2 observations that are assigned to
“Condition 2.” Repeat this 𝑁 times.

{𝑦⋆
11, 𝑦⋆

21, … , 𝑦⋆
𝑛11} → ̂𝜃⋆

1

{𝑦⋆
12, 𝑦⋆

22, … , 𝑦⋆
𝑛22} → ̂𝜃⋆

2

4. Calculate the test statistic 𝑡⋆
𝑘 on each of the “shuffled” datasets, 𝑘 = 1, 2, … , 𝑁.

𝑡⋆
𝑘 = ̂𝜃⋆

1,𝑘 − ̂𝜃⋆
2,𝑘 or 𝑡⋆

𝑘 =
̂𝜃⋆
1,𝑘
̂𝜃⋆
2,𝑘

5. Compare to 𝑡 to {𝑡⋆
1, 𝑡⋆

2, … , 𝑡⋆
𝑁}, the empirical null distribution, and calculate the 𝑝-value:

𝑝-value = # of 𝑡⋆’s that are at least as extreme as 𝑡
𝑁

= 1
𝑁

𝑁
∑
𝑘=1

𝕀{𝑡⋆
𝑘 at least as extreme as 𝑡}

• H0: 𝜃1 = 𝜃2 versus HA: 𝜃1 ≠ 𝜃2. If 𝑡 = ̂𝜃1 − ̂𝜃2, then the 𝑝-value is:

𝑝-value = 1
𝑁

𝑁
∑
𝑘=1

𝕀{𝑡⋆
𝑘 ≥ |𝑡| ∪ 𝑡⋆

𝑘 ≤ −|𝑡|}

• H0: 𝜃1 ≥ 𝜃2 versus HA: 𝜃1 < 𝜃2. If 𝑡 = ̂𝜃1 − ̂𝜃2, then the 𝑝-value is:

𝑝-value = 1
𝑁

𝑁
∑
𝑘=1

𝕀{𝑡⋆
𝑘 ≤ 𝑡}

• H0: 𝜃1 ≤ 𝜃2 versus HA: 𝜃1 > 𝜃2. If 𝑡 = ̂𝜃1 − ̂𝜃2, then the 𝑝-value is:

𝑝-value = 1
𝑁

𝑁
∑
𝑘=1

𝕀{𝑡⋆
𝑘 ≥ 𝑡}

EXAMPLE 2.4.1: Pokémon Go

• Suppose that Niantic Inc, is experimenting with two different promotions within Pokémon Go:

– Condition 1: Give users nothing.
– Condition 2: Give users 200 free Pokécoins.
– Condition 3: Give users a 50 % discount on Shop purchases.

• In a small pilot experiment, we randomize 𝑛1 = 𝑛2 = 𝑛3 = 100 users to each condition.

• For each user, we record the amount of real money (in USD) they spend in the 30 days following
the experiment.

• The data summaries are:

– ̄𝑦1 = $ 10.740, 𝑄𝑦1
(0.5) = $ 9.000.

– ̄𝑦2 = $ 9.530, 𝑄𝑦2
(0.5) = $ 8.000.



CHAPTER 2. EXPERIMENTS WITH TWO CONDITIONS 22

– ̄𝑦3 = $ 13.410, 𝑄𝑦3
(0.5) = $ 10.000.

Using R, we performed a randomization test with 𝑁 = 10 000 with respect to the mean we found
that the control and free coin conditions did not significantly differ. But there was a significant
increase in the amount of money spent in the discount condition relative to the other two.

The hypotheses that we tested to determine these conclusions were:
H0: 𝜇1 = 𝜇2 versus HA: 𝜇1 ≠ 𝜇2
H0: 𝜇1 ≥ 𝜇2 versus HA: 𝜇1 < 𝜇2

Interestingly, when you run these same tests, but on the basis of the median, we find no significant
difference between any of the conditions.

• [R Code] Randomization_test

https://github.com/Hextical/university-notes/blob/master/year-3/semester-3/STAT 430/code/W3/Randomization_test.R


Chapter 3

EXPERIMENTS WITH MORE
THAN TWO CONDITIONS

Anatomy of an “A/B/𝑚” Test
• One design factor at 𝑚 levels.

• We will now consider a design and analysis of an experiment consisting of more than two experimental
conditions — or what many data scientists broadly refer to as “A/B/𝑚 Testing.”

– Canonical A/B/𝑚 test:

CLICK ME CLICK ME CLICK ME CLICK ME

Figure 3.1: Canonical Button Colour Test.

What colour maximizes click-through rate?

• Other, more tangible, examples:

– Netflix.
– Etsy.

• Typically, the goal of such an experiment is to decide which condition is optimal with respect to some
metric of interest 𝜃. This could be a:

– mean
– proportion
– variance
– quantile
– technically any statistic that can be calculated from sample data

• From a design standpoint, such an experiment is very similar to a two-condition experiment.

1. Choose a metric of interest 𝜃 which addresses the question you are trying to answer.
2. Determine the response variable 𝑦 that must be measured on each unit to estimate ̂𝜃.
3. Choose the design factor 𝑥 and the 𝑚 levels you will experiment with.

23
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4. Choose 𝑛1, 𝑛2, … , 𝑛𝑚 and assign units to conditions at random.
5. Collect the data and estimate the metric of interest in each condition:

̂𝜃1, ̂𝜃2, … , ̂𝜃𝑚

• Determining which condition is optimal typically involves a series of pairwise comparisons: 𝑡-tests,
𝑧-tests, or randomization tests.

• But it is useful to begin such an investigation with a gatekeeper test (test of overall equality) which
serves to determine whether there is any difference between the 𝑚 experimental conditions. Formally,
we phrase such a question as the following statistical hypothesis:

H0: 𝜃1 = 𝜃2 = ⋯ = 𝜃𝑚 versus HA: 𝜃𝑗 ≠ 𝜃𝑘 for some 𝑗 ≠ 𝑘
In the case of means:

H0: 𝜇1 = 𝜇2 = ⋯ = 𝜇𝑚 versus HA: 𝜇𝑗 ≠ 𝜇𝑘 for some 𝑗 ≠ 𝑘
In the case of proportions:

H0: 𝜋1 = 𝜋2 = ⋯ = 𝜋𝑚 versus HA: 𝜋𝑗 ≠ 𝜋𝑘 for some 𝑗 ≠ 𝑘

3.1 Comparing Means in Multiple Conditions
• We assume that our response variable follows a normal distribution, and we assume that the mean of

the distribution depends on the condition in which we take the measurements, and that the variance is
the same across all conditions.

𝑌𝑖𝑗 ∼ 𝒩(𝜇𝑗, 𝜎2) for 𝑖 = 1, 2, … , 𝑛𝑗 and 𝑗 = 1, 2, … , 𝑚

• We use an 𝐹-test to test for means:
H0: 𝜇1 = 𝜇2 = ⋯ = 𝜇𝑚 versus HA: 𝜇𝑗 ≠ 𝜇𝑘 for some 𝑗 ≠ 𝑘

3.1.1 The 𝐹-test for Overall Significance in a Linear Regression
• In particular, we use the 𝐹-test for overall significance in an appropriately defined linear regression

model:

– The appropriately defined linear regression model in this situation is one in which the response
variable depends on 𝑚 − 1 indicator variables:

𝑥𝑖𝑗 = {
1 if unit 𝑖 is in condition 𝑗
0 otherwise

for 𝑗 = 1, 2, … , 𝑚 − 1.

– For a particular unit 𝑖, we adopt the model:

𝑌𝑖 = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + ⋯ + 𝛽𝑚−1𝑥𝑖,𝑚−1 + 𝜀𝑖

∗ 𝑌𝑖 = response observation for unit 𝑖 = 1, 2, … , 𝑁 = ∑𝑚
𝑗=1 𝑛𝑗.

∗ 𝜀𝑖 = random error term which we assume follows a 𝒩(0, 𝜎2) distribution independently for all
𝑖 = 1, 2, … , 𝑁.

∗ Because we’re about to do a regression analysis, the usual residual diagnostics are relevant.
– In this model the 𝛽’s are unknown parameters, and we interpret them in the context of the

following expectations:
∗ Expected response in condition 𝑚:

𝔼[𝑌𝑖 | 𝑥𝑖1 = 𝑥𝑖2 = ⋯ = 𝑥𝑖,𝑚−1 = 0] = 𝛽0 = 𝜇𝑚
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∗ Expected response in condition 𝑗:

𝔼[𝑌𝑖 | 𝑥𝑖𝑗 = 1] = 𝛽0 + 𝛽𝑗 = 𝜇𝑗 for 𝑗 = 1, 2, … , 𝑚 − 1

∗ 𝛽0 is the expected response in condition 𝑚.
∗ 𝛽𝑗 is the expected difference in response value in condition 𝑗 versus condition 𝑚 for 𝑗 =

1, 2, … , 𝑚 − 1.

𝜇1 = 𝛽0 + 𝛽1

𝜇2 = 𝛽0 + 𝛽2

⋮
𝜇𝑚−1 = 𝛽0 + 𝛽𝑚−1

𝜇𝑚 = 𝛽0

– Based on these assumptions H0: 𝜃1 = 𝜃2 = ⋯ = 𝜃𝑚 is true if and only if 𝛽1 = 𝛽2 = ⋯ = 𝛽𝑚−1 = 0,
and hence is equivalent to testing:

H0: 𝛽1 = 𝛽2 = ⋯ = 𝛽𝑚−1 = 0 versus HA: 𝛽𝑗 ≠ 0 for some 𝑗
– This hypothesis corresponds, as noted, to the 𝐹-test for overall significance in the model.

• In regression parlance, the test statistic is the ratio of the regression mean squares (MSR) to the mean
squared error (MSE) in a standard regression-based analysis of variance (ANOVA):

𝑡 = MSR
MSE

• In our setting we can more intuitively think of the test statistic as comparing the response variability
between conditions to the response variability within conditions:

– Average response in condition 𝑗: ̄𝑦•𝑗 = 1
𝑛𝑗

𝑛𝑗

∑
𝑖=1

𝑦𝑖𝑗.

– Overall average response: ̄𝑦•• = 1
𝑁

𝑚
∑
𝑗=1

𝑛𝑗

∑
𝑖=1

𝑦𝑖𝑗 = 1
𝑁

𝑚
∑
𝑗=1

𝑛𝑗 ̄𝑦•𝑗.

– Quantifies variability between conditions: SSC =
𝑚

∑
𝑗=1

𝑛𝑗

∑
𝑖=1

( ̄𝑦•𝑗 − ̄𝑦••)2.

– Quantifies variability within conditions: SSE =
𝑚

∑
𝑗=1

𝑛𝑗

∑
𝑖=1

(𝑦𝑖𝑗 − ̄𝑦•𝑗)
2.

– Quantifies overall variability: SST =
𝑚

∑
𝑗=1

𝑛𝑗

∑
𝑖=1

(𝑦𝑖𝑗 − ̄𝑦••)2 = SSC + SSE.

• The null distribution for this test is 𝐹(𝑚 − 1, 𝑁 − 𝑚).

• 𝑝-value = ℙ(𝑇 ≥ 𝑡) where 𝑇 ∼ 𝐹(𝑚 − 1, 𝑁 − 𝑚).

• If H0: 𝜇1 = ⋯ = 𝜇𝑚 is true, then 𝔼[MSC] = 𝜎2 and 𝔼[MSE] = 𝜎2.
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Table 3.1: ANOVA Table

Source SS d.f. MS Test Statistic
Condition SSC 𝑚 − 1 MSC = SSC/(𝑚 − 1) 𝑡 = MSC/MSEError SSE 𝑁 − 𝑚 MSE = SSE/(𝑁 − 𝑚)
Total SST 𝑁 − 1

3.1.2 Example: Candy Crush Boosters
• Candy Crush is experimenting with three different versions of in-game “boosters”: the lollipop hammer,

the jelly fish, and the colour bomb.

• We randomize each user to one of these three conditions (𝑛1 = 121, 𝑛2 = 135, 𝑛3 = 117) and they
receive (for free) 5 boosters corresponding to their condition. Interest lies in evaluating the effect of
these different boosters on the length of time a user plays the game.

• Let 𝜇𝑗 represent the average length of game play (in minutes) associated with booster condition
𝑗 = 1, 2, 3. While interest lies in finding the condition associated with the longest average length of
game play, here we first rule out the possibility that booster type does not influence the length of game
play (i.e., 𝜇1 = 𝜇2 = 𝜇3).

• In order to do this we fit the linear regression model:

𝑌 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝜀

where 𝑥1 and 𝑥2 are indicator variables indicating whether we observe a particular value of the response
in the jelly fish or colour bomb conditions, respectively. The lollipop hammer is therefore the reference
condition.

• In R, we found that the test statistic for testing:
H0: 𝜇1 = 𝜇2 = 𝜇3 versus HA: 𝜇𝑗 ≠ 𝜇𝑘 for some 𝑗 ≠ 𝑘

was 𝑡 = 851.895 and the null distribution was 𝑇 ∼ 𝐹(2, 370). The corresponding 𝑝-value was:

𝑝-value = ℙ(𝑇 ≥ 851.895) = 3.280 × 10−139

• Therefore, we have very strong evidence against H0 and conclude that the average length of game play
is not the same in the three booster conditions.

• [R Code] Comparing_multiple_means

3.2 Comparing Proportions in Multiple Conditions
• As is always the case when comparing proportions is of interest, we assume that our response variable

is binary:

𝑌𝑖𝑗 = {
1 if unit 𝑖 in condition 𝑗 performs an action of interest
0 if unit 𝑖 in condition 𝑗 does not perform an action of interest

𝑖 = 1, 2, … , 𝑛𝑗

𝑗 = 1, 2, … , 𝑚

• 𝑌𝑖𝑗 ∼ Binomial(1, 𝜋𝑗) where 𝜋𝑗 is the probability of a unit in condition 𝑗 performing the action.

• We use a chi-squared test of independence (Pearson 𝜒2 test) to test for proportions:
H0: 𝜋1 = 𝜋2 = ⋯ = 𝜋𝑚 versus HA: 𝜋𝑗 ≠ 𝜋𝑘 for some 𝑗 ≠ 𝑘.

https://github.com/Hextical/university-notes/blob/master/year-3/semester-3/STAT 430/code/W3/Comparing_multiple_means.R
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3.2.1 The Chi-squared Test of Independence
• We use the chi-squared test of independence as a test for ‘no association’ between two categorical

variables that are summarized in a contingency table.

• We apply this methodology here to test the independence of the binary outcome (whether a unit
performs the action of interest) and the particular condition they are in.

• To start, let’s assume that 𝑚 = 2, and let’s use the Optimizely experiment as a reference.

– If 𝜋1 = 𝜋2 = 𝜋, then we would expect the conversion rate in each condition to be the same.
– An estimate of the pooled conversion rate in this case is ̂𝜋 = 679/17514 = 0.039.
– Let 𝑋 = number of conversions in a condition with 𝑛 units, therefore 𝑋 ∼ Binomial(𝑛, 𝜋) where

𝔼[𝑋] = 𝑛𝜋.
– Therefore, we would expect 𝑛1 ̂𝜋 = 8872(0.039) = 343.958 conversions in condition 1, and 𝑛2 ̂𝜋 =

8642(0.039) = 335.042 conversions in condition 2.
– The chi-squared test formally evaluates if the difference between what was observed and what is

expected under the null hypothesis is large enough to be considered significantly different.
– The general 2 × 2 contingency table for a scenario like this is shown in Table 3.2.

Table 3.2: A General 2 × 2 Contingency Table
Condition
1 2

Conversion Yes 𝑂1,1 𝑂1,2 𝑂1
No 𝑂0,1 𝑂0,2 𝑂0

𝑛1 𝑛2 𝑛1 + 𝑛2

∗ 𝑂ℓ,𝑗: observed number of conversions (ℓ = 1), and the observed number of non-conversions
(ℓ = 0) in condition 𝑗 = 1, 2.

∗ 𝑂ℓ: overall number of conversions (ℓ = 1) or non-conversions (ℓ = 0)
– So,

̂𝜋 = 𝑂1
𝑛1 + 𝑛2

and 1 − ̂𝜋 = 𝑂0
𝑛1 + 𝑛2

represent the overall proportions of units that did or did not convert, and they are estimates of
overall conversion and non-conversion rates.

– Let 𝐸1,𝑗 and 𝐸0,𝑗 represent the expected number of conversions and non-conversions in condition
𝑗 = 1, 2,

𝐸1,𝑗 = 𝑛𝑗 ̂𝜋 and 𝐸0,𝑗 = 𝑛𝑗(1 − ̂𝜋)
∗ This is what we expect if H0: 𝜋1 = 𝜋2 is true.

– The 𝜒2 test statistic compares the observed count in each cell to the corresponding expected count,
and is defined as

𝑇 =
1

∑
ℓ=0

2
∑
𝑗=1

(𝑂ℓ𝑗
− 𝐸ℓ,𝑗)2

𝐸ℓ,𝑗
∼ 𝜒2(1)

– 𝑝-value = ℙ(𝑇 ≥ 𝑡) where 𝑇 ∼ 𝜒2(1).
– Returning to the Optimizely example, the expected table is Table 3.3.
– And the resultant test statistic and 𝑝-value are:

𝑡 = (280 − 343.958)2

343.958
+ (399 − 335.042)2

335.042
+ (8592 − 8528.042)2

8528.042
+ (8243 − 8306.958)2

8306.958
= 25.075

𝑝-value = ℙ(𝑇 ≥ 25.075) = 5.516 × 10−7 where 𝑇 ∼ 𝜒2(1)
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Table 3.3: 2 × 2 Contingency Table for Optimizely’s Homepage Experiment
Condition

1 2

Conversion Yes 343.958 335.042 679
No 8528.042 8306.958 16835

8872 8642 17514

• Let’s now extend this for 𝑚 > 2.

– We’ve used the chi-squared test is a test of ‘no association’ between the binary outcome (whether
a unit performs the action of interest) and the particular condition they are in.
∗ But there is no requirement that there be only two conditions.
∗ Here we generalize the test to any number of experimental conditions.

– The information associated with this test can be summarized in a 2 × 𝑚 contingency table as seen
in Table 3.4.

Table 3.4: A General 2 × 𝑚 Contingency Table
Condition

1 2 ⋯ 𝑚

Conversion Yes 𝑂1,1 𝑂1,2 ⋯ 𝑂1,𝑚 𝑂1
No 𝑂0,1 𝑂0,2 ⋯ 𝑂0,𝑚 𝑂0

𝑛1 𝑛2 ⋯ 𝑛𝑚 𝑁 = ∑𝑚
𝑗=1 𝑛𝑗

∗ # of conversions (ℓ = 1) or non-conversions (ℓ = 0) is condition 𝑗 = 1, 2.
∗ ̂𝜋 = 𝑂1/𝑁.
∗ 1 − ̂𝜋 = 𝑂0/𝑁.

– We compare each of the observed frequencies 𝑂1,𝑗 with the corresponding expected frequency 𝐸ℓ,𝑗.

𝐸1,𝑗 = 𝑛𝑗 ̂𝜋 and 𝐸0,𝑗 = 𝑛𝑗(1 − ̂𝜋)

∗ Expected number of conversions/non-conversions in condition 𝑗 assuming H0: 𝜋1 = 𝜋2 = ⋯ =
𝜋𝑚 is true.

– The 𝜒2 test statistic compares the observed count in each cell to the corresponding expected count,
and is defined as:

𝑇 =
1

∑
ℓ=0

𝑚
∑
𝑗=1

(𝑂ℓ,𝑗 − 𝐸ℓ,𝑗)2

𝐸ℓ𝑗

∼ 𝜒2(𝑚 − 1)

– 𝑝-value = ℙ(𝑇 ≥ 𝑡) where 𝑇 ∼ 𝜒2(𝑚 − 1).

3.2.2 Example: Nike SB Video Ads
• Suppose that Nike is running an ad campaign for Nike SB, their skateboarding division, and the

campaign involves 𝑚 = 5 different video ads that are being shown in Facebook newsfeeds.

• A video ad is ‘viewed’ if it is watched for longer than 3 seconds, and interest lies in determining which
ad is most popular and hence most profitable by comparing the viewing rates of the five different videos.

• We show each of these 5 videos to 𝑛1 = 5014, 𝑛2 = 4971, 𝑛3 = 5030, 𝑛4 = 5007, and 𝑛5 = 4980 users,
and summarize the results in Table 3.5.
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Table 3.5: A 2 × 5 Observed Contingency Table for the Nike Example
Condition

1 2 3 4 5

View Yes 160 95 141 293 197 886
No 4854 4876 4889 4714 4783 24116

5014 4971 5030 5007 4980 25002

• The overall watch rate (and its complement) are:

̂𝜋 = 𝑂1
𝑁

= 886
25002

= 0.0354 and 1 − ̂𝜋 = 24116
25002

= 0.9649

• We multiply 𝑛𝑗 by ̂𝜋 and (1 − ̂𝜋) for 𝑗 = 1, 2, 3, 4, 5 to get the expected cell frequencies in Table 3.6.

Table 3.6: A 2 × 5 Expected Contingency Table for the Nike Example
Condition

1 2 3 4 5

View Yes 177.68 176.16 178.25 177.43 176.48 886
No 4836.32 4794.84 4851.75 4829.57 4803.52 24116

5014 4971 5030 5007 4980 25002

• The resultant test statistic and 𝑝-value (where 𝑇 ∼ 𝜒2(4)) are:

𝑡 =
1

∑
ℓ=0

𝑚
∑
𝑗=1

(𝑂ℓ,𝑗 − 𝐸ℓ,𝑗)2

𝐸ℓ,𝑗
= 129.1686

𝑝-value = ℙ(𝑇 ≥ 129.1686) = 5.86 × 10−27

• Therefore, we reject H0: 𝜋1 = 𝜋2 = ⋯ = 𝜋5 and conclude that the “watch-rate” is not the same for
each of the video ads.

• [R Code] Comparing_multiple_proportions

Week 4

3.3 The Problem of Multiple Comparisons
• We have seen that “gatekeeper” tests of overall equality such as:

H0: 𝜃1 = 𝜃2 = ⋯ = 𝜃𝑚 versus HA: 𝜃𝑗 ≠ 𝜃𝑘 for some 𝑗 ≠ 𝑘
are often rejected.

• We may follow this up with a series of pairwise comparisons to determine which condition(s) is (are)
optimal.

– We already know how to do this!
∗ 𝑍-tests, 𝑡-tests, 𝐹-tests, 𝜒2-tests, randomization tests.

• HOWEVER, when doing multiple comparisons like this, we encounter the multiple comparison or
multiple testing problem.

– Type I Errors are more likely to occur in a family of tests than an individual test.

• To frame this discussion, let’s define some notation:

https://github.com/Hextical/university-notes/blob/master/year-3/semester-3/STAT 430/code/W3/Comparing_multiple_proportions.R
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– 𝑀: the number of hypotheses tested.
– 𝑀0: the number of true null hypotheses.
– 𝑀𝐴: the number of false null hypotheses.
– 𝑅: the number of null hypotheses that we reject.
– 𝑀 − 𝑅: the number of null hypotheses that we don’t reject.
– 𝑉: the number of true null hypotheses that were incorrectly rejected; that is, the number of Type

I Errors.
– 𝑆: the number of false null hypotheses that were incorrectly rejected.
– 𝑈: the number of true null hypotheses that were correctly accepted.
– 𝑇: the number of false null hypotheses that were incorrectly accepted; that is, the number of Type

II Errors.
– 𝑀 = 𝑀0 + 𝑀𝐴.

• We summarize the outcomes of these 𝑀 decisions in Table 3.7.

Table 3.7: Outcomes From 𝑀 Simultaneous Hypothesis Tests
Decision

Reject H0 Accept H0

Truth H0 is True 𝑉 𝑈 𝑀0
H0 is False 𝑆 𝑇 𝑀𝐴

𝑅 𝑀 − 𝑅 𝑀

– 𝑅 and 𝑀 − 𝑅 are observable.
– 𝑀0, 𝑀𝐴, 𝑉 , 𝑈, 𝑆, 𝑇 are random variables; that is, the random process of collecting data and testing

the 𝑀 hypotheses determines their values. Therefore, they are all unobservable.

• Ideally, we would like 𝑉 and 𝑇 to be small.

– 𝑇 is controlled via sample size as it is related to power.
– We control functions of 𝑉 with sophisticated and clever statistical methods.

3.3.1 Family-Wise Error Rate

DEFINITION 3.3.1: Family-wise error rate

The family-wise error rate is the probability of committing a Type I Error in any of the 𝑀 hypothesis
tests.

FWER = ℙ(𝑉 ≥ 1)

That is, the probability of making at least one Type I Error in 𝑀 tests.

• If we use a significance level of 𝛼 for each of the 𝑀 tests, the FWER will be much greater than 𝛼.

• Boole’s Inequality, which is ℙ(𝐴 ∪ 𝐵) = ℙ(𝐴) + ℙ(𝐵) − ℙ(𝐴 ∩ 𝐵) ≤ ℙ(𝐴) + ℙ(𝐵), provides an upper
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bound:

FWER = ℙ(𝑉 ≥ 1)
= ℙ(At least one Type I Error in 𝑀 tests)

= ℙ(
𝑀
⋃
𝑘=1

Type I Error on test 𝑘)

≤
𝑀

∑
𝑘=1

ℙ(Type I Error on test 𝑘) Boole’s Inequality

=
𝑀

∑
𝑘=1

𝛼

= 𝑀𝛼

EXAMPLE 3.3.2: FWER

If 𝑀 = 10 and 𝛼 = 0.05, then FWER ≤ 0.5.

• If we’re willing to assume that the 𝑀 tests are independent then:

FWER = ℙ(𝑉 ≥ 1)
= ℙ(At least one Type I Error in 𝑀 tests)
= 1 − ℙ(No Type I Error in 𝑀 tests)

= 1 − ℙ(
𝑀
⋂
𝑘=1

No Type I Error on test 𝑘)

= 1 −
𝑀
∏
𝑘=1

ℙ(No Type I Error on test 𝑘) by independence

= 1 −
𝑀
∏
𝑘=1

(1 − 𝛼)

= 1 − (1 − 𝛼)𝑀

• This error rate, as a function of 𝑀 can be seen in Figure 3.2. As 𝑀 increases, FWER also increases. In
fact, lim

𝑀→∞
FWER = 1.

• A common value of 𝑀 is (𝑚
2 ): the number of pairwise comparisons necessary to compare each condition

to every other condition.

EXAMPLE 3.3.3

If 𝑚 = 5 and 𝛼 = 0.05, then 𝑀 = (5
2) = 10. Therefore, FWER = 1 − (1 − 0.05)10 = 0.4013.

• Available to us are a variety of different statistical techniques that may be used to ensure the FWER
does not exceed some threshold.

FWER ≤ 𝛼⋆ ∈ [0, 1]

REMARK 3.3.4: General Notation

– Denote the 𝑀 null hypotheses as: H0,1, H0,2, … , H0,𝑀.

– Denote their corresponding 𝑝-values as: 𝑝1, 𝑝2, … , 𝑝𝑀.
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Figure 3.2: Family-Wise Error Rate Versus the Number of Hypothesis Tests, 𝑀.

EXAMPLE 3.3.5

Suppose we test 𝑀 = 4 hypotheses, and the resulting 𝑝-values are 𝑝1 = 0.015, 𝑝2 = 0.029,
𝑝3 = 0.008, and 𝑝4 = 0.026.

The Bonferroni Correction

• This is the simplest method.

• Reject H0,𝑘 if

𝑝𝑘 ≤ 𝛼⋆

𝑀
for 𝑘 = 1, 2, … , 𝑀

So, we test all 𝑀 hypotheses at a significance level of 𝛼⋆/𝑀.

• The procedure ensures FWER ≤ 𝛼⋆. From Boole’s Inequality, we know that

FWER ≤ 𝑀(𝛼⋆

𝑀
) = 𝛼⋆

• If we assume independence, the Bonferroni-corrected FWER becomes

1 − (1 − 𝛼⋆

𝑀
)

𝑀

Taking the limit of 𝑀 → ∞ yields,

lim
𝑀→∞

[1 − (1 − 𝛼⋆

𝑀
)

𝑀

] = 1 − 𝑒−𝛼⋆

which for typical values of 𝛼⋆ in the range of ]0, 0.1] is approximately equal to 𝛼⋆. For example, if
𝛼⋆ = 0.1, then the error is ≈ 0.005. The asymptotic error rate and line of equality can be seen
in Figure 3.3.
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Figure 3.3: Illustration of the Bonferroni Correction for Asymptotically Large 𝑀.

EXAMPLE 3.3.6: Four-test Example — Bonferroni Correction

Let 𝑝1 = 0.015, 𝑝2 = 0.029, 𝑝3 = 0.008, and 𝑝4 = 0.026. Suppose that we wish to ensure FWER ≤
𝛼⋆ = 0.05.

Under the Bonferroni Correction, we compare each 𝑝-value to 𝛼⋆/𝑀 = 0.05/4 = 0.0125. Only
𝑝3 < 0.0125, and hence only H0,3 is rejected.

The Šidák Correction

• This approach exploits the FWER formula derived when we assumed the 𝑀 tests were independent.

• Reject H0,𝑘 if
𝑝𝑘 ≤ 1 − (1 − 𝛼⋆)1/𝑀 for 𝑘 = 1, 2, … , 𝑀

REMARK 3.3.7

Where does the Šidák Correction come from?

𝛼⋆ = FWER = 1 − (1 − 𝛼)𝑀 ⟺ 1 − 𝛼⋆ = (1 − 𝛼)𝑀

⟺ (1 − 𝛼⋆)1/𝑀 = 1 − 𝛼
⟺ 𝛼 = 1 − (1 − 𝛼⋆)1/𝑀

• This is actually not much different from the Bonferroni correction since

𝛼⋆

𝑀
≈ 1 − (1 − 𝛼⋆)1/𝑀

EXAMPLE 3.3.8: Bonferroni versus Šidák Correction

Let 𝛼⋆ = 0.05 and 𝑀 = 10. Then, 𝛼⋆/𝑀 = 0.005, and 1 − (1 − 𝛼⋆)1/𝑀 = 0.005116.
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EXAMPLE 3.3.9: Four-test Example — Šidák Correction

Let 𝑝1 = 0.015, 𝑝2 = 0.029, 𝑝3 = 0.008, and 𝑝4 = 0.026. Suppose that we wish to ensure FWER ≤
𝛼⋆ = 0.05.

Under the Šidák Correction, we have

1 − (1 − 𝛼⋆)1/𝑀 = 1 − (0.95)0.25 = 0.012741

Therefore, we only reject H0,3 since only 𝑝3 < 0.012741.

Holm’s “Step-Up” Procedure

• The Bonferroni and Šidák corrections methods are very strict for large 𝑀.

– In these cases most null hypotheses will not be rejected.
– If we’re too strict, we basically stop rejecting null hypotheses thereby eliminating Type I Errors,

but we increase the Type II Errors.

• Ideally we would have an approach that is less strict but still controls the FWER at some 𝛼⋆.

• This is exactly what Holm’s Procedure gives us!

1. Order the 𝑀 𝑝-values from smallest to largest:

𝑝(1), 𝑝(2), … , 𝑝(𝑀)

where 𝑝(𝑘) is the 𝑘th smallest 𝑝-value.
2. Starting from 𝑘 = 1 and continuing incrementally, compare 𝑝(𝑘) to 𝛼⋆/(𝑀 − 𝑘 + 1). Determine

𝑘⋆, the smallest value of 𝑘 such that

𝑝(𝑘) > 𝛼⋆

𝑀 − 𝑘 + 1

3. Reject the null hypotheses H0,(1), … , H0,(𝑘⋆−1) and do not reject H0,(𝑘⋆), … , H0,(𝑀).

• What’s really happening?

𝑝(1) versus 𝛼⋆/𝑀
𝑝(2) versus 𝛼⋆/(𝑀 − 1)
𝑝(3) versus 𝛼⋆/(𝑀 − 2)

⋮
𝑝(𝑀) versus 𝛼⋆

We compare each 𝑝-value to a Bonferroni-Corrected significance level based on the number of comparisons
that remain to be made at a particular “step.”

THEOREM 3.3.10

Holm’s procedure controls the family-wise error rate.

We need to show that FWER = ℙ(𝑉 ≥ 1) ≤ 𝛼⋆ ∈ [0, 1] when using the Holm’s procedure.
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Let 𝑝(1), 𝑝(2), … , 𝑝(𝑀) be the ordered 𝑝-values and let H0,(1), H0,(2), … , H0,(𝑀) be the corresponding null
hypotheses.

Define 𝐾0 ⊂ {1, 2, … , 𝑀} to be the subset of indices which correspond to true null hypotheses; that is,
H0,𝑘 is true for 𝑘 ∈ 𝐾0. We can visualize the sequential decisions made in Holm’s Procedure as follows:

these are rejected
⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴H0,(1) ⋯ H0,(ℎ−1)⎵⎵⎵⎵⎵⎵⎵
these are false H0’s

H0,(ℎ) ⋯ H0,(𝑅) ∣ H0,(𝑅+1) ⋯ H0,(𝑀)⎵⎵⎵⎵⎵⎵⎵
these are not rejected

Let H0,(ℎ) be the first true H0 that was rejected. Since it was rejected by Holm’s procedure, we know that

𝑝(ℎ) ≤ 𝛼⋆

𝑀 − ℎ + 1

Clearly we must have ℎ − 1 ≤ 𝑀 − 𝑀0 since 𝑀 − 𝑀0 is the total number of false H0’s and ℎ − 1 is the
number of false H0’s encountered by test ℎ. And so,

𝑀0 ≤ 𝑀 − ℎ + 1 ⟺ 1
𝑀0

≥ 1
𝑀 − ℎ + 1

⟺ 𝛼⋆

𝑀0
≥ 𝛼⋆

𝑀 − ℎ + 1

Thus, we must have 𝑝(ℎ) ≤ 𝛼⋆/(𝑀 − ℎ + 1) ≤ 𝛼⋆/𝑀0. Therefore,

FWER = ℙ(𝑉 ≥ 1)
= ℙ(At least one Type I Error in 𝑀 tests)
= ℙ(Reject at least one true H0)

= ℙ(∃ 𝑘 ∈ 𝐾0 such that 𝑝𝑘 ≤ 𝛼⋆

𝑀0
)

= ℙ( ⋃
𝑘∈𝐾0

𝑝𝑘 ≤ 𝛼⋆

𝑀0
)

≤ ∑
𝑘∈𝐾0

ℙ(𝑝𝑘 ≤ 𝛼⋆

𝑀0
)

= ∑
𝑘∈𝐾0

𝛼⋆

𝑀0

= 𝑀0( 𝛼⋆

𝑀0
)

= 𝛼⋆

where we used the fact that 𝑝-values for true null hypotheses follow a 𝒰[0, 1] distribution.
EXAMPLE 3.3.11: Four-test Example (𝑀 = 4) — Holm’s Procedure

Let 𝑝1 = 0.015, 𝑝2 = 0.029, 𝑝3 = 0.008, and 𝑝4 = 0.026. Suppose that we wish to ensure FWER ≤
𝛼⋆ = 0.05.

𝑝(1) = 𝑝3 = 0.008 versus 𝛼⋆/𝑀 = 0.05/4 = 0.0125
𝑝(2) = 𝑝1 = 0.015 versus 𝛼⋆/(𝑀 − 1) = 0.05/3 = 0.0167
𝑝(3) = 𝑝4 = 0.026 versus 𝛼⋆/(𝑀 − 2) = 0.05/2 = 0.025
𝑝(4) = 𝑝2 = 0.029 versus 𝛼⋆/(𝑀 − 3) = 0.05/1 = 0.05

We reject H0,(1) = H0,3 and H0,(2) = H0,1. We do not reject H0,(3) = H0,4 or H0,(4) = H0,2. Note
that 𝑘⋆ = 3.
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Figure 3.4: Significance Thresholds for Several Methods of Correction (1).

• The decision process for all three of these methods can be visualized by plotting the ordered 𝑝-values 𝑝(𝑘)
versus their ranks 𝑘 = 1, 2, … , 𝑀 and overlay the significance thresholds which can be seen in Figure 3.4.

• The Bonferroni correction is most strict, followed by the Šidák correction, then by Holm’s procedure.

Adjusted 𝑝-values

• So far we have framed each of the correction procedures above as an adjustment to the significance
threshold against which each 𝑝-value is compared.

• Alternatively (and equivalently) we could invert this process and frame the decision in terms of a
comparison of adjusted 𝑝-values to 𝛼⋆.

• This is more familiar (compare our 𝑝-values to some constant threshold 𝛼⋆).

– We just need to adjust our 𝑝-values first.

• The decisions made with the following adjusted 𝑝-values are identical to that achieved by comparing
unadjusted 𝑝-values to the methods’ adjusted significance thresholds.

– Bonferroni: Reject H0,𝑘 if 𝑝⋆
𝑘 ≤ 𝛼⋆ where

𝑝⋆
𝑘 = 𝑀𝑝𝑘

EXAMPLE 3.3.12: Bonferroni’s Adjusted 𝑝-values

In our four-test example, 𝑝⋆
1 = 0.06, 𝑝⋆

2 = 0.116, 𝑝⋆
3 = 0.032, and 𝑝⋆

4 = 0.104. Comparing to
𝛼⋆ = 0.05, we reject H0,3.

– Šidák: Reject H0,𝑘 if 𝑝⋆
𝑘 ≤ 𝛼⋆ where

𝑝⋆
𝑘 = 1 − (1 − 𝑝𝑘)𝑀
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EXAMPLE 3.3.13: Šidák’s Adjusted 𝑝-values

In our four-test example, 𝑝⋆
1 = 0.0587, 𝑝⋆

2 = 0.1111, 𝑝⋆
3 = 0.0316, and 𝑝⋆

4 = 0.1. Comparing
to 𝛼⋆ = 0.05, we reject H0,3.

– Holm: Reject H0,𝑘 if 𝑝⋆
(𝑘) ≤ 𝛼⋆ where

𝑝⋆
(𝑘) = max

𝑗≤𝑘
{𝑝(𝑗)(𝑀 − 𝑗 + 1)}

EXAMPLE 3.3.14: Holm’s Adjusted 𝑝-values

Let 𝑝1 = 0.015, 𝑝2 = 0.029, 𝑝3 = 0.008, and 𝑝4 = 0.026.

𝑘 𝑝(𝑘) 𝑀 − 𝑘 + 1 𝑝(𝑘)(𝑀 − 𝑘 + 1) 𝑝⋆
(𝑘) = max𝑗≤𝑘{𝑝(𝑗)(𝑀 − 𝑗 + 1)}

1 0.008 4 0.032 max{0.032} = 0.032 = 𝑝⋆
(1)

2 0.015 3 0.045 max{0.032, 0.045} = 0.045 = 𝑝⋆
(2)

3 0.026 2 0.052 max{0.032, 0.045, 0.052} = 0.052 = 𝑝⋆
(3)

4 0.029 1 0.029 max{0.032, 0.045, 0.052, 0.029} = 0.052 = 𝑝⋆
(4)

Thus, 𝑝⋆
1 = 𝑝⋆

(2) = 0.045, 𝑝⋆
2 = 𝑝⋆

(4) = 0.052, 𝑝⋆
3 = 𝑝⋆

(1) = 0.032, and 𝑝⋆
4 = 𝑝⋆

(3) = 0.052.
Comparing to 𝛼⋆ = 0.05, we reject H0,1 and H0,3.

• Implemented in R with p.adjust().

3.3.2 False Discovery Rate
• In the mid-1900s, Statisticians developed FWER methods with 𝑀 ≈ 20 comparisons in mind.

• In the era of Big Data, much larger values of 𝑀 are typical.

• For larger values of 𝑀, traditional methods tend to be very conservative, and so FWER is perhaps not
the best metric to control.

• More recently, emphasis has been placed on controlling the rate at which Type I Errors occur.

DEFINITION 3.3.15: False discovery proportion

The false discovery proportion (FDP) is

𝑄 = 𝑉
𝑅

Thus, 𝑄 is the proportion of all rejected null hypotheses that were rejected in error.

• In particular, interest lies in controlling the false discovery rate (FDR).

DEFINITION 3.3.16: False discovery rate

The false discovery rate is
𝔼[𝑄] = 𝔼[ 𝑉

𝑅
]

• Unlike the FWER, the FDR is adaptive in the sense that the number of Type I Errors 𝑉 has different
implications depending on the size of 𝑀. That is,
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– Two Type I Errors in 10 tests might be unacceptable.
– Two Type I Errors in 100 tests might be okay.

• Methods that control the FDR are less strict than methods that control FWER.

– More Type I Errors will occur with such methods, but this is viewed as acceptable when 𝑀 is very
large.

Benjamini-Hochberg Procedure

• The Benjamini-Hochberg (BH) procedure for controlling FDR is a sequentially rejective procedure
much like Holm’s procedure for controlling FWER.

• We summarize the BH procedure, which aims to ensure FDR ≤ 𝛼⋆:

1. Order the 𝑀 𝑝-values from smallest to largest:

𝑝(1), 𝑝(2), … , 𝑝(𝑀)

where 𝑝(𝑘) is the 𝑘th smallest 𝑝-value.
2. Starting from 𝑘 = 1 and continuing incrementally, compare 𝑝(𝑘) to 𝑘𝛼⋆/𝑀. Determine 𝑘⋆ the

largest value of 𝑘 such that
𝑝(𝑘) ≤ 𝑘𝛼⋆

𝑀
3. Reject the null hypotheses H0,(1), … , H0,(𝑘⋆) and do not reject H0,(𝑘⋆+1), … , H0,(𝑀).

• The decision process associated with this procedure is best visualized with a plot of the ordered
𝑝-values 𝑝(𝑘) versus their ranks 𝑘 = 1, 2, … , 𝑀 with the significance threshold overlaid which can be
seen in Figure 3.5.

– The BH significance threshold is the line with intercept 0 and slope 𝛼⋆/𝑀.
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Figure 3.5: Significance Thresholds for Several Methods of Correction (2).
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EXAMPLE 3.3.17: Four-test Example — Benjamini-Hochberg Procedure

Let 𝑝1 = 0.015, 𝑝2 = 0.029, 𝑝3 = 0.008, and 𝑝4 = 0.026. Suppose that we wish to ensure
FDR ≤ 𝛼⋆ = 0.05. Since all 𝑝-values fall below the purple line in Figure 3.5, we reject all four
null hypotheses.

• This threshold is much less strict than any of the FWER-control thresholds, but this is the appeal of
the approach.

• The proof that this procedure guarantees FDR ≤ 𝛼⋆ is outside the scope of this course, but the interested
reader is referred to Benjamini and Hochberg (1995) and Storey et al. (2004).

• Like the FWER controlling methods we can define Benjamini-Hochberg-adjusted 𝑝-values and invert
the decision framework by comparing the adjusted 𝑝-values to 𝛼⋆.

– Reject H0,(𝑘) if 𝑝⋆
(𝑘) ≤ 𝛼⋆ where

𝑝⋆
(𝑘) = min

𝑗≥𝑘
{

𝑀𝑝(𝑗)

𝑗
}

EXAMPLE 3.3.18: Benjamini-Hochberg Procedure’s Adjusted 𝑝-values

Let 𝑝1 = 0.015, 𝑝2 = 0.029, 𝑝3 = 0.008, and 𝑝4 = 0.026.

𝑘 𝑝(𝑘) 𝑀𝑝(𝑘)/𝑘 𝑝⋆
(𝑘) = min𝑗≥𝑘{𝑀𝑝(𝑗)/𝑗}

1 0.008 0.032 min{0.032, 0.030, 0.035, 0.029} = 0.029 = 𝑝⋆
(1)

2 0.015 0.030 min{0.030, 0.035, 0.029} = 0.029 = 𝑝⋆
(2)

3 0.026 0.035 min{0.035, 0.029} = 0.029 = 𝑝⋆
(3)

4 0.029 0.029 min{0.029} = 0.029 = 𝑝⋆
(4)

Thus, 𝑝⋆
1 = 𝑝⋆

(2) = 0.029, 𝑝⋆
2 = 𝑝⋆

(4) = 0.029, 𝑝⋆
3 = 𝑝⋆

(1) = 0.029, and 𝑝⋆
4 = 𝑝⋆

(3) = 0.029.
Comparing to 𝛼⋆ = 0.05, we reject all H0’s.

• [R Code] Multiple_testing_example

3.3.3 Sample Size Determination
• So what does all of this mean for power analyses and sample size calculations?

• There is a duality between significance level and power.

– All else equal, reducing a test’s significance level will increase the Type II Error rate and hence
decrease power.

– Play around with this interactive app to gain comfort with this notion.

• Thus, all the correction procedures discussed (which decrease the effective significance level) negatively
impact power.

• In order to maintain power at some pre-specified level, we must compensate by increasing the sample
size.

• Therefore, the more complicated your experiment (i.e., the more conditions it has), the larger your
sample sizes will need to be.

– Such modifications can be accounted for when selecting a sample size.

https://www.jstor.org/stable/2346101?seq=1#metadata_info_tab_contents
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9868.2004.00439.x
https://github.com/Hextical/university-notes/blob/master/year-3/semester-3/STAT 430/code/W4/Multiple_testing_example.R
https://nathaniel-t-stevens.shinyapps.io/ErrorIllustrator/
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– The significance level you use in your sample size calculations should be the adjusted one based on
the correction method you use.

– This is easier to do with some correction methods than others.

Week 5

Primer on Logistic Regression
• Linear regression is an effective method of modelling the relationship between a single response variable

(𝑌 ), and one or more explanatory variables (𝑥1, 𝑥2, … , 𝑥𝑝).

– However, ordinary linear regression assumes that the response variable follows a normal distribution
(i.e., 𝑌 ∼ 𝒩(𝜇, 𝜎2)).

– When the response variable is binary, this assumption is no longer valid.

• When we have a binary response, the Bernoulli distribution (i.e., 𝑌 ∼ Binomial(1, 𝜋)) is a much more
appropriate distributional assumption.

– But ordinary linear regression is no longer appropriate.
– Instead, we use Logistic Regression.

• In the context of a linear regression model, the expected response (given the values of the explanatory
variables) is equated to the linear predictor 𝛽0 + 𝛽1𝑥1 + ⋯ + 𝛽𝑝𝑥𝑝:

𝔼[𝑌 | 𝑥1, 𝑥2, … , 𝑥𝑝] = 𝜇 = 𝛽0 + 𝛽1𝑥1 + ⋯ + 𝛽𝑝𝑥𝑝

• In the context of Logistic Regression we also want to relate the expected response to the linear predictor.

– But now, 𝔼[𝑌 ] = 𝜋 ∈ [0, 1].
– And equating 𝜋 and 𝛽0 + 𝛽1𝑥1 + ⋯ + 𝛽𝑝𝑥𝑝 does not make sense. In general, the linear predictor

need not lie in [0, 1].

𝜋 = 𝛽0 + 𝛽1𝑥1 + ⋯ + 𝛽𝑝𝑥𝑝 not a good thing to do

• Instead, we relate the linear predictor to 𝔼[𝑌 ] = 𝜋 through a monotonic differentiable link function
that maps [0, 1] → R.

– Logistic Regression arises when this link function is the logit function:

logit(𝜋) = log( 𝜋
1 − 𝜋

) = 𝛽0 + 𝛽1𝑥1 + ⋯ + 𝛽𝑝𝑥𝑝

– Inverting this yields the expected response (given the values of the explanatory variables):

̂𝔼[𝑌 | 𝑥1, 𝑥2, … , 𝑥𝑝] = ̂𝜋 = 𝑒 ̂𝛽0+ ̂𝛽1𝑥1+⋯+ ̂𝛽𝑝𝑥𝑝

1 + 𝑒 ̂𝛽0+ ̂𝛽1𝑥1+⋯+ ̂𝛽𝑝𝑥𝑝
= expit(𝛽0 + 𝛽1𝑥1 + ⋯ + 𝛽𝑝𝑥𝑝)

• To interpret 𝛽0, we set each explanatory variable to zero (i.e., 𝑥1 = 𝑥2 = ⋯ = 𝑥𝑝 = 0).

– We see that 𝛽0 is the log-odds that 𝑌 = 1 when 𝑥1 = 𝑥2 = ⋯ = 𝑥𝑝 = 0.

log( 𝜋
1 − 𝜋

) = 𝛽0

– Equivalently, 𝑒𝛽0 is the odds that the response would equal 1 when 𝑥1 = 𝑥2 = ⋯ = 𝑥𝑝 = 0.
Exponentiating both sides yields

𝜋
1 − 𝜋

= 𝑒𝛽0
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DEFINITION 3.3.19: Odds

The odds of an event 𝐴 is:
ℙ(𝐴)
ℙ(𝐴𝑐)

= ℙ(𝐴)
1 − ℙ(𝐴)

• The interpretation of 𝛽𝑗, for 𝑗 = 1, 2, … , 𝑝, is uncovered by considering the Logistic Regression equation
for different values of 𝑥𝑗.

– Let 𝜋𝑥 be the value of 𝜋 when 𝑥𝑗 = 𝑥 and let 𝜋𝑥+1 be the value of 𝜋 when 𝑥𝑗 = 𝑥 + 1.

log(
𝜋𝑥+1

1 − 𝜋𝑥+1
) − log( 𝜋𝑥

1 − 𝜋𝑥
) = (𝛽0 + 𝛽1𝑥1 + ⋯ + 𝛽𝑗(𝑥 + 1) + ⋯ + 𝛽𝑝𝑥𝑝)

− (𝛽0 + 𝛽1𝑥1 + ⋯ + 𝛽𝑗𝑥 + ⋯ + 𝛽𝑝𝑥𝑝)
= 𝛽𝑗

– Thus:

log(
𝜋𝑥+1

1 − 𝜋𝑥+1
/ 𝜋𝑥

1 − 𝜋𝑥
) = 𝛽𝑗

and so 𝛽𝑗 is interpreted as a log-odds ratio, comparing the odds that 𝑌 = 1 when 𝑥𝑗 = 𝑥 + 1
versus 𝑥𝑗 = 𝑥 (all else being equal).

– Equivalently, 𝑒𝛽𝑗 is interpreted as the odds ratio, comparing the odds that 𝑌 = 1 when 𝑥𝑗 = 𝑥+1
versus 𝑥𝑗 = 𝑥 (all else being equal). Exponentiating yields

𝜋𝑥+1
1 − 𝜋𝑥+1

/ 𝜋𝑥
1 − 𝜋𝑥

= 𝑒𝛽𝑗

• Maximum likelihood estimation is a method that is used to estimate parameters in Logistic
Regression.

– This means that the ̂𝛽’s are maximum likelihood estimates, whose corresponding estimators have
nice properties, such as:

̃𝛽 ⋅∼ 𝒩(𝛽, 1
𝐽(𝛽)

)

where 𝐽(𝛽) is the Fisher Information.
– A consequence of this is that hypotheses of the form

H0: 𝛽𝑗 = 0 versus HA: 𝛽𝑗 ≠ 0
are done with 𝑍-tests with test statistics given by

𝑡 =
̂𝛽𝑗 − 0

Se( ̂𝛽𝑗)
⋅∼ 𝒩(0, 1)

– In order to test hypotheses about several 𝛽’s being simultaneously equal to zero, we use likelihood
ratio tests.
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BLOCKING

• In the context of designed experiments we categorize factors as either:

– Design factors: we manipulate these to quantify their impact on the response. They define the
experimental conditions.

– Allowed-to-vary factors: these are unknown, or known but uncontrollable factors that are not
controlled in the experiment.

– Nuisance factors: we control these to eliminate their effect on the response.

• But remember: in practice, context dictates whether a factor should be considered a design factor, a
nuisance factor, or if it should be allowed to vary.

Figure 4.1: Four Levels of the browser Factor.

1. Usability testing involves studying the ease with which an individual uses a product or service for
some intended purpose. Suppose investigators are performing a usability test to determine with which
browser 70 to 80-year-old users find it easiest to look up the phone number of the nearest pharmacy.
In this example, experimental units (70 to 80-year-olds) are randomly assigned to one of four browser
conditions, and the investigators measure the time it takes to complete the task.

• Browser is the design factor.

2. Suppose that Netflix is experimenting with server-side modifications to improve (reduce) the latency
of Netflix.com. We hypothesize that the current infrastructure serves as a control condition and the
modified infrastructure reduces median page load time. It is possible that a user’s browser may also
affect page load time, but this effect is not of interest to the investigators. To control for the potential
impact of one’s browser, Netflix initially experiments with only Firefox users.

• Browser is the nuisance factor.

3. Suppose that Amazon.ca is experimenting with the width of their search bar. They hypothesize that
a wider search bar will minimize the amount of mouse movement required to navigate to it, thereby
minimizing the average time-to-query. The experimenters do not care which browser a customer uses
and so this factor is uncontrolled and hence is allowed-to-vary during their experiment.

42
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• Browser is the allowed-to-vary factor.

• It’s also important to understand the subtle distinction between nuisance factors and design factors in
the context of a single experiment.

– We control both factors in the experiment.
– With a design factor we wish to quantify its influence on the response variable.
– With a nuisance factor we do not care to quantify its effect, we wish only to eliminate it.

• We eliminate the effect of one or more nuisance factors with blocking.

– To eliminate the effect of a nuisance factor, it cannot be allowed to vary on its own.
– Blocking fixes the nuisance factor at one or more levels (blocks).
– By holding a nuisance factor fixed, it cannot vary and hence cannot influence the response.

∗ This is how Netflix handled the nuisance factor “browser” in Example 2.

4.1 Randomized Complete Block Designs
• The randomized complete block design (RCBD) is a simple experimental design that may be applied

when we wish to investigate:

– A single design factor; e.g., 𝑚 levels, 𝑚 conditions, while controlling for a single nuisance factor;
e.g., 𝑏 levels, 𝑏 blocks.

• In a RCBD, we carry out each of the experimental conditions in every one of the blocks.

– 𝑚 conditions are happening inside each of the 𝑏 blocks.

• The observed data in such an experiment is 𝑦𝑖𝑗𝑘.

– Response observation for unit 𝑖 = 1, 2, … , 𝑛𝑗𝑘 in condition 𝑗 = 1, 2, … , 𝑚 within block 𝑘 = 1, 2, … , 𝑏.

• We assume that there are 𝑛𝑗𝑘 units in (condition,block) = (𝑗, 𝑘) and thus an overall total of 𝑁 =
∑𝑏

𝑘=1 ∑𝑚
𝑗=1 𝑛𝑗𝑘 units.

– If 𝑛𝑗𝑘 = 𝑛 for all (𝑗, 𝑘), we call the design “balanced.”

• We tabulate the response data of this form below:

Table 4.1: Response Observations in a Randomized Complete Block Design
Block

1 2 ⋯ 𝑏

Condition

1 {𝑦𝑖11}𝑛11
𝑖=1 {𝑦𝑖12}𝑛12

𝑖=1 ⋯ {𝑦𝑖1𝑏}𝑛1𝑏
𝑖=1 ̄𝑦•1•

2 {𝑦𝑖21}𝑛21
𝑖=1 {𝑦𝑖22}𝑛22

𝑖=1 ⋯ {𝑦𝑖2𝑏}𝑛2𝑏
𝑖=1 ̄𝑦•2•

⋮ ⋮ ⋮ ⋱ ⋮ ⋮
𝑚 {𝑦𝑖𝑚1}𝑛𝑚1

𝑖=1 {𝑦𝑖𝑚2}𝑛𝑚2
𝑖=1 ⋯ {𝑦𝑖𝑚𝑏}𝑛𝑚𝑏

𝑖=1 ̄𝑦•𝑚•

̄𝑦••1 ̄𝑦••2 ⋯ ̄𝑦••𝑏 ̄𝑦•••

– Block-specific average responses: ̄𝑦••1, ̄𝑦••2, … , ̄𝑦••𝑏.
– Overall average response: ̄𝑦•••.
– Condition-specific average responses: ̄𝑦•1•, ̄𝑦•2•, … , ̄𝑦•𝑚•.
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• We calculate the row, column, and overall means as follows:

̄𝑦•𝑗• = 1
𝑛𝑗+

𝑏
∑
𝑘=1

𝑛𝑗𝑘 ̄𝑦•𝑗𝑘 where 𝑛𝑗+ =
𝑏

∑
𝑘=1

𝑛𝑗𝑘

̄𝑦••𝑘 = 1
𝑛+𝑘

𝑚
∑
𝑗=1

𝑛𝑗𝑘 ̄𝑦•𝑗𝑘 where 𝑛+𝑘 =
𝑚

∑
𝑗=1

𝑛𝑗𝑘

̄𝑦••• = 1
𝑁

𝑏
∑
𝑘=1

𝑚
∑
𝑗=1

𝑛𝑗𝑘 ̄𝑦•𝑗𝑘 = 1
𝑁

𝑏
∑
𝑘=1

𝑚
∑
𝑗=1

𝑛𝑗𝑘

∑
𝑖=1

𝑦𝑖𝑗𝑘

where ̄𝑦•𝑗𝑘 is the average response value in (condition,block) = (𝑗, 𝑘) cell, also

̄𝑦•𝑗𝑘 = 1
𝑛𝑗𝑘

𝑛𝑗𝑘

∑
𝑖=1

𝑦𝑖𝑗𝑘

• Simple summaries such as these provide a crude assessment of whether the condition-to-condition and
block-to-block variation is large.

– If the condition-specific averages are very different, this suggests that the design factor influences
the response.

– If the block-specific averages are very different, this suggests that the nuisance factor influences
the response, and that blocking was appropriate.

• The primary analysis goal in a RCBD is to determine whether the expected response differs significantly
from one condition to another.

– And if so, to identify the optimal condition, while controlling for the potential effect of the nuisance
factor.

• We’ve previously done this with gatekeeper tests of the form:
H0: 𝜃1 = 𝜃2 = ⋯ = 𝜃𝑚 versus HA: 𝜃𝑗 ≠ 𝜃𝑘 for some 𝑗 ≠ 𝑘

• We do the same thing here, while accounting for the nuisance factor, with appropriately defined linear
(continuous response) or logistic (binary response) regression models which contain:

– An intercept.
– 𝑚 − 1 indicator variables for the design factor’s levels.
– 𝑏 − 1 indicator variables for the nuisance factor’s levels.

• We write the linear predictor as:

𝛼 +
𝑚−1
∑
𝑗=1

𝛽𝑗𝑥𝑖𝑗 +
𝑏−1
∑
𝑘=1

𝛾𝑘𝑧𝑖𝑗 (⋆)

– 𝑥𝑖𝑗 = 1 if unit 𝑖 is in condition 𝑗 = 1, 2, … , 𝑚 − 1, and zero otherwise.
– 𝑧𝑖𝑘 = 1 if unit 𝑖 is in block 𝑘 = 1, 2, … , 𝑏 − 1, and zero otherwise.
– The 𝛽’s jointly quantify the effect of the design factor.
– The 𝛾’s jointly quantify the effect of the nuisance factor.

• Two relevant hypotheses are:

(1) H0: 𝛽1 = 𝛽2 = ⋯ = 𝛽𝑚−1 = 0 versus HA: 𝛽𝑗 ≠ 0 for some 𝑗.
– If we don’t reject H0, this suggests the 𝑥’s don’t need to be in the model and hence the design

factor doesn’t significantly influence the response.
(2) H0: 𝛾1 = 𝛾2 = ⋯ = 𝛾𝑏−1 = 0 versus HA: 𝛾𝑘 ≠ 0 for some 𝑘.
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– If we don’t reject H0, this suggests the 𝑧’s don’t need to be in the model and hence the
nuisance factor doesn’t significantly influence the response. Therefore, blocking isn’t necessary.

• We test these hypotheses by comparing a full model and reduced models where the full model is a
model with a linear predictor given by (⋆), and a reduced model is a model with a linear predictor that
arises when H0 is true.

– We try to determine whether the full model fits the data significantly better than the reduced one.

4.1.1 RCBD to Compare Means
• Here, we’re interested in testing the following hypothesis (while accounting for the influence of the

nuisance factor):
H0: 𝜇1 = 𝜇2 = ⋯ = 𝜇𝑚 versus HA: 𝜇𝑗 ≠ 𝜇𝑘 for some 𝑗 ≠ 𝑘

where 𝜇𝑗 is the expected response in condition 𝑗 = 1, 2, … , 𝑚.

• We do this by testing:
H0: 𝛽1 = 𝛽2 = ⋯ = 𝛽𝑚−1 = 0 versus HA: 𝛽𝑗 ≠ 0 for some 𝑗

with an ANOVA in the context of the following linear regression model.

𝑌𝑖 = 𝛼 +
𝑚−1
∑
𝑗=1

𝛽𝑗𝑥𝑖𝑗 +
𝑏−1
∑
𝑘=1

𝛾𝑘𝑧𝑖𝑘 + 𝜀𝑖

where 𝑌𝑖 is the response observation for unit 𝑖 = 1, 2, … , 𝑁 = ∑𝑏
𝑘=1 ∑𝑚

𝑗=1 𝑛𝑗𝑘 and 𝜀𝑖
iid∼ 𝒩(0, 𝜎2) is a

random error term.

• The relevant ANOVA table is Table 4.2.

Table 4.2: Two-Way ANOVA Table Associated With a Randomized Complete Block Design

Source SS d.f. MS Test Statistic
Condition SSC 𝑚 − 1 MSC = SSC/(𝑚 − 1) 𝑡C = MSC/MSE
Block SSB 𝑏 − 1 MSB = SSB/(𝑏 − 1) 𝑡B = MSB/MSE
Error SSE 𝑁 − 𝑚 − 𝑏 + 1 MSE = SSE/(𝑁 − 𝑚 − 𝑏 + 1)
Total SST 𝑁 − 1

• The sums of squares given in Table 4.2 are:

– Total sum of squares (quantifies overall response variation):

SST =
𝑏

∑
𝑘=1

𝑚
∑
𝑗=1

𝑛𝑗𝑘

∑
𝑖=1

(𝑦𝑖𝑗𝑘 − ̄𝑦•••)2 = SSC + SSB + SSE

– Condition sum of squares (quantifies condition-to-condition response variation):

SSC =
𝑏

∑
𝑘=1

𝑚
∑
𝑗=1

𝑛𝑗𝑘

∑
𝑖=1

( ̄𝑦•𝑗• − ̄𝑦•••)2

– Block sum of squares (quantifies block-to-block response variation):

SSB =
𝑏

∑
𝑘=1

𝑚
∑
𝑗=1

𝑛𝑗𝑘

∑
𝑖=1

( ̄𝑦••𝑘 − ̄𝑦•••)2
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– Error sum of squares (quantifies residual response variation not accounted for by conditions of
blocks):

SSE =
𝑏

∑
𝑘=1

𝑚
∑
𝑗=1

𝑛𝑗𝑘

∑
𝑖=1

(𝑦𝑖𝑗𝑘 − ̄𝑦•𝑗• − ̄𝑦••𝑘 + ̄𝑦•••)2

• So how do we use this table?

– We test: H0: 𝛽1 = 𝛽2 = ⋯ = 𝛽𝑚−1 = 0 using 𝑡C = MSC/MSE.
∗ 𝑝-value = ℙ(𝑇 ≥ 𝑡C) where 𝑇 ∼ 𝐹(𝑚 − 1, 𝑁 − 𝑚 − 𝑏 + 1).

– We test: H0: 𝛾1 = 𝛾2 = ⋯ = 𝛾𝑏−1 = 0 using 𝑡B = MSB/MSE.
∗ 𝑝-value = ℙ(𝑇 ≥ 𝑡B) where 𝑇 ∼ 𝐹(𝑏 − 1, 𝑁 − 𝑚 − 𝑏 + 1).

4.1.2 Example: Promotions at The Gap

EXAMPLE 4.1.1: Promotions at The Gap

The Gap has three versions of an online weekday promotion that a customer sees when they go to
gapcanada.ca:

• Version 1: 50% discount on one item.

• Version 2: 20% discount on your entire order.

• Version 3: Spend $50 and get a $10 gift card.
Interest lies in determining whether there is a difference in the average purchase total (i.e, the average
dollar value of a customer’s purchase) between promotion versions. However, the amount of money
one spends may also be influenced by the nuisance factor, day of week. As such, we ran a randomized
complete block design with 𝑚 = 3 experimental conditions (corresponding to the three promotions)
and 𝑏 = 5 blocks (corresponding to the day of the week). Here 𝑛𝑗𝑘 = 50 for all (𝑗, 𝑘), and so the design
was “balanced.” For each visitor to gapcanada.ca, their purchase total (in dollars) was recorded. The
regression model fit to these response observations is:

𝑌𝑖 = 𝛼 + 𝛽2𝑥𝑖2 + 𝛽3𝑥𝑖3 + 𝛾1𝑧𝑖1 + 𝛾2𝑧𝑖2 + 𝛾3𝑧𝑖3 + 𝛾4𝑧𝑖4 + 𝜀𝑖

where 𝑥𝑖2 and 𝑥𝑖3 are condition indicators for promotions 2 and 3 (promotion 1 is the baseline) and
𝑧𝑖1, … , 𝑧𝑖4 are block indicators for Monday-Thursday (Friday is the baseline). The ANOVA Table for
this experiment is Table 4.3.

Table 4.3: The Gap RCBD ANOVA Table
Source SS d.f. MS Test Statistic
Condition 49618.34 2 24809.17 𝑡C = 2165.39
Block 19258.30 4 4814.58 𝑡B = 420.22
Error 8512.67 743 11.46
Total 77389.32 749

• H0: 𝛽2 = 𝛽3 = 0 tells us whether the design factor is significant.

– 𝑝-value = ℙ(𝑇 ≥ 𝑡C) = ℙ(𝑇 ≥ 2165.39) = 1.101 × 10−310 where 𝑇 ∼ 𝐹(2, 743).
– Therefore, we reject H0 and conclude that the expected response is not the same in all

conditions.

• H0: 𝛾1 = 𝛾2 = 𝛾3 = 𝛾4 = 0 tells us whether the nuisance factor is significant.

– 𝑝-value = ℙ(𝑇 ≥ 𝑡B) = ℙ(𝑇 ≥ 420.22) = 4.345 × 10−189 where 𝑇 ∼ 𝐹(4, 743).
– Therefore, we reject H0 and conclude that blocking was appropriate.

[R Code] Comparing_means_within_blocks

https://www.gapcanada.ca/
https://www.gapcanada.ca/
https://github.com/Hextical/university-notes/blob/master/year-3/semester-3/STAT 430/code/W5/Comparing_means_within_blocks.R
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4.1.3 RCBD to Compare Proportions
• Here we’re interested in testing the following hypothesis (while accounting for the influence of the

nuisance factor):
H0: 𝜋1 = 𝜋2 = ⋯ = 𝜋𝑚 versus HA: 𝜋𝑗 ≠ 𝜋𝑘 for some 𝑗 ≠ 𝑘

where 𝜋𝑗 is the expected response in condition 𝑗 = 1, 2, … , 𝑚.

• We do this by testing:
H0: 𝛽1 = 𝛽2 = ⋯ = 𝛽𝑚−1 = 0 versus HA: 𝛽𝑗 ≠ 0 for some 𝑗

with a likelihood ratio test (LRT) in the context of the following logistic regression model:

log( 𝜋𝑖
1 − 𝜋𝑖

) = 𝛼 +
𝑚−1
∑
𝑗=1

𝛽𝑗𝑥𝑖𝑗 +
𝑏−1
∑
𝑘=1

𝛾𝑘𝑧𝑖𝑘

where 𝑌𝑖 is the response observation for unit 𝑖 = 1, 2, … , 𝑁 = ∑𝑏
𝑘=1 ∑𝑚

𝑗=1 𝑛𝑗𝑘, and 𝜋𝑖 = 𝔼[𝑌𝑖] = ℙ(𝑌𝑖 =
1).

– The likelihood ratio test compares the full model to the one without the 𝑥’s.

• Similarly, we test:
H0: 𝛾1 = 𝛾2 = ⋯ = 𝛾𝑏−1 versus HA: 𝛾𝑘 ≠ 0 for some 𝑘

with a LRT that compares the full model to the reduced one without the 𝑧’s.
H0: Reduced model fits as well versus HA: Full model fits better than reduced model.

• The observed test statistic for both of these tests is:

𝑡 = 2 log( LikelihoodFull Model
LikelihoodReduced Model

)

= 2[Log-LikelihoodFull Model − Log-LikelihoodReduced Model]

which follows an approximate 𝜒2(ℓ), if H0 is true, where

ℓ = (# parameters in full model) − (# parameters in reduced model)

– 𝑝-value = ℙ(𝑇 ≥ 𝑡) where 𝑇 ∼ 𝜒2(ℓ).

4.1.4 Example: Enterprise Banner Ads
EXAMPLE 4.1.2: Enterprise Banner Ads

Enterprise is experimenting with 𝑚 = 3 banner ads as a mechanism to drive traffic to their website.
Since there are known regional differences in consumer preferences in the US, they wish to control for
the nuisance factor “region” with 𝑏 = 4 blocks corresponding to the four major US geographic regions:
Northeast (NE), Northwest (NW), Southeast (SE), and Southwest (SW). We randomize a total of
𝑛𝑗𝑘 = 5000 for all (𝑗, 𝑘) people to each ad condition in each region.

Interest lies in determining whether the different ads perform similarly with respect to click- through-
rate (CTR) — and we wish to determine which one maximizes CTR — but we want to control for the
effect of region. We do so with the following logistic regression model:

log( 𝜋𝑖
1 − 𝜋𝑖

) = 𝛼 + 𝛽2𝑥𝑖2 + 𝛽3𝑥𝑖3 + 𝛾1𝑧𝑖1 + 𝛾2𝑧𝑖2 + 𝛾3𝑧𝑖3

where 𝑥𝑖2 and 𝑥𝑖3 are condition indicators for ads 2 and 3 (ad 1 is the baseline), and 𝑧𝑖1, 𝑧𝑖2, 𝑧𝑖3 are
block indicators for NW, SE, SW regions (NE is the baseline).

• H0: 𝛽2 = 𝛽3 = 0.
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– 𝑝-value = ℙ(𝑇 ≥ 𝑡C) = ℙ(𝑇 ≥ 249.924) = 5.367 × 10−55 where 𝑇 ∼ 𝜒2(2).
– Therefore, we reject H0 and conclude that the design factor is significant and the CTR is

not the same in every condition.

• H0: 𝛾1 = 𝛾2 = 𝛾3 = 0.

– 𝑝-value = ℙ(𝑇 ≥ 𝑡B) = ℙ(𝑇 ≥ 139.824) = 4.126 × 10−30 where 𝑇 ∼ 𝜒2(3).
– Therefore, we reject H0 and conclude that the nuisance factor is significant and therefore

blocking was a good thing to do.

[R Code] Comparing_proportions_within_blocks

Week 6

4.2 Balanced Incomplete Block Designs
• Randomized Complete Block Designs (RCBD) were a tool for the exploration of one design factor (𝑚

levels) while controlling for the effect of one nuisance factor (𝑏 blocks).

– In a RCBD, we carry out every experimental condition inside every block.
– But sometimes, due to practical constraints, this is not possible.

• The Gap is experimenting with 𝑚 = 3 promotional offers:

– Version 1: 50% discount on one item.
– Version 2: 20% discount on your entire order.
– Version 3: Spend $50 and get a $10 gift card.

• Experimenters would like to control for a possible day-of-week effect (block by day).

– Naturally, one might consider a RCBD; that is, suppose we observe data in every block-condition
combination as seen in Table 4.4.

Table 4.4: Complete Block Design

Day
1 2 3 4 5 6

1 ✓ ✓ ✓ ✓ ✓ ✓
Promotion 2 ✓ ✓ ✓ ✓ ✓ ✓

3 ✓ ✓ ✓ ✓ ✓ ✓

• But The Gap may only offer two of the three promotions in a single day.

– So we must consider an incomplete block design; that is, suppose we observe data in only some
block-condition combinations.

• We refer to Table 4.5 as a balanced incomplete block design (BIBD).

REMARK 4.2.1: Notation

– 𝑚: number of experimental conditions. In our previous example, 𝑚 = 3.

– 𝑏: number of blocks. In our previous example, 𝑏 = 6.

https://github.com/Hextical/university-notes/blob/master/year-3/semester-3/STAT 430/code/W5/Comparing_proportions_within_blocks.R
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Table 4.5: Incomplete Block Design

Day
1 2 3 4 5 6

1 ✓ ✓ × ✓ ✓ ×
Promotion 2 ✓ × ✓ ✓ × ✓

3 × ✓ ✓ × ✓ ✓

– 𝑚⋆: number of experimental conditions that can be run in each block. Also known as
“block size.” In our previous example, 𝑚⋆ = 2.

∗ RCBD: 𝑚⋆ = 𝑚.
∗ BIBD: 𝑚⋆ < 𝑚.

– 𝑟: number of blocks in which each condition appears. In our previous example, 𝑟 = 4.

– 𝜆: number of blocks that any pair of conditions appear in together. In our previous example,
𝜆 = 2.

• The BIBD is “balanced” in the sense that:

– The number of conditions in each block is the same for every block (𝑚⋆).
– The number of blocks each condition appears in is the same for every condition (𝑟).
– The number of blocks each pair of conditions appear in together is the same for every possible

condition pairing (𝜆).

• This balance allows for the comparison of a metric of interest across 𝑚 conditions while still accounting
for a nuisance factor with 𝑏 levels

– But despite this balance, the “incompleteness” requires some sacrifice.

4.2.1 General Comments on the Design of a BIBD
• Not just any haphazard combination of (𝑚, 𝑏, 𝑚⋆, 𝑟, 𝜆) values will yield a BIBD.

• Great care must go into planning a BIBD to ensure all forms of balance.

• A variety of restrictions must be met:

– Consequences of “incompleteness:”
∗ 𝑚⋆ < 𝑚.
∗ 𝑟 < 𝑏.
∗ 𝜆 < 𝑟.

– Number of block-condition combinations for which we observe data:
∗ 𝑚𝑟 = 𝑏𝑚⋆

– For condition 𝑋 (doesn’t matter which condition this is), 𝑟(𝑚⋆ − 1) = 𝜆(𝑚 − 1) is the total number
of conditions that condition 𝑋 appears within the same blocks.
∗ Condition 𝑋 appears in 𝑟 blocks, and in each, it’s grouped with 𝑚⋆ − 1 other conditions.
∗ We pair each of the other 𝑚 − 1 conditions with condition 𝑋 𝜆 times.

• We use these restrictions as follows:

1. Specify 𝑚, 𝑚⋆, and 𝜆.
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2. Calculate 𝑟 = 𝜆(𝑚 − 1)/(𝑚⋆ − 1), noting that it must be an integer.
3. Calculate 𝑏 = 𝑚𝑟/𝑚⋆, noting that it must be an integer.

EXAMPLE 4.2.2

Let 𝑚 = 3, 𝑚⋆ = 2, and 𝜆 = 1. We have 𝑟 = (1)(2)/(1) = 2, and 𝑏 = (3)(2)/2 = 3. See Table 4.6.

EXAMPLE 4.2.3: Pizza Table

Let 𝑚 = 3, 𝑚⋆ = 2, and 𝜆 = 2. We have 𝑟 = (2)(2)/(1) = 4, and 𝑏 = (3)(4)/2 = 6.

EXAMPLE 4.2.4

Let 𝑚 = 3, 𝑚⋆ = 2, and 𝜆 = 3. We have 𝑟 = (3)(2)/(1) = 6, and 𝑏 = (3)(6)/2 = 9. See Table 4.7.

• We select the design based on a trade-off between larger 𝜆 values and smaller 𝑏 values.

– Larger 𝜆 provides more information about pairwise comparisons.
– Smaller 𝑏 corresponds to fewer blocks and hence a smaller experiment.

Table 4.6: Incomplete Block Design

Block
1 2 3

1 ✓ ✓ ×
Condition 2 ✓ × ✓

3 × ✓ ✓

Table 4.7: Incomplete Block Design

Block
1 2 3 4 5 6 7 8 9

1 ✓ ✓ ✓ ✓ ✓ ✓ × × ×
Condition 2 ✓ ✓ ✓ × × × ✓ ✓ ✓

3 × × × ✓ ✓ ✓ ✓ ✓ ✓

4.2.2 General Comments on the Analysis of a BIBD
• Primary analysis goal:

– Determine whether there exist significant differences among the expected response values from one
experimental condition to another.

• In a RCBD, we do this by comparing the condition-specific means ̄𝑦•𝑗• to the overall mean ̄𝑦•••. This
isn’t fair in a BIBD because ̄𝑦••• is calculated from data from blocks that condition 𝑗 didn’t appear in.

• In a BIBD, due to incompleteness, we compare ̄𝑦•𝑗• with the average response from the blocks that
condition 𝑗 appeared in:

∑𝑘∈ℬ𝑗
∑𝑛𝑗𝑘

𝑖=1 𝑦𝑖𝑗𝑘

∑𝑘∈ℬ𝑗
𝑛𝑗𝑘

where ℬ𝑗 ⊂ {1, 2, … , 𝐵} is the subset of indices indicating which blocks condition 𝑗 appeared in.
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• In general, the analysis of BIBDs involves an adjustment of this form when evaluating the effect of the
design factor.

4.3 Latin Square Designs
• Until now, we have discussed experimental designs that employ blocking to control for one nuisance

factor:

– If we want to control for two nuisance factors, we should use a Latin square design.
– If we want to control for three nuisance factors, we should use a Graeco-Latin square design.
– If we want to control for four nuisance factors, we should use a Hyper-Graeco-Latin square

design.

• A Latin square of order 𝑝 is a 𝑝 × 𝑝 grid containing 𝑝 unique symbols.

– Each of these symbols occurs exactly once in each column.
– Each of these symbols occurs exactly once in each row.
– These “symbols” are typically denoted by Latin letters.

Table 4.8: 3 × 3, 4 × 4, and 5 × 5 Latin Square Examples

A C B
C B A
B A C

A B C D
C D A B
B C D A
D A B C

A B C D E
E A B C D
D E A B C
C D E A B
B C D E A

• A Sudoku puzzle is a special example of a 9 × 9 Latin square.

• We exploit this combinatorial structure to help us design experiments that facilitate blocking by two
nuisance factors.

– We arbitrarily associate the 𝑝 rows with the levels of the first nuisance factor.
– We arbitrarily associate the 𝑝 columns with the levels of the second nuisance factor.
– We arbitrarily associate the 𝑝 Latin letters with the levels of the design factor.

• We present an example with 𝑝 = 4 in Table 4.9.

Table 4.9: 4 × 4 Latin Square Design

NF 2
1 2 3 4

1 A B C D

NF 1 2 D A B C
3 C D A B
4 B C D A

– Limitation of LSD’s: we need to experiment with all of these factors at 𝑝 levels.
– (3, 2) element represents the block where NF 1 is at level 3, NF 2 is at level 2, and DF is at level D.

• Each cell in this table represents a “block” in which we fix the nuisance factors’ levels, and the Latin
letter indicates the execution of an experimental condition.
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• Rows, columns, and letters are all orthogonal, allowing us to separately estimate the effects of the
design factor and each of the two nuisance factors.

• We may informally summarize these effects with the overall average and level-specific averages of the
response variables.

– Average response in a particular condition:

̄𝑦•𝑗•• = 1
𝑛𝑝

∑
(𝑗,𝑘,ℓ)∈𝒮𝑗

𝑛
∑
𝑖=1

𝑦𝑖𝑗𝑘ℓ

– Average response in a given row:

̄𝑦••𝑘• = 1
𝑛𝑝

∑
(𝑗,𝑘,ℓ)∈𝒮𝑘

𝑛
∑
𝑖=1

𝑦𝑖𝑗𝑘ℓ

– Average response in a given column:

̄𝑦•••ℓ = 1
𝑛𝑝

∑
(𝑗,𝑘,ℓ)∈𝒮ℓ

𝑛
∑
𝑖=1

𝑦𝑖𝑗𝑘ℓ

– Overall average:

̄𝑦•••• = 1
𝑁

∑
(𝑗,𝑘,ℓ)∈𝒮

𝑛
∑
𝑖=1

𝑦𝑖𝑗𝑘ℓ

∗ 𝑦𝑖𝑗𝑘ℓ is the response observation for unit 𝑖 = 1, 2, … , 𝑛 in block (𝑘, ℓ) and hence condition 𝑗.
∗ 𝑗, 𝑘, ℓ = 1, 2, … , 𝑝.
∗ 𝑛 is the number of units in each block.
∗ 𝑁 = 𝑛𝑝2.

• A comment about notation:

– Each block contains just one condition, so each pair (𝑘, ℓ) uniquely determines the value of 𝑗.
– Consequently, there exist just 𝑝2 tuples (𝑗, 𝑘, ℓ).
– Denote them by the set 𝒮.
– From Table 4.9, we have:

(1, 1, 1) (2, 1, 2) (3, 1, 3) (4, 1, 4)
(4, 2, 1) (1, 2, 2) (2, 2, 3) (3, 2, 4)
(3, 3, 1) (4, 3, 2) (1, 3, 3) (2, 3, 4)
(2, 4, 1) (3, 4, 2) (4, 4, 3) (1, 4, 4)

∗ 𝑆𝑗=1 = {(1, 1, 1), (1, 2, 2), (1, 3, 3), (1, 4, 4)}.
∗ We also define:

· 𝒮𝑗 ⊂ 𝒮: all tuples for which the design factor is level 𝑗.
· 𝒮𝑘 ⊂ 𝒮: all tuples for which the nuisance factor 1’s is level 𝑘.
· 𝒮ℓ ⊂ 𝒮: all tuples for which the nuisance factor 2’s is level ℓ.

• The primary analysis goal in a Latin square design is to determine whether the expected response
differs significantly from one condition to another.

– If so, to identify the optimal condition while controlling for the potential effect of the nuisance
factors.
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• We’ve previously done this with gatekeeper tests of the form:
H0: 𝜃1 = 𝜃2 = ⋯ = 𝜃𝑝 versus HA: 𝜃𝑗 ≠ 𝜃𝑗′ for some 𝑗 ≠ 𝑗′.

• We do the same thing here, while accounting for the nuisance factors, with appropriately defined linear
or logistic regression models which contain:

– An intercept.
– 𝑝 − 1 indicator variables for the design factor’s levels.
– 𝑝 − 1 indicator variables for nuisance factor 1’s levels.
– 𝑝 − 1 indicator variables for nuisance factor 2’s levels.

• We write the linear predictor as:

𝛼 +
𝑝−1

∑
𝑗=1

𝛽𝑗𝑥𝑖𝑗 +
𝑝−1

∑
𝑘=1

𝛾𝑗𝑧𝑖𝑘 +
𝑝−1

∑
ℓ=1

𝛿ℓ𝑤𝑖ℓ

– 𝑥𝑖𝑗 = 1 if unit 𝑖 is in condition 𝑗 = 1, 2, … , 𝑝 − 1 (zero otherwise).
– 𝑧𝑖𝑘 = 1 if unit 𝑖 is in a block for which nuisance factor 1 is at level 𝑘 = 1, 2, … , 𝑝 − 1 (zero

otherwise).
– 𝑤𝑖ℓ = 1 if unit 𝑖 is in a block for which nuisance factor 2 is at level ℓ = 1, 2, … , 𝑝 − 1 (zero

otherwise).
– The 𝛽’s jointly quantify the effect of the design factor.
– The 𝛾’s jointly quantify the effect of nuisance factor 1.
– The 𝛿’s jointly quantify the effect of nuisance factor 2.

• Three relevant hypotheses are:
H0: 𝛽1 = 𝛽2 = ⋯ = 𝛽𝑝−1 = 0 versus HA: 𝛽𝑗 ≠ 0 for some 𝑗.

– Provides insight into whether DF is important.
H0: 𝛾1 = 𝛽2 = ⋯ = 𝛾𝑝−1 = 0 versus HA: 𝛾𝑘 ≠ 0 for some 𝑘.

– Provides insight into whether NF 1 is important.
H0: 𝛿1 = 𝛿2 = ⋯ = 𝛿𝑝−1 = 0 versus HA: 𝛿ℓ ≠ 0 for some ℓ.

– Provides insight into whether NF 2 is important.

• We test these hypotheses by comparing a full (linear predictor) and reduced (H0 is true) model.

– We try to determine whether the full model fits the data significantly better than the reduced one.

4.3.1 Latin Squares to Compare Means
• Here we’re interested in testing the following hypothesis (while accounting for the influence of the

nuisance factors):
H0: 𝜇1 = 𝜇2 = ⋯ = 𝜇𝑝 versus HA: 𝜇𝑗 ≠ 𝜇𝑗′ for some 𝑗 ≠ 𝑗′

where 𝜇𝑗 is the expected response in condition 𝑗 = 1, 2, … , 𝑝.

• We do this by testing:
H0: 𝛽1 = 𝛽2 = ⋯ = 𝛽𝑝−1 = 0 versus HA: 𝛽𝑗 ≠ 0 for some 𝑗

with an ANOVA in the context of the following linear regression model:

𝑌𝑖 = 𝛼 +
𝑝−1

∑
𝑗=1

𝛽𝑗𝑥𝑖𝑗 +
𝑝−1

∑
𝑘=1

𝛾𝑘𝑧𝑖𝑘 +
𝑝−1

∑
ℓ=1

𝛿ℓ𝑤𝑖ℓ + 𝜀𝑖 (Full Model)

– 𝑌𝑖 is the response observation for unit 𝑖 = 1, 2, … , 𝑁 = 𝑛𝑝2.
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– 𝜀𝑖
iid∼ 𝒩(0, 𝜎2) is the random error term.

• The relevant sums of squares are:

– The total sum of squares, which quantifies overall variation in response values:

SST = ∑
(𝑗,𝑘,ℓ)∈𝒮

𝑛
∑
𝑖=1

(𝑦𝑖𝑗𝑘ℓ − ̄𝑦••••)2 = SSC + SSB1
+ SSB2

+ SSE

– The condition sum of squares, which quantifies variability in the response from one condition to
another:

SSC = ∑
(𝑗,𝑘,ℓ)∈𝒮

𝑛
∑
𝑖=1

( ̄𝑦•𝑗•• − ̄𝑦••••)2 = 𝑛𝑝
𝑝

∑
𝑗=1

( ̄𝑦•𝑗•• − ̄𝑦••••)2

– The first block sum of squares, which quantifies variability in the response from one level of
nuisance factor 1 to another:

SSB1
= ∑

(𝑗,𝑘,ℓ)∈𝒮

𝑛
∑
𝑖=1

( ̄𝑦••𝑘• − ̄𝑦••••)2 = 𝑛𝑝
𝑝

∑
𝑘=1

( ̄𝑦••𝑘• − ̄𝑦••••)2

– The second block sum of squares, which quantifies variability in the response from one level of
nuisance factor 2 to another:

SSB2
= ∑

(𝑗,𝑘,ℓ)∈𝒮

𝑛
∑
𝑖=1

( ̄𝑦•••ℓ − ̄𝑦••••)2 = 𝑛𝑝
𝑝

∑
ℓ=1

( ̄𝑦•••ℓ − ̄𝑦••••)2

– The error sum of squares, which quantifies variability in the response that was not explained by
conditions or blocks (i.e., the design and nuisance factors):

SSE = ∑
(𝑗,𝑘,ℓ)∈𝒮

𝑛
∑
𝑖=1

(𝑦𝑖𝑗𝑘ℓ − ̄𝑦•𝑗•• − ̄𝑦••𝑘• − ̄𝑦•••ℓ − 2 ̄𝑦••••)2

• We show the corresponding ANOVA table in Table 4.10.

Table 4.10: Three-Way ANOVA Table Associated with a Latin Square Design

Source SS d.f. MS Test Statistic
Design Factor SSC 𝑝 − 1 MSC = SSC/(𝑝 − 1) 𝑡C = MSC/MSE
Nuisance Factor 1 SSB1

𝑝 − 1 MSB1
= SSB1

/(𝑝 − 1) 𝑡B1
= MSB1

/MSE
Nuisance Factor 2 SSB2

𝑝 − 1 MSB2
= SSB2

/(𝑝 − 1) 𝑡B2
= MSB2

/MSE
Error SSE 𝑁 − 3𝑝 + 2 MSE = SSE/(𝑁 − 3𝑝 + 2)
Total SST 𝑁 − 1

• So, how do we use this table?

– We test H0: 𝛽1 = 𝛽2 = ⋯ = 𝛽𝑝−1 = 0 using 𝑡C = MSC/MSE.

∗ 𝑝-value: ℙ(𝑇 ≥ 𝑡C) where 𝑇 ∼ 𝐹(𝑝 − 1, 𝑁 − 3𝑝 + 2).
– We test: H0: 𝛾1 = 𝛾2 = ⋯ = 𝛾𝑝−1 = 0 using 𝑡B1

= MSB1
/MSE.

∗ 𝑝-value: ℙ(𝑇 ≥ 𝑡B1
) where 𝑇 ∼ 𝐹(𝑝 − 1, 𝑁 − 3𝑝 + 2).

– We test: H0: 𝛿1 = 𝛿2 = ⋯ = 𝛿𝑝−1 = 0 using 𝑡B2
= MSB2

/MSE.

∗ 𝑝-value: ℙ(𝑇 ≥ 𝑡B2
) where 𝑇 ∼ 𝐹(𝑝 − 1, 𝑁 − 3𝑝 + 2).
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4.3.2 Example: Netflix Latency
Consider the latency experiment described at the beginning of the chapter in which Netflix is experimenting
with server-side modifications to improve (reduce) the latency of netflix.com. In particular, they have four
different experimental conditions (A, B, C, D) that are intended to reduce average latency (in milliseconds).
Two nuisance factors that may also influence latency are browser (Chrome, Microsoft Edge, Firefox, Safari),
and time of day ([00:01,06:00], [06:01,12:00], [12:01,18:00], [18:01,00:00]). The design of the experiment is the
4 × 4 Latin square shown in Table 4.11. In order to determine whether the expected latency in each condition
differs significantly, we randomize 𝑛 = 500 users to each of the 𝑝2 = 16 blocks.

Table 4.11: 4 × 4 Latin Square Design for the Netflix Experiment
Browser

Chrome Edge Firefox Safari
[00:01,06:00] A B C D

Time [06:01,12:00] D A B C
[12:01,18:00] C D A B
[18:01,00:00] B C D A

We analyze the data with the following linear regression model:

𝑌𝑖 = 𝛼 + 𝛽2𝑥𝑖2 + 𝛽3𝑥𝑖3 + 𝛽4𝑥𝑖4 + 𝛾1𝑧𝑖1 + 𝛾2𝑧𝑖2 + 𝛾3𝑧𝑖3 + 𝛿2𝑤𝑖2 + 𝛿3𝑤𝑖3 + 𝛿4𝑤𝑖4 + 𝜀𝑖

• 𝑥𝑖2, 𝑥𝑖3, 𝑥𝑖4 are indicators for conditions B, C, D, where A is the baseline.

• 𝑧𝑖1, 𝑧𝑖2, 𝑧𝑖3 are browser indicators for Microsoft Edge, Firefox, Safari, where Chrome is the baseline.

• 𝑤𝑖2, 𝑤𝑖3, 𝑤𝑖4 are time indicators for time periods:
[06:01,12:00], [12:01,18:00], [18:01,00:00], where [00:01,06:00] is the baseline

The ANOVA table associated with this model is Table 4.12.

Table 4.12: Netflix Latin Square ANOVA Table
Source SS d.f. MS Test Statistic
Condition 203903.38 3 67967.79 679.14
Browser 32.95 3 10.98 0.1097
Time 333242.01 3 111080.67 1109.92
Error 799636.18 7990 100.08
Total 1336815 7999

In all cases, 𝑇 ∼ 𝐹(3, 7990).
• H0: 𝛽2 = 𝛽3 = 𝛽4 = 0.

– 𝑝-value = ℙ(𝑇 ≥ 𝑡C) = ℙ(𝑇 ≥ 679.14) ≈ 0.
– Therefore, we reject H0 and conclude that the design factor significantly influences the response

and hence the expected response is not the same in each condition.

• H0: 𝛾1 = 𝛾2 = 𝛾3 = 0.

– 𝑝-value = ℙ(𝑇 ≥ 𝑡B1
) = ℙ(𝑇 ≥ 0.1097) = 0.9545.

– Therefore, we do not reject H0 and conclude that “browser” does not significantly influence average
latency, and so blocking by browser was probably not necessary.

• H0: 𝛿2 = 𝛿3 = 𝛿4 = 0.

– 𝑝-value = ℙ(𝑇 ≥ 𝑡B2
) = ℙ(𝑇 ≥ 1109.92) ≈ 0.

– Therefore, we reject H0 and conclude that the time of day significantly influences average latency
and so blocking by it was sensible.

[R Code] Latin_square_means

netflix.com
https://github.com/Hextical/university-notes/blob/master/year-3/semester-3/STAT 430/code/W6/Latin_square_means.R
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4.3.3 Latin Squares to Compare Proportions
• Here we’re interested in testing the following hypothesis (while accounting for the influence of the

nuisance factors):
H0: 𝜋1 = 𝜋2 = ⋯ = 𝜋𝑝 versus HA: 𝜋𝑗 ≠ 𝜋𝑗′ for some 𝑗 ≠ 𝑗′

where 𝜋𝑗 is the expected response in condition 𝑗 = 1, 2, … , 𝑝.

• We do this by testing:
H0: 𝛽1 = 𝛽2 = ⋯ = 𝛽𝑝−1 = 0 versus HA: 𝛽𝑗 ≠ 0 for some 𝑗

with a likelihood ratio test (LRT) in the context of the following logistic regression model:

log( 𝜋𝑖
1 − 𝜋𝑖

) = 𝛼 +
𝑝−1

∑
𝑗=1

𝛽𝑗𝑥𝑖𝑗 +
𝑝−1

∑
𝑘=1

𝛾𝑘𝑧𝑖𝑘 +
𝑝−1

∑
ℓ=1

𝛿ℓ𝑤𝑖ℓ

– 𝑌𝑖 = 1 if unit 𝑖 performs some action of interest, and 𝑌𝑖 = 0 otherwise.
– 𝜋𝑖 = 𝔼[𝑌𝑖] = expected response of unit 𝑖.
– The likelihood ratio test compares the full model to the one without the 𝑥’s.

• Similarly, we test:
H0: 𝛾1 = 𝛾2 = ⋯ = 𝛾𝑝−1 = 0 versus HA: 𝛾𝑘 ≠ 0 for some 𝑘

with a LRT that compares the full model to the reduced one without the 𝑧’s.

• And we test:
H0: 𝛿1 = 𝛿2 = ⋯ = 𝛿𝑝−1 = 0 versus HA: 𝛿ℓ ≠ 0 for some ℓ

with a LRT that compares the full model to the reduced one without the 𝑤’s.

• The observed test statistic for all of these tests is:

𝑡 = 2 log( LikelihoodFull Model
LikelihoodReduced Model

)

= 2[Log-LikelihoodFull Model − Log-LikelihoodReduced Model]

which, if H0 is true, follows an approximate 𝜒2(𝑝 − 1).

• 𝑝-value = ℙ(𝑇 ≥ 𝑡) where 𝑇 ∼ 𝜒2(𝑝 − 1).

4.3.4 Example: Uber Weekend Promos
EXAMPLE 4.3.1: Uber Weekend Promos

Consider an experiment in which Uber is investigating the influence of three different promotional
offers on ride-booking-rate (RBR).

• Promo A: None.

• Promo B: One free ride today.

• Promo C: Book a ride today and get 50% off your next 2 rides.

The experimenters would like to control for a possible day-of-week effect, and so they want to block by
day. They would also like to control for possible city-to-city differences, and so they also want to block
by city. To do so they run a 3 × 3 Latin square design as illustrated in Table 4.13. Interest lies in
determining whether the different promotions perform similarly with respect to RBR — and they wish
to determine which one maximizes RBR — while controlling for the effects of day and city. In order to
do this they randomize 𝑛 = 1000 users to each of the 𝑝2 = 9 blocks.

Table 4.13: 3 × 3 Latin Square Design for the Uber Experiment
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City
Toronto Vancouver Montreal

Friday A B C
Day Saturday C A B

Sunday B C A

We analyze the data with the following logistic regression model:

log( 𝜋𝑖
1 − 𝜋𝑖

) = 𝛼 + 𝛽2𝑥𝑖2 + 𝛽3𝑥𝑖3 + 𝛾1𝑧𝑖1 + 𝛾2𝑧𝑖2 + 𝛿1𝑤𝑖1 + 𝛿2𝑤𝑖2

• 𝑥𝑖2, 𝑥𝑖3, are condition indicators for promotions B, C, where A is the baseline.

• 𝑧𝑖1, 𝑧𝑖2, are day indicators for Saturday, Sunday, where Friday is the baseline.

• 𝑤𝑖1, 𝑤𝑖2, are city indicators for Toronto, Vancouver, where Montreal is the baseline.

• H0: 𝛽2 = 𝛽3 = 0.

– 𝑝-value = ℙ(𝑇 ≥ 𝑡C) = ℙ(𝑇 ≥ 16.648) = 0.00024 where 𝑇 ∼ 𝜒2(2).
– Therefore, we reject H0 and conclude that the booking rate is not the same for each

promotional offer.

• H0: 𝛾1 = 𝛾2 = 0.

– 𝑝-value = ℙ(𝑇 ≥ 𝑡B1
) = ℙ(𝑇 ≥ 8.9107) = 0.01162 where 𝑇 ∼ 𝜒2(2).

– Therefore, we reject H0 and conclude that the day-of-week significantly influences booking,
and so it is good that we blocked by this factor.

• H0: 𝛿1 = 𝛿2 = 0.

– 𝑝-value = ℙ(𝑇 ≥ 𝑡B2
) = ℙ(𝑇 ≥ 2.1193) = 0.3466 where 𝑇 ∼ 𝜒2(2).

– Therefore, we do not reject H0 and conclude that “city” does not significantly influence
booking rate, and so blocking by city may have not been necessary.

[R Code] Latin_square_proportions

https://github.com/Hextical/university-notes/blob/master/year-3/semester-3/STAT 430/code/W6/Latin_square_proportions.R


Chapter 5

EXPERIMENTS WITH MULTIPLE
DESIGN FACTORS

Week 7

• We now consider the design and analysis of experiments consisting of multiple conditions arising from
multiple design factors.

– This is often colloquially referred to as “multivariate testing” (MVT).

• Canonical MVT button test:

CLICK ME

ENTERGO!

CLICK ME

Many things influence click-through rate:

– Colour.
– Size.
– Position.
– Phrase.

• Some additional, more tangible, examples:

– Etsy.
– Netflix.
– Airbnb.

• This week we describe how to design and analyze experiments that efficiently investigate multiple design
factors.

• Goals:

1. Determine which condition is optimal with respect to some metric of interest.
– But now a condition is defined by a specific combination of the levels of multiple design factors.

2. Determine which factors are influential and understand how the factors influence the response.

58

https://goodui.org/leaks/how-etsys-product-page-design-evolved-between-2019-and-2020/
https://goodui.org/leaks/netflix-a-b-tests-4-secondary-choices-all-of-which-get-rejected/
https://goodui.org/leaks/airbnb-a-b-tests-and-rejects-a-natural-language-form/
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5.1 The Factorial Approach
• The key to multi-factor experiments is to efficiently investigate different combinations of the factor

levels.

• One-factor-at-a-time approach (OFAT):

– Sequence of experiments, each with just one factor being varied.
– The winning level of this factor is retained.
– Follow-up experiments manipulate some other factor, while the previous ones are held fixed at

their optimal levels.

EXAMPLE 5.1.1: Button

1. Experiment with colour, and purple wins.

2. Experiment with phrase, and “submit” wins.

3. Experiment with size, and “large” wins.

EXAMPLE 5.1.2: Twitter ♡ versus ⋆

• In 2015 Twitter changed “favouriting” a tweet (expressed as stars) to “liking” a tweet (expressed
as hearts) and the internet was pissed.

• In line with Twitter’s “test everything” motto, this decision came about as a result of experimen-
tation.

• A hypothetical experiment that could have lead to this decision might involve two factors at two
levels.

– DF1 = Shape → {Star,Heart}.
– DF2 = Colour → {Yellow,Red}.

• A one-factor-at-a-time approach might look like this:

– Experiment 1: ⋆ versus ♡.
– Experiment 2: ⋆ versus ♡.

• Suppose they conclude that ♡ is the best, but what about ⋆? The problem with OFAT experiments
is that we may never observe the truly optimal combination of factor levels.

EXAMPLE 5.1.3: Etsy Search Bar

• Check it out.

• The Factorial approach:

– Experimental conditions are defined as every unique combination of the design factors’ levels.
– In the Twitter example, the factorial experiment would have looked like this: ⋆ ⋆ ♡♡.
– In the Etsy example, the factorial experiment would have looked like this:

Small Square Box, Small Rounded Box, Long Square Box, Long Rounded Box.
– Advantage: it explores every possible condition.

1. We don’t miss the optimal condition.

https://entertainment.ie/trending/twitter-changed-their-star-favourites-to-heart-likes-and-the-internet-is-pissed-335920/
https://goodui.org/leaks/how-etsys-product-page-design-evolved-between-2019-and-2020/
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2. Our understanding of the relationship between the response and design factors is better with
a factorial experiment than with an OFAT experiment.

– Disadvantage: it explores every possible condition.
∗ With many design factors at many levels, the number of unique combinations might be
unmanageably large.

– As long as we choose our factors and their levels thoughtfully, the advantages outweigh the
disadvantages.

• Main effects: The main effect of factor A, represents the change in the response variable produced by
a change in that factor. In our Twitter example:

– Main effect of shape: what happens to the response when we change the shape from ⋆ to ♡.
– Main effect of colour: what happens to the response when we change the colour from yellow to

red?

• Interaction effects: If the main effect of factor A depends on the level of some other factor B, we say
that factors A and B interact. In our Twitter example:

– Is there an interaction between shape and colour?
⟺ Does the effect of going from ⋆ to ♡ depend on colour?
⟺ Does the effect of going from yellow to red depend on shape?

• From a practical perspective it is critical to quantify both types of effects.

– The only type of design that allows us to observe and estimate both main and interaction effects
is the factorial design. The OFAT cannot do this.

5.2 Designing a Factorial Experiment
• Conceptually, the design of a factorial experiment is simple.

1. Pick your metric of interest and define the corresponding response variable.
2. Pick your design factors.
3. Pick their levels.
4. Define your experimental conditions (all possible combinations of our design factors’ levels).
5. Determine your sample sizes.

EXAMPLE 5.2.1: Button

Suppose you have 𝐾 = 3 factors, colour (red, blue), phrase (“Continue”, “Go”), and size (small,
medium, large). These factors therefore have 𝑚1 = 2, 𝑚2 = 2, and 𝑚3 = 3 levels respectively.
Therefore, we have 𝑚 = 𝑚1𝑚2𝑚3 = (2)(2)(3) = 12 experimental conditions.

Go

Cont.

Go Go

Continue Continue

Go

Cont.

Go Go

Continue Continue

• In general, a factorial experiment with 𝐾 factors requires 𝑚 = 𝑚1𝑚2 ⋯ 𝑚𝐾 conditions, where 𝑚𝑘 is
the number of levels of design factor 𝑘.
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• As the number of factors and levels increase, the size of the experiment can get unmanageably large.

– As such, we want to pick our factors and levels thoughtfully. Keep it simple.
1. Don’t investigate factors that are highly correlated.
2. Don’t choose levels that are very similar.
3. Don’t choose factors that are hard to manipulate outside an experiment.

• Once the factors, levels, and hence experimental conditions have been established, experimental units
must be randomized to each of the 𝑚 conditions.

– The number of experimental units assigned to each condition 𝑛𝑗, 𝑗 = 1, 2, … , 𝑚, can be determined
by sample size calculations associated with two-sample tests.

– Make sure to account for the multiple comparison problem.

5.3 Analyzing a Factorial Experiment
• In order to determine which condition is optimal we use pairwise tests.

• In order to determine which factors are influential, and to quantify this influence we use regression.

• Whether it’s a linear or logistic regression, we use a linear predictor which contains the following terms:

– An intercept.
– Main effect terms. We represent a factor with 𝑚𝑘 levels using 𝑚𝑘 − 1 variables.
– Two-factor interaction terms, three-factor interaction terms,… 𝐾-factor interaction terms.
– In general, an ℎ-factor interaction is represented by ℎ-way products of the main effect indicators

for the factors involved.

EXAMPLE 5.3.1: Button

With 𝐾 = 3 factors with 𝑚1 = 2, 𝑚2 = 2, and 𝑚3 = 3 levels, the required linear predictor will contain:

• Main effect terms, and

– Let 𝑥1 be an indicator for “colour.”
– Let 𝑥2 be an indicator for “phrase.”
– Let 𝑥3 and 𝑥4 be indicators for “size.”

• Two-factor interaction terms, and pairwise products of indicators for each pair of factors.

• Three-factor interaction terms. Three-way products of the indicators for all three factors.

• The linear predictor is given by:

𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3 + 𝛽4𝑥4⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵
main effects

+ 𝛽5𝑥1𝑥2 + 𝛽6𝑥1𝑥3 + 𝛽7𝑥1𝑥4 + 𝛽8𝑥2𝑥3 + 𝛽9𝑥2𝑥4⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵
two-factor interactions

+ 𝛽10𝑥1𝑥2𝑥3 + 𝛽11𝑥1𝑥2𝑥4⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵
three-factor interactions

• Hypotheses concerning the main effects will therefore involve 𝛽1, 𝛽2, 𝛽3, 𝛽4.

• Hypotheses concerning the two-factor interactions will involve 𝛽5, 𝛽6, 𝛽7, 𝛽8, 𝛽9.

• Hypotheses concerning the three-factor interactions will involve 𝛽10, 𝛽11.
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• In general, hypotheses of these sort will be performed by comparing full versus reduced models via partial
𝐹-tests (in the case of linear regression) and likelihood ratio tests (in the case of logistic regression).

5.3.1 Continuous Response — The Instagram Example
• We illustrate the topics discussed in this section in the context of an Instagram Ad example.

• Suppose that you are a data scientist at Instagram, and you are interested in running an experiment to
learn about how ad frequency and ad type influences user engagement.

• Suppose that ad frequency has levels {9:1, 7:1, 4:1, 1:1} corresponding to ad frequencies of 1 in 10, 1 in
8, 1 in 5, and every other.

• Suppose that ad type is a second design factor with levels {photo, video}.

• We will consider here the factorial experiment that considers every combination of these two factors’
levels. Therefore, 𝑚 = 𝑚1𝑚2 = (4)(2) = 8 conditions.

• Assume 𝑛 = 1000 users are randomly assigned to each of these 𝑚 = 8 conditions, and on each user we
measure the length of time they engage with the app (in minutes).

• We use the resulting data to create the following main effect plots (i.e., the plots of MOI versus the
levels of each factor) in Figure 5.1.
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Figure 5.1: Left: Main Effect Plot for Ad Frequency; Right: Main Effect Plot for Ad Type

– As ad frequency increases, we see that average session duration increases.
– Average session duration increases with video ads relative to photo ads.
– Ad frequency appears to be more influential than ad type since the change in ASD produced by

changes in frequency is large (in magnitude) than those produced by changes in ad type.

• Important:

– Discussing main effects can be uninformative and potentially misleading if there is a significant
interaction between the factors

– In the presence of a significant interaction effect, it no longer makes sense to discuss the main
effect of a factor in isolation, because doing so ignores the fact that this effect changes depending
on the level of another factor.

• We can evaluate the presence of such interaction by studying interaction effect plots (i.e., plots of
the MOI at each level of DF1 with different line types distinguishing the levels of DF2) in Figure 5.2.
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Figure 5.2: Interaction Plot for Ad Frequency and Ad Type.

• Non-parallel line segments on these plots would indicate the presence of an interaction since this would
correspond to the main effect of one factor depending on the levels of the other factor.

– The line segments in these plots are not perfectly parallel and so an interaction appears to exist.
– However, the departure from parallelism is not drastic, and so this interaction is perhaps not

strong.

• To formally evaluate whether these main effects and interaction effects are significant we fit the following
linear regression model:

𝑌𝑖 = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + 𝛽3𝑥𝑖3⎵⎵⎵⎵⎵⎵⎵⎵⎵
main effects of frequency

+ 𝛽4𝑥𝑖4⎵
main effects of type

+ 𝛽5𝑥𝑖1𝑥𝑖4 + 𝛽6𝑥𝑖2𝑥𝑖4 + 𝛽7𝑥𝑖3𝑥𝑖4⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵
two-factor interaction

+𝜀𝑖

where the 𝑥’s are indicator variables.

– 𝑥𝑖1 = 1 if unit 𝑖 is in a condition with the 7:1 ad frequency.
– 𝑥𝑖2 = 1 if unit 𝑖 is in a condition with the 4:1 ad frequency.
– 𝑥𝑖3 = 1 if unit 𝑖 is in a condition with the 1:1 ad frequency.
– 𝑥𝑖4 = 1 if unit 𝑖 is in a condition with video ads.

• The expected response in each condition, according to this model is Table 5.1.

Ad Type
Photo Video

9:1 𝔼[𝑌𝑖 | 𝑥𝑖1 = 𝑥𝑖2 = 𝑥𝑖3 = 0, 𝑥𝑖4 = 0] = 𝛽0 𝔼[𝑌𝑖 | 𝑥𝑖1 = 𝑥𝑖2 = 𝑥𝑖3 = 0, 𝑥𝑖4 = 1] = 𝛽0 + 𝛽4

Freq. 7:1 𝔼[𝑌𝑖 | 𝑥𝑖1 = 1, 𝑥𝑖4 = 0] = 𝛽0 + 𝛽1 𝔼[𝑌𝑖 | 𝑥𝑖1 = 1, 𝑥𝑖4 = 1] = 𝛽0 + 𝛽1 + 𝛽4 + 𝛽5
4:1 𝔼[𝑌𝑖 | 𝑥𝑖2 = 1, 𝑥𝑖4 = 0] = 𝛽0 + 𝛽2 𝔼[𝑌𝑖 | 𝑥𝑖2 = 1, 𝑥𝑖4 = 1] = 𝛽0 + 𝛽2 + 𝛽4 + 𝛽6
1:1 𝔼[𝑌𝑖 | 𝑥𝑖3 = 1, 𝑥𝑖4 = 0] = 𝛽0 + 𝛽3 𝔼[𝑌𝑖 | 𝑥𝑖3 = 1, 𝑥𝑖4 = 1] = 𝛽0 + 𝛽3 + 𝛽4 + 𝛽7

Table 5.1: Expected Response in Each Ad Frequency-Type Condition

• Clearly, a formal test of:
H0: 𝛽5 = 𝛽6 = 𝛽7 = 0 versus HA: 𝛽𝑗 ≠ 0

for 𝑗 = 5, 6, 7 would evaluate the significance of the interaction effect.

– If we reject H0, any conclusions regarding the effect of one factor must be made in the context of
the levels of the other factor.
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– If we do not reject H0, the interaction terms can be removed from the model yielding the following
simplified main effects model:

𝑌𝑖 = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + 𝛽3𝑥𝑖3 + 𝛽4𝑥𝑖4 + 𝜀𝑖

which can be used to evaluate the significance of the main effect of each factor.
– The expected response in each condition, according to the main effects model is Table 5.2.

Ad Type
Photo Video

9:1 𝔼[𝑌𝑖 | 𝑥𝑖1 = 𝑥𝑖2 = 𝑥𝑖3 = 0, 𝑥𝑖4 = 0] = 𝛽0 𝔼[𝑌𝑖 | 𝑥𝑖1 = 𝑥𝑖2 = 𝑥𝑖3 = 0, 𝑥𝑖4 = 1] = 𝛽0 + 𝛽4

Freq. 7:1 𝔼[𝑌𝑖 | 𝑥𝑖1 = 1, 𝑥𝑖4 = 0] = 𝛽0 + 𝛽1 𝔼[𝑌𝑖 | 𝑥𝑖1 = 1, 𝑥𝑖4 = 1] = 𝛽0 + 𝛽1 + 𝛽4
4:1 𝔼[𝑌𝑖 | 𝑥𝑖2 = 1, 𝑥𝑖4 = 0] = 𝛽0 + 𝛽2 𝔼[𝑌𝑖 | 𝑥𝑖2 = 1, 𝑥𝑖4 = 1] = 𝛽0 + 𝛽2 + 𝛽4
1:1 𝔼[𝑌𝑖 | 𝑥𝑖3 = 1, 𝑥𝑖4 = 0] = 𝛽0 + 𝛽3 𝔼[𝑌𝑖 | 𝑥𝑖3 = 1, 𝑥𝑖4 = 1] = 𝛽0 + 𝛽3 + 𝛽4

Table 5.2: Expected Response in Each Ad Frequency-Type Condition, Based on the Main Effects Model

– The hypothesis:
H0: 𝛽1 = 𝛽2 = 𝛽3 = 0 versus HA: 𝛽𝑗 ≠ 0

for 𝑗 = 1, 2, 3 tests whether ad frequency is a significant factor.
– The hypothesis:

H0: 𝛽4 = 0 versus HA: 𝛽4 ≠ 0
tests whether ad type is a significant factor.

– But remember: these tests and the interpretation of main effects are only appropriate in the
absence of interaction.

• Each of these null hypotheses generates a reduced model with fewer terms relative to a full model
with all terms — we compare them using partial 𝐹-tests associated with an analysis of variance.

• Output from the relevant partial 𝐹-tests is shown below:

Model 1: Time ~ Frequency + Type
Model 2: Time ~ Frequency * Type
Res.Df RSS Df Sum of Sq F Pr(>F)

1 7995 6522.2
2 7992 6372.9 3 149.27 62.398 < 2.2e-16 ***

Model 1: Time ~ Frequency
Model 2: Time ~ Frequency + Type
Res.Df RSS Df Sum of Sq F Pr(>F)

1 7996 7049.5
2 7995 6522.2 1 527.34 646.43 < 2.2e-16 ***

Model 1: Time ~ Type
Model 2: Time ~ Frequency + Type
Res.Df RSS Df Sum of Sq F Pr(>F)

1 7998 41875
2 7995 6522 3 35353 14445 < 2.2e-16 ***

• Conclusions:

– The 𝑝-value associated with H0: 𝛽5 = 𝛽6 = 𝛽7 = 0 is very small, suggesting that the interaction
between ad frequency and ad type is significant.

– The 𝑝-value associated with H0: 𝛽4 = 0 is very small, suggesting that the main effect of ad type is
significant.
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– The 𝑝-value associated with H0: 𝛽1 = 𝛽2 = 𝛽3 = 0 is very small, suggesting that the main effect
of ad frequency is significant.
∗ Strictly speaking, the last two conclusions are irrelevant because we know the interaction is
significant. Although, I include this for instructional purposes.

• [R Code] Factorial_example_means

5.3.2 Binary Response — The TinyCo Example
• The informal and formal evaluation of main and interaction effects can be performed in the context of a

binary response variable as well.

– Main effect and interaction effect plots are based on observed proportions.
– Logistic regression is used instead of ordinary linear regression.

• The structure of the linear predictor is identical to what we have discussed in general.

• For instance, if the Instagram experiment from the previous section had a binary response instead, the
relevant logistic regression model would be

log( 𝜋𝑖
1 − 𝜋𝑖

) = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + 𝛽3𝑥𝑖3 + 𝛽4𝑥𝑖4 + 𝛽5𝑥𝑖1𝑥𝑖4 + 𝛽6𝑥𝑖2𝑥𝑖4 + 𝛽7𝑥𝑖3𝑥𝑖4

where the 𝑥’s are the indicator variables defined previously.

• Interest lies in determining whether subsets of the 𝛽’s are equal to zero to evaluate the significance of
various main and interaction effects.

– We use likelihood ratio tests for the comparison of full and reduced logistic regression models.
– The test statistic for the LRT is:

𝑡 = 2 log( LikelihoodFull Model
LikelihoodReduced Model

)

= 2[Log-LikelihoodFull Model − Log-LikelihoodReduced Model]

– If H0 is true, then 𝑡 should look like it comes from a 𝜒2(𝜈) distribution, where

𝜈 = (# coefficients in full model) − (# coefficients in reduced model)

– 𝑝-value = ℙ(𝑇 ≥ 𝑡) where 𝑇 ∼ 𝜒2(𝜈).

Week 8

Pit Stop: Effects vs. Terms in a Linear Predictor
Example: Suppose Factor A has 𝑚1 = 5 levels, Factor B has 𝑚2 = 2 levels, and Factor C has 𝑚3 = 3 levels.

• The main effect for a given factor is represented by indicator variables corresponding to the levels of
that factor.

– Factor A will be represented in a regression model by 𝑚1 −1 = 4 indicator variables: 𝑥1, 𝑥2, 𝑥3, 𝑥4,
and 𝑚1 − 1 = 4 corresponding 𝛽’s: 𝛽1 = 𝛽2 = 𝛽3 = 𝛽4.

– Thus, the main effect of Factor A is composed of 4 terms in the model.
– To determine the significance of the main effect of Factor A, we test:

𝐇0: 𝛽1 = 𝛽2 = 𝛽3 = 𝛽4 = 0.

https://github.com/Hextical/university-notes/blob/master/year-3/semester-3/STAT 430/code/W7/Factorial_example_means.R
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– Factor B will be represented in a regression model by 𝑚2 − 1 = 1 indicator variable: 𝑥5, and
𝑚2 − 1 = 1 corresponding 𝛽: 𝛽5.

– Thus, the main effect of Factor B is composed of 1 term in the model.
– To determine the significance of the main effect of Factor B, we test:

𝐇0: 𝛽5 = 0.
– Factor C will be represented in a regression model by 𝑚3 − 1 = 2 indicator variables: 𝑥6, 𝑥7, and

𝑚3 − 1 = 2 corresponding 𝛽’s: 𝛽6, 𝛽7.
– Thus, the main effect of Factor C is composed of 2 terms in the model.
– To determine the significance of the main effect of Factor C, we test:

𝐇0: 𝛽6 = 𝛽7 = 0.
– Note: These three hypotheses are relevant only in the context of the main effect model which has

linear predictor:
𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3 + 𝛽4𝑥4 + 𝛽5𝑥5 + 𝛽6𝑥6 + 𝛽7𝑥7

• The interaction effect between two factors is represented by two-way products of the indicator variables
corresponding to the main effects of the two factors.

– The A:B interaction effect is composed of the (𝑚1 −1)×(𝑚2 −1) = 4×1 = 4 terms resulting from
the two-way products between Factor A’s and Factor B’s indicator variables: 𝑥1𝑥5, 𝑥2𝑥5, 𝑥3𝑥5, 𝑥4𝑥5,
with corresponding 𝛽’s: 𝛽8, 𝛽9, 𝛽10, 𝛽11.

– The significance of the A:B interaction effect is determined by testing:
𝐇0: 𝛽8 = 𝛽9 = 𝛽10 = 𝛽11 = 0.

– The A:C interaction effect is composed of the (𝑚1 − 1) × (𝑚3 − 1) = 4 × 2 = 8 terms resulting
from the two-way products between Factor A’s and Factor C’s indicator variables:

𝑥1𝑥6, 𝑥2𝑥6, 𝑥3𝑥6, 𝑥4𝑥6, 𝑥1𝑥7, 𝑥2𝑥7, 𝑥3𝑥7, 𝑥4𝑥7,

with corresponding 𝛽’s: 𝛽12, 𝛽13, … , 𝛽19.
– The significance of the A:C interaction effect is determined by testing:

𝐇0: 𝛽12 = 𝛽13 = 𝛽14 = 𝛽15 = 𝛽16 = 𝛽17 = 𝛽18 = 𝛽19 = 0.
– The B:C interaction effect is composed of the (𝑚2 − 1) × (𝑚3 − 1) = 1 × 2 = 2 terms resulting

from the two-way products between Factor B’s and Factor C’s indicator variables: 𝑥5𝑥6, 𝑥5𝑥7,
with corresponding 𝛽’s: 𝛽20, 𝛽21.

– The significance of the B:C interaction effect is determined by testing:
𝐇0: 𝛽20 = 𝛽21 = 0.

• The interaction effect between three factors is represented by three-way products of the indicator
variables corresponding to the main effects of the three factors.

– The A:B:C interaction effect is composed of the (𝑚1 − 1) × (𝑚2 − 1) × (𝑚3 − 1) = 4 × 1 × 2 = 8
terms resulting from the three-way products between Factor A’s, Factor B’s, and Factor C’s
indicator variables:

𝑥1𝑥5𝑥6, 𝑥1𝑥5𝑥7, 𝑥2𝑥5𝑥6, 𝑥2𝑥5𝑥7, 𝑥3𝑥5𝑥6, 𝑥3𝑥5𝑥7, 𝑥4𝑥5𝑥6, 𝑥4𝑥5𝑥7,

with corresponding 𝛽’s: 𝛽22, … , 𝛽29.
– The significance of the A:B:C interaction effect is determined by testing:

𝐇0: 𝛽22 = 𝛽23 = 𝛽24 = 𝛽25 = 𝛽26 = 𝛽27 = 𝛽28 = 𝛽29 = 0.
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– Note: The hypotheses concerning the significance of interaction effects are relevant only in the
context of the full model which has linear predictor:

Intercept → 𝛽0+
ME’s → 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3 + 𝛽4𝑥4 + 𝛽5𝑥5 + 𝛽6𝑥6 + 𝛽7𝑥7+

2FI’s → { 𝛽8𝑥1𝑥5 + 𝛽9𝑥2𝑥5 + 𝛽10𝑥3𝑥5 + 𝛽11𝑥4𝑥5 + 𝛽12𝑥1𝑥6 + 𝛽13𝑥2𝑥6 + 𝛽14𝑥3𝑥6+
𝛽15𝑥4𝑥6 + 𝛽16𝑥1𝑥7 + 𝛽17𝑥2𝑥7 + 𝛽18𝑥3𝑥7 + 𝛽19𝑥4𝑥7 + 𝛽20𝑥5𝑥6 + 𝛽21𝑥5𝑥7+

3FI’s → { 𝛽22𝑥1𝑥5𝑥6 + 𝛽23𝑥1𝑥5𝑥7 + 𝛽24𝑥2𝑥5𝑥6 + 𝛽25𝑥2𝑥5𝑥7+
𝛽26𝑥3𝑥5𝑥6 + 𝛽27𝑥3𝑥5𝑥7 + 𝛽28𝑥4𝑥5𝑥6 + 𝛽29𝑥4𝑥5𝑥7

• ALL the tests discussed here are carried by either a partial 𝑭-test or a likelihood ratio test.

– Partial 𝐹-test: 𝑝-value = ℙ(𝑇 ≥ 𝑡) where 𝑇 ∼ 𝐹(𝜈, ℎ).
– Likelihood ratio test: 𝑝-value = ℙ(𝑇 ≥ 𝑡) where 𝑇 ∼ 𝜒2(𝜈).
– 𝜈 = (# 𝛽’s in “full” model) − (# 𝛽’s in “reduced” model).
– ℎ = error degrees of freedom in the “full” model = 𝑁 − # 𝛽’s in “full” model.

TinyCo is a mobile video game studio that develops the Tiny Zoo game. In this game users own zoos and collect
animals to put in their zoos. An experiment is performed in which a new animal, the “bananimal,” is released
for purchase as a part of the Super Sweet Series. Interest lies in understanding the relationship between
conversion (purchase rate) and two factors: the bananimal’s colour (yellow or gold) and the bananimal’s price
($10, $20, or $30 of in-game currency). A factorial experiment with 6 conditions was performed to investigate
these relationships. A summary of the data resulting from this experiment is shown below.

Condition Sample Size Purchase Rate
$10 + Yellow 500 0.1720
$20 + Yellow 483 0.0973
$30 + Yellow 488 0.0492
$10 + Gold 500 0.2260
$20 + Gold 500 0.1840
$30 + Gold 487 0.1992

• What does the main effect plots tell us?

– ME of colour: gold bananimals are purchased more frequently than yellow.
– ME of price: we expect purchase rate to decrease as bananimal price increases.
– However, we should not stop here because an interaction exists.

• What does the interaction effect plots tell us?

– A price-colour interaction exists.
– We see that increasing price from $20 to $30 for gold bananimals increases purchase rate, whereas

the same increase for yellow bananimals decreases purchase rate.

• To formally analyze the data, we fit the full logistic regression model with linear predictor:

𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + 𝛽3𝑥𝑖3 + 𝛽4𝑥𝑖1𝑥𝑖2 + 𝛽5𝑥𝑖1𝑥𝑖3

– 𝑥𝑖1 = 1 if unit 𝑖 is in a gold bananimal condition.
– 𝑥𝑖2 = 1 if unit 𝑖 is in a $20 bananimal condition.
– 𝑥𝑖3 = 1 if unit 𝑖 is in a $30 bananimal condition.

https://static.wikia.nocookie.net/tinyzoo/images/a/a2/Bananimal_single.png/revision/latest/scale-to-width-down/164?cb=20120325211649
https://tinyzoo.fandom.com/wiki/Super_Sweet
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• We test the significance of the interaction effects via the hypothesis:
𝐇0: 𝛽4 = 𝛽5 = 0 vs. 𝐇A: 𝛽𝑗 ≠ 0 for some 𝑗 = 4, 5.

• This involves a comparison between the full model and the reduced main effects model with linear
predictor:

𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + 𝛽3𝑥𝑖3

– 𝑝-value = ℙ(𝑇 ≥ 19.918) = 4.731 × 10−5 where 𝑇 ∼ 𝜒2(2).
– Therefore, we reject 𝐇0 and conclude that the price-colour interaction is significant.

• We can also test the main effect of colour with 𝐇0: 𝛽1 = 0 in the context of the main effects model:

– 𝑡 = 53.757.
– 𝑝-value = 2.269 × 10−13.
– Therefore, we reject 𝐇0 and conclude that colour does significantly influence purchase rate.

• We can also test the main effect of price with 𝐇0: 𝛽2 = 𝛽3 = 0 in the context of the main effects model:

– 𝑡 = 23.324.
– 𝑝-value = 8.614 × 10−6.
– Therefore, we reject 𝐇0 and conclude that price does significantly influence purchase rate.

• So what have we learned about the influence of these factors?

– Colour and price both significantly influence purchase rate.
– Gold bananimals tend to be purchased more often than yellow.
– Increasing price from $10 to $20 decreases purchase rate (for both colours) and increasing price

from $20 to $30 increase purchase rate for gold but not yellow bananimal.

• And which condition was optimal?

– It turns out that the purchase rate is not statistically significantly different in the three gold
bananimal conditions. So, $30 gold bananimals seem like a good choice for TinyCo.

• [R Code] Factorial_example_proportions

5.4 Two-Level Factorial Experiments
• Factorial experiments are the most informative means of exploring several design factors.

• But this may require a larger number of experimental conditions than is practically feasible.

• As a compromise, we might consider two-level factorial experiments.

– This is a factorial experiment where each factor is experimented at just two levels.

• Such an experiment is typically used for factor screening.

– Among a larger number of factors, we want to determine which significantly influence the response.

• Factoring screening is predicated on the Pareto Principle.

– Only a “vital few” factors will be important relative to the “trivial many.”

• We will discuss two types of two-level factorial experiments:

– 𝟐𝑲 factorial designs: investigates 𝐾 design factors in 2𝐾 conditions (i.e., all possible combinations
of the factors’ levels).

– 𝟐𝑲−𝒑 factorial designs: investigates 𝐾 design factors in 2𝐾−𝑝 conditions (i.e., just a fraction of
all possible combinations of the factors’ levels).

https://github.com/Hextical/university-notes/blob/master/year-3/semester-3/STAT 430/code/W8/Factorial_example_proportions.R
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2𝐾 FACTORIAL EXPERIMENTS

6.1 Designing 2𝐾 Factorial Experiments
Week 9

* 2𝐾 factorial experiments involve 𝐾 design factors, each at two levels.

• These experiments are typically used for factor screening.

→ Primary Goal: Determine which among the 𝐾 factors significantly influence the response variable.
→ Secondary Goal: Determine which combination of levels is optimal.

↪ This is really only relevant if the levels experimented with are the only ones of interest.

→ The design of the experiment involves:

1. Choose the MOI and response variables.
↪ Dictated by the “question.”

2. Choose the design factors.
↪ Choose 𝐾 factors that may influence the response and that you want to learn about.

3. Choose the levels of the design factors.
↪ With the goal of factor screening we want to give influential factors as fair an opportunity as

possible to show themselves as being influential.
↪ Pick levels that are quite different. For example, colour and discount amount.

4. Define experimental conditions.
↪ These are the 2𝐾 unique combinations of the 𝐾 factors’ levels.

5. Assign 𝑛 experimental units to each condition.
↪ Balance is not necessary, it’s just notationally convenient.
↪ Overall sample size: 𝑁 = 𝑛2𝐾.

• In two-level experiments we regard the two levels of a factor as low and high values of that factor.

* If a factor is categorical, then “low” vs. “high” labelling is arbitrary.

• We represent each factor by a binary variable:

𝑥 = {
−1 if the factor is at its “low” level
1 if the factor is at its “high” level

70
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* We could alternatively code each 𝑥 as an indicator variable, but the ±1 coding gives rise to some
convenient statistical properties.

→ With the factor levels coded in this way, each experimental condition can be identified by a unique
combination of plus and minus ones.

• The experimental design can be completely summarized by the design matrix.

– 2𝐾 rows (conditions) and 𝐾 columns (factors) of plus and minus ones.

→ The ±1 entries are organized such that each row corresponds to a unique condition and the columns
correspond to each of the factors.

→ The design matrix provides a prescription for running the 2𝐾 factorial experiment.

EXAMPLE 6.1.1: 21 Design Matrix

C1 →
C2 → [−1

+1] = [𝒙1]

EXAMPLE 6.1.2: 22 Design Matrix

C1 →
C2 →
C3 →
C4 →

⎡
⎢⎢
⎣

−1 −1
+1 −1
−1 +1
+1 +1

⎤
⎥⎥
⎦

= [𝒙1 𝒙2]

EXAMPLE 6.1.3: 23 Design Matrix

C1 →
C2 →
C3 →
C4 →
C5 →
C6 →
C7 →
C8 →

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 −1 −1
+1 −1 −1
−1 +1 −1
+1 +1 −1
−1 −1 +1
+1 −1 +1
−1 +1 +1
+1 +1 +1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= [𝒙1 𝒙2 𝒙3]

→ 2𝐾 experiments may also be visualized geometrically as 𝐾-dimensional hypercubes. See Figure 6.1.

– Vertices correspond to the unique configurations of the 𝐾 factors’ levels, and hence experimental
conditions.

Design Space: the space of all possible combinations of the design factors’ values.

6.2 Analyzing 2𝐾 Factorial Experiments
• Primary goal of a 2𝐾 factorial experiment is factor screening.

– Interest lies primarily in estimation of main and interaction effects.

* The main effect of a factor is defined as the expected change in response produced by changing that
factor from its low to its high level.

* The interaction effect between two factors quantifies the difference between the main effect of one
factor at the two levels of the other.
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Figure 6.1: Cuboidal representation of 21 (left), 22 (middle), and 23 (right) factorial designs.

6.2.1 An Intuition-Based Analysis
EXAMPLE 6.2.1: Toy Example

Factors A and B are investigated in a 22 factorial experiment with 𝑛 = 3.

Condition Factor A Factor B Response (𝑦) Average Response ( ̄𝑦)
1 −1 −1 {1, 1, 2} 4/3
2 +1 −1 {3, 4, 5} 12/3
3 −1 +1 {2, 1, 3} 6/3
4 +1 +1 {1, 2, 5} 8/3

• Intuitive estimate of the main effect of A:

M̂EA = ̄𝑦A+ − ̄𝑦A− = ̄𝑦A+∩B− + ̄𝑦A+∩B+

2
− ̄𝑦A−∩B− + ̄𝑦A−∩B+

2

= (12/3) + (8/3)
2

− (4/3) + (6/3)
2

= 10/6

Therefore, we expect the average response to go up by 10/6 when A is moved from its low to
high level.

• Intuitive estimate of the main effect of B:

M̂EB = ̄𝑦B+ − ̄𝑦B− = ̄𝑦A−∩B+ + ̄𝑦A+∩B+

2
− ̄𝑦A−∩B− + ̄𝑦A+∩B−

2

= (6/3) + (8/3)
2

− (4/3) + (12/3)
2

= −1/3

Therefore, we expect the average response to go down by 1/3 when B is moved from its low to
high level.

• To evaluate whether factors A and B interact, we should compare the main effect of A when B is
at its high level to the main effect of A when B is at its low level.

– Conditional ME of A when B is high:

M̂EA∣B+ = ̄𝑦A+∩B+ − ̄𝑦A−∩B+ = 8
3

− 6
3

= 2
3

– Conditional ME of A when B is low:

M̂EA∣B− = ̄𝑦A+∩B− − ̄𝑦A−∩B− = 12
3

− 4
3

= 8
3
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Therefore, because M̂EA∣B+ ≠ M̂EA∣B− we know there exists an A:B interaction.

• The interaction effect is defined as the average difference between the conditional main effects:

ÎEAB =
M̂EA∣B+

2
−

M̂EA∣B−

2

=
M̂EB∣A+

2
−

M̂EB∣A−

2

= ̄𝑦A+∩B+ + ̄𝑦A−∩B−

2
− ̄𝑦A+∩B− + ̄𝑦A−∩B+

2

= 2
6

− 8
6

= −1

• If a third factor C were involved, we may define the three-way ABC interaction as:

ÎEABC =
ÎEAB∣C+

2
−

𝐼𝐸AB∣C−

2

=
ÎEAC∣B+

2
−

𝐼𝐸AC∣B−

2

=
ÎEBC∣A+

2
−

𝐼𝐸BC∣A−

2

• So what actually happened here? See Figure 6.2.
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Figure 6.2: Visualization of main and interaction effects in a 22 factorial experiment.

– ME of A: average response in the rightmost corners, minus the average response in the leftmost
corners.

– ME of B: average response in the topmost corners, minus the average response in the bottommost
corners.

– IE of AB: difference of the average response in ellipses joining opposing corners.

• These intuitive comparisons are still relevant when the response variable is binary:

M̂EA = √ ̄𝑦A+∩B−

1 − ̄𝑦A+∩B−
× ̄𝑦A+∩B+

1 − ̄𝑦A+∩B+
÷ √ ̄𝑦A−∩B−

1 − ̄𝑦A−∩B−
× ̄𝑦A−∩B+

1 − ̄𝑦A−∩B+

M̂EB = √ ̄𝑦A−∩B+

1 − ̄𝑦A−∩B+
× ̄𝑦A+∩B+

1 − ̄𝑦A+∩B+
÷ √ ̄𝑦A+∩B−

1 − ̄𝑦A+∩B−
× ̄𝑦A−∩B−

1 − ̄𝑦A−∩B−

ÎEAB = √ ̄𝑦A+∩B+

1 − ̄𝑦A+∩B+
× ̄𝑦A−∩B−

1 − ̄𝑦A−∩B−
÷ √ ̄𝑦A+∩B−

1 − ̄𝑦A+∩B−
× ̄𝑦A−∩B+

1 − ̄𝑦A−∩B+
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↪ Where do these come from?
∗ Calculate the odds that 𝑌 = 1 in each corner (condition).
∗ Compare the corners in one red ellipse to the other.
∗ This comparison is based on a ratio of geometric means (as opposed to a difference of arithmetic
means like in the non-binary case).

6.2.2 A Regression-Based Analysis
The Model

• Fitted regression models provide an estimate of the response surface.

↪ Response surface: functional relationship between the response and design factors.

• Each of the 𝐾 factors is represented by the binary variables:

𝑥𝑗 = {
−1 if the factor is at its “low” level
1 if the factor is at its “high” level

for 𝑗 = 1, 2, … , 𝐾

• Since each factor is represented by a single term, the linear predictor contains:

– An intercept: 𝛽0.
– 𝐾 main effect terms corresponding to 𝑥1, 𝑥2, … , 𝑥𝐾.
– (𝐾

2 ) two-factor interaction terms corresponding to 𝑥1𝑥2, 𝑥1𝑥3, 𝑥1𝑥4, ….

– (𝐾
3 ) three-factor interaction terms corresponding to 𝑥1𝑥2𝑥3, 𝑥1𝑥2𝑥4, ….

⋮
– (𝐾

𝐾) = 1 𝐾-factor interaction term corresponding to 𝑥1𝑥2 ⋯ 𝑥𝐾.

In total, there are ∑𝐾
𝑗=0 (𝑘

𝑗) = 2𝐾 terms.

EXAMPLE 6.2.2: 21 Example

𝛽0 + 𝛽1𝑥1

EXAMPLE 6.2.3: 22 Example

𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽12𝑥1𝑥2

EXAMPLE 6.2.4: 23 Example

𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3⎵⎵⎵⎵⎵⎵⎵⎵
main effects

+ 𝛽12𝑥1𝑥2 + 𝛽13𝑥1𝑥3 + 𝛽23𝑥2𝑥3⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵
two-factor interactions

+ 𝛽123𝑥1𝑥2𝑥3⎵⎵⎵⎵
three-factor interaction

Estimation

• Estimation of the 𝛽’s is carried out by:

↪ Ordinary least squares (in the case of linear regression).
↪ Maximum likelihood (in the case of logistic regression).
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• In both cases there is a one-to-one connection between the 𝛽 estimates and the expressions for the
main and interaction effects. Note that both Êffect’s below are calculated using the “intuitive” formulas
described above.

– Continuous response:
Êffect = 2 ̂𝛽

– Binary response:
Êffect = 𝑒2 ̂𝛽

where 𝛽 is the regression coefficient corresponding to the effect of interest.

• Recall the Toy Example:

– The linear predictor for that experiment is:

𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽12𝑥1𝑥2

where 𝑥1 and 𝑥2 correspond to factors A and B respectively.
– The linear regression model is:

𝑌𝑖 = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + 𝛽12𝑥𝑖1𝑥𝑖2 + 𝜀𝑖 for 𝑖 = 1, 2, … , 𝑁 = 𝑛2𝐾

which can be written in matrix-vector notation as:

𝒀 = 𝐗𝜷 + 𝜺

where
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5

⎤
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, 𝐗 =
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1 1 −1 −1
1 1 −1 −1
1 −1 1 −1
1 −1 1 −1
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1 1 1 1
1 1 1 1
1 1 1 1
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= [𝟏 𝒙1 𝒙2 𝒙12] , 𝜷 =
⎡
⎢⎢
⎣

𝛽0
𝛽1
𝛽2
𝛽12

⎤
⎥⎥
⎦

, 𝜺 =
⎡
⎢⎢
⎣

𝜀1
𝜀2
⋮

𝜀12

⎤
⎥⎥
⎦

* The columns of 𝑋 are orthogonal!
· This is why we code 𝑥’s using ±1’s.

– The least squares estimate of 𝜷 is:
̂𝜷 = (𝐗⊤𝐗)−1𝐗⊤𝒀

Therefore,

𝐗⊤𝐗 =
⎡
⎢⎢
⎣

12 0 0 0
0 12 0 0
0 0 12 0
0 0 0 12

⎤
⎥⎥
⎦

→ (𝐗⊤𝐗)−1 = 1
12

𝐈4

𝐗⊤𝒀 =
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3 𝒀
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⎥
⎥
⎦



CHAPTER 6. 2𝐾 FACTORIAL EXPERIMENTS 76

̂𝜷 = (𝐗⊤𝐗)−1𝐗⊤𝒀 =
⎡
⎢⎢
⎣

5/2
10/12
−1/6
−1/2

⎤
⎥⎥
⎦

– Notice that:

2 ̂𝜷 =
⎡
⎢⎢
⎣

5
10/6
−1/3
−1

⎤
⎥⎥
⎦

=
⎡
⎢
⎢
⎣

2 ̄𝑦
M̂EA
M̂EB
ÎEAB

⎤
⎥
⎥
⎦

This is the same as what we calculated using the “intuitive” formulas. This is not a coincidence!

• In general:

– 𝒀 is an 𝑁 × 1 vector of response observations.
– 𝜺 is an 𝑁 × 1 random vector of error terms.
– 𝜷 is a 2𝐾 × 1 vector of regression coefficients.
– 𝐗 is the 𝑁 × 2𝐾 model matrix containing plus and minus ones.

∗ Each column represents a different effect (i.e., term in the linear predictor).
∗ Interaction columns are obtained from element-wise multiplication of the main effects columns
involved in the interaction.

∗ ±1’s in the rows are defined in terms of the design matrix (i.e., which condition the response
observation was observed in).

∗ The columns of the model matrix are always orthogonal → 𝐗⊤𝐗 = 𝑁𝐈2𝐾 → (𝐗⊤𝐗)−1 = 1
𝑁 𝐈2𝐾

where 𝐈𝑝 is the 𝑝 × 𝑝 identity matrix.
– Due to the orthogonality of the model matrix, any effect (whether main or interaction) is estimated

as:
Êffect = 2 ̂𝛽 = 𝒙⊤𝒀

𝑛2𝐾−1

where 𝒙 is the column of 𝐗 corresponding to the effect of interest, and 𝛽 is the corresponding
regression coefficient.
* This should make sense: 𝛽’s in ordinary regression are interpreted as the expected change in

response resulting from a unit increase in 𝑥. Here, we care about two-unit increases (i.e., low
→ high, −1 → +1).

Hypothesis Testing

• The significance of main and interaction effects is determined by testing hypotheses that set the relevant
𝛽’s equal to 0.

* But now, because each effect is represented by just a single term, the hypotheses of interest involve just
a single 𝛽.

• In the Toy Example, if we wanted to determine the significance of factor A, we simply test
𝐇0: 𝛽1 = 0

or if we want to determine whether the A:B interaction is significant, we test
𝐇0: 𝛽12 = 0.

• Hypotheses like these are tested with ordinary significance tests for individual regression coefficients.

– 𝑡-tests in the case of linear regression.
– 𝑍-tests in the case of logistic regression.

* All tests can be done in the full model (linear predictor with 2𝐾 terms).
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→ But if for some reason we still want to test hypotheses about several 𝛽’s simultaneously, we can compare
full and reduced models with the usual:

– Partial 𝐹-tests in the case of linear regression.
– Likelihood ratio tests in the case of logistic regression.

6.2.3 The Credit Card Example
• To illustrate a complete analysis of a 2𝐾 factorial experiment, we consider an example from Montgomery

(2019) in which an experiment was performed to test new ideas to improve the conversion rate of credit
card offers. For this example, the response is binary — indicating whether an individual signed up for a
credit card as a result of the offer — and so an analysis based on logistic regression is performed.

• A 24 factorial experiment was carried out to investigate four factors and their influence on credit card
sign-ups. The four factors and each of their levels are summarized in Table 6.1.

Table 6.1: Factors and levels for the credit card example.

Factor Low (−) High (+)
Annual Fee (𝑥1) Current Lower

Account-Opening Fee (𝑥2) No Yes
Initial Interest Rate (𝑥3) Current Lower

Long-term Interest Rate (𝑥4) Low High

• The 24 = 16 unique combinations of these factor levels produced 16 experimental conditions, each
of which was assigned 𝑛 = 7500 units. Practically speaking, 16 credit card offers were devised (one
corresponding to each condition) and each was mailed to 7500 customers. The design matrix and a
summary of the conversion rates are provided in Table 6.2.

Table 6.2: Design matrix and response summary for the 24 factorial credit card experiment.

Condition Factor 1 Factor 2 Factor 3 Factor 4 Sign-ups Conversion Rate
1 −1 −1 −1 −1 184 2.45%
2 +1 −1 −1 −1 252 3.36%
3 −1 +1 −1 −1 162 2.16%
4 +1 +1 −1 −1 172 2.29%
5 −1 −1 +1 −1 187 2.49%
6 +1 −1 +1 −1 254 3.39%
7 −1 +1 +1 −1 174 2.32%
8 +1 +1 +1 −1 183 2.44%
9 −1 −1 −1 +1 138 1.84%
10 +1 −1 −1 +1 168 2.24%
11 −1 +1 −1 +1 127 1.69%
12 +1 +1 −1 +1 140 1.87%
13 −1 −1 +1 +1 172 2.29%
14 +1 −1 +1 +1 219 2.92%
15 −1 +1 +1 +1 153 2.04%
16 +1 +1 +1 +1 152 2.03%

https://www.wiley.com/en-ca/Design+and+Analysis+of+Experiments C+10th+Edition-p-9781119492443
https://www.wiley.com/en-ca/Design+and+Analysis+of+Experiments C+10th+Edition-p-9781119492443
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• Using this data we fit a logistic regression model with the following linear predictor:

Intercept → 𝛽0+
ME’s → 𝛽12𝑥1𝑥2 + 𝛽13𝑥1𝑥3 + 𝛽14𝑥1𝑥4 + 𝛽23𝑥2𝑥3 + 𝛽24𝑥2𝑥4 + 𝛽34𝑥3𝑥4+
2FI’s → 𝛽8𝑥1𝑥5 + 𝛽9𝑥2𝑥5 + 𝛽10𝑥3𝑥5 + 𝛽11𝑥4𝑥5 + 𝛽12𝑥1𝑥6 + 𝛽13𝑥2𝑥6 + 𝛽14𝑥3𝑥6+
3FI’s → 𝛽123𝑥1𝑥2𝑥3 + 𝛽124𝑥1𝑥2𝑥4 + 𝛽134𝑥1𝑥3𝑥4 + 𝛽234𝑥2𝑥3𝑥4+
4FI → 𝛽1234𝑥1𝑥2𝑥3𝑥4

• The regression output associated with this model is:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -3.739697 0.019342 -193.347 < 2e-16 ***
x1 0.080845 0.019342 4.180 2.92e-05 ***
x2 -0.106211 0.019342 -5.491 3.99e-08 ***
x3 0.058248 0.019342 3.011 0.00260 **
x4 -0.108086 0.019342 -5.588 2.29e-08 ***
x1:x2 -0.055164 0.019342 -2.852 0.00434 **
x1:x3 -0.004794 0.019342 -0.248 0.80426
x2:x3 -0.006967 0.019342 -0.360 0.71868
x1:x4 -0.013178 0.019342 -0.681 0.49566
x2:x4 0.010625 0.019342 0.549 0.58280
x3:x4 0.038079 0.019342 1.969 0.04899 *
x1:x2:x3 -0.009646 0.019342 -0.499 0.61799
x1:x2:x4 0.010629 0.019342 0.550 0.58265
x1:x3:x4 -0.002543 0.019342 -0.131 0.89539
x2:x3:x4 -0.020946 0.019342 -1.083 0.27885
x1:x2:x3:x4 -0.009496 0.019342 -0.491 0.62347

– The 𝑝-value for 𝐇0: 𝛽1 = 0 is 2.92 × 10−5.
– The 𝑝-value for 𝐇0: 𝛽2 = 0 is 3.99 × 10−8.
– The 𝑝-value for 𝐇0: 𝛽3 = 0 is 0.00260.
– The 𝑝-value for 𝐇0: 𝛽4 = 0 is 2.29 × 10−8.
– The 𝑝-value for 𝐇0: 𝛽12 = 0 is 0.00434.
– The 𝑝-value for 𝐇0: 𝛽34 = 0 is 0.04899.

• We now know which main and interaction effects are significant (i.e., all main effects, 𝑥1:𝑥2, and 𝑥3:𝑥4).

– Let’s use main and interaction effect plots to help us interpret these effects.
∗ In Figure 6.3, the conversion rate is maximized when the annual fee is low, no account opening
fee, and when initial and long-term interest rates are low.

∗ In Figure 6.4:
· When an account opening fee exists, the effect of the annual fee is less than if there wasn’t

an account opening fee.
· As long as long-term interest is low, the effect of initial interest rate is not large.

• [R Code] 2^4_Factorial_Example

https://github.com/Hextical/university-notes/blob/master/year-3/semester-3/STAT 430/code/W9/2^4_Factorial_Example.R
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Figure 6.3: Main effect plots for the credit card example.
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Figure 6.4: Interaction effect plots for the credit card example.



Chapter 7

2𝐾−𝑝 FRACTIONAL FACTORIAL
EXPERIMENTS

Week 10

Let 𝑝 ∈ 𝗭+, 1 ≤ 𝑝 < 𝐾, and 2𝐾−𝑝 > 𝐾.

* A 2𝐾 factorial experiment is an economical special case of a general factorial experiment.

→ It minimizes the number of levels being investigated.
→ Thus, it reduces the overall number of experimental conditions.

• However, 2𝐾 can still be a very large number of conditions even for moderate 𝐾.

EXAMPLE 7.0.1

If 𝐾 = 8, then 2𝐾 = 256 = 𝑚.

* In a 2𝐾−𝑝 fractional factorial experiment we also investigate 𝐾 factors but in just a fraction of the
conditions.

Specifically, (1/2)𝑝 as many since 𝑚 = 2𝐾−𝑝.

→ Rather than experimenting with all 2𝐾 conditions, we specially select 2𝐾−𝑝 of them.

– When 𝑝 = 1, we investigate 𝐾 factors in half as many conditions (i.e., “one-half fraction”).
– When 𝑝 = 2, we investigate 𝐾 factors in a quarter of the conditions (i.e., “one-quarter fraction”).

• The value 𝑝 dictates the degree of fractioning and is typically chosen to:

→ Minimize the number of experimental conditions 𝑚, given a fixed number of design factors 𝐾, or
→ Maximize the number of design factors 𝐾, given a fixed number of conditions 𝑚.

* Goal: explore as many factors as possible in as few conditions as possible.

• Principle of effect sparsity: in the presence of several factors, variation in the response is likely to
be driven by a small amount of main effects and low-order interactions.

→ ∼ 40% of ME’s were significant.
→ ∼ 10% of 2FI’s were significant.
→ ∼ 5% of 3+FI’s were significant.

80
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• But consider the linear predictor from the full 2𝐾 factorial experiment. There are:

– An intercept: 𝛽0.
– 𝐾 main effect terms.
– (𝐾

2 ) two-factor interaction terms.

– (𝐾
3 ) three-factor interaction terms.

⋮
– (𝐾

𝐾) = 1 𝐾-factor interaction term.

This is a total of ∑𝐾
𝑘=1 (𝐾

𝑘 ) = 2𝐾 − 1 estimated effects and just 𝐾 + (𝐾
2 ) of these are main effects and

two-factor interactions.

EXAMPLE 7.0.2

If 𝐾 = 8, then (𝐾
2 ) = 28, 2𝐾 − 1 = 255, and so 255 − 28 − 8 = 219 is the number of 3+FI’s.

• In light of effect sparsity, it is a waste of resources to estimate higher order interaction terms.

* It would be a better use of resources to estimate the main effects and low-order interactions of a
larger number of factors.

• So how do we choose which 2𝐾−𝑝 conditions to run?

• Consider the following three examples as motivation:

EXAMPLE 7.0.3: The 23−1 Example

In this example we consider a one-half fraction of the 23 design which explores 𝐾 = 3 factors (A,
B, C) in 𝑚 = 4 conditions rather than 8. The design matrix associated with a full 23 design and
a visualization of the full 23 design are shown below. The question of primary interest is: which
𝑚 = 4 conditions do we choose for the 23−1 experiment?

Condition Factor A Factor B Factor C
1 −1 −1 −1
2 +1 −1 −1
3 −1 +1 −1
4 +1 +1 −1
5 −1 −1 +1
6 +1 −1 +1
7 −1 +1 +1
8 +1 +1 +1

EXAMPLE 7.0.4: The 24−1 Example

In this example we consider a one-half fraction of the 24 design which explores 𝐾 = 4 factors
(A, B, C, D) in 𝑚 = 8 conditions rather than 16. The design matrix associated with a full 24

design and a visualization of the full 24 design are shown below. Similar to the 23−1 example, the
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question of primary interest is: which 𝑚 = 8 conditions do we choose for the 24−1 experiment?

Condition Factor A Factor B Factor C Factor D
1 −1 −1 −1 −1
2 +1 −1 −1 −1
3 −1 +1 −1 −1
4 +1 +1 −1 −1
5 −1 −1 +1 −1
6 +1 −1 +1 −1
7 −1 +1 +1 −1
8 +1 +1 +1 −1
9 −1 −1 −1 +1
10 +1 −1 −1 +1
11 −1 +1 −1 +1
12 +1 +1 −1 +1
13 −1 −1 +1 +1
14 +1 −1 +1 +1
15 −1 +1 +1 +1
16 +1 +1 +1 +1

EXAMPLE 7.0.5: The 25−2 Example

In this example we consider a one-quarter fraction of the 25 design which explores 𝐾 = 5 factors
(A, B, C, D, E) in 𝑚 = 8 conditions rather than 32. The design matrix associated with a full 25

design and a visualization of the full 25 design are shown below. Similar to the previous two
examples, the question of primary interest is: which 𝑚 = 8 conditions do we choose for the 25−2
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experiment?

Condition Factor A Factor B Factor C Factor D Factor E
1 −1 −1 −1 −1 −1
2 +1 −1 −1 −1 −1
3 −1 +1 −1 −1 −1
4 +1 +1 −1 −1 −1
5 −1 −1 +1 −1 −1
6 +1 −1 +1 −1 −1
7 −1 +1 +1 −1 −1
8 +1 +1 +1 −1 −1
9 −1 −1 −1 +1 −1
10 +1 −1 −1 +1 −1
11 −1 +1 −1 +1 −1
12 +1 +1 −1 +1 −1
13 −1 −1 +1 +1 −1
14 +1 −1 +1 +1 −1
15 −1 +1 +1 +1 −1
16 +1 +1 +1 +1 −1
17 −1 −1 −1 −1 +1
18 +1 −1 −1 −1 +1
19 −1 +1 −1 −1 +1
20 +1 +1 −1 −1 +1
21 −1 −1 +1 −1 +1
22 +1 −1 +1 −1 +1
23 −1 +1 +1 −1 +1
24 +1 +1 +1 −1 +1
25 −1 −1 −1 +1 +1
26 +1 −1 −1 +1 +1
27 −1 +1 −1 +1 +1
28 +1 +1 −1 +1 +1
29 −1 −1 +1 +1 +1
30 +1 −1 +1 +1 +1
31 −1 +1 +1 +1 +1
32 +1 +1 +1 +1 +1

7.1 Designing 2𝐾−𝑝 Fractional Factorial Experiments
Given 2𝐾 conditions to choose from, how do we choose which 2𝐾−𝑝 conditions to experiment with?

7.1.1 Aliasing
• The first step in constructing a 2𝐾−𝑝 fractional factorial experiment is to write out the model matrix

(when 𝑛 = 1) for a full 2𝐾−𝑝 design.
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EXAMPLE 7.1.1: 23−1 Example

The model matrix (when 𝑛 = 1) for a full 22 design with factors A and B is shown below:

Condition I A B AB = C
1 +1 −1 −1 +1
2 +1 +1 −1 −1
3 +1 −1 +1 −1
4 +1 +1 +1 +1

– Rather than asking “which 4 conditions from a full 23 design do I run?” we now ask “in which of
the four conditions in a full 2 design should I run factor C at its low versus high levels?”

• We use the ±1’s in the AB interaction column to dictate, for a given condition, whether to run factor C
at its low or high levels.

• Conditions 1 and 4 have AB = +1, so C will run at its high level.

• Conditions 2 and 3 have AB = −1, so C will be run at its low level.

• What results is a prescription for experimenting with 𝐾 = 3 factors in 23−1 = 4 conditions?

• This is a 23−1 fractional factorial design. We visualize it as follows:

• Principal fraction: The conditions selected by associating the levels of C with the ±1’s in the AB
column.

Red points.

• Complementary fraction: The conditions selected by associating the levels of C with −AB.

Green points — this is also a 23−1 fractional factorial design.

• What we did there is called aliasing: associate the main effect of a new factor with an existing condition.
We aliased the main effect of C with the AB interaction. Notation: C = AB.

• We call C = AB the design generator.

• When we do this, we confound the interaction effect with the main effect of the new factor.

↪ These effects cannot be separately estimated.

• In an ordinary 22 experiment with factors A and B, the AB column of the model matrix is used to
estimate IEAB.

– But do to the C = AB, the AB column now jointly quantifies the main effect of C and the AB
interaction effect.

ÎEAB = ̄𝑦A+∩B+ + ̄𝑦A−∩B−

2
− ̄𝑦A−∩B+ + ̄𝑦A+∩B−

2

M̂EC = ̄𝑦C+ − ̄𝑦C−

= ̄𝑦A+∩B+ + ̄𝑦A−∩B−

2
− ̄𝑦A−∩B+ + ̄𝑦A+∩B−

2
= ÎEAB

This calculation now estimates both the main effect of C and the AB interaction effect simultane-
ously. We can’t separate them!

• This is the price we pay for using fewer conditions than what is prescribed by the full 2𝐾 design.

↪ We cannot separately estimate confounded/aliased effects. It turns out this problem doesn’t only
impact C and AB.
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7.1.2 The Defining Relation
• In the 23−1 example, we aliased C with the AB interaction.

– We saw that this means the main effect of C and the AB interaction effect are confounded.
– However, the aliasing (and hence confounding) doesn’t stop there.

* Upon closer inspection we find that the main effect of A and B are now also aliased with interaction
effects.

• This becomes evident when we consider the defining relation:

Design Generator → C = AB → C × C = AB × C
I = ABC

• This may be used to uncover all aliases by multiplying it by any effect:

A × I = A2BC B × I = AB2C C = AB
A = IBC B = AC
A = BC

• Every main effect is aliased with a two factor interaction.

Introducing aliasing anywhere causes confounding everywhere.

EXAMPLE 7.1.2: 24−1 Example

• To construct this factorial design we consider the model matrix (when 𝑛 = 1) associated with a
full 23 design:

Condition I A B C AB AC BC ABC
1 +1 −1 −1 −1 +1 +1 +1 −1
2 +1 +1 −1 −1 −1 −1 +1 +1
3 +1 −1 +1 −1 −1 +1 −1 +1
4 +1 +1 +1 −1 +1 −1 −1 −1
5 +1 −1 −1 +1 +1 −1 −1 +1
6 +1 +1 −1 +1 −1 +1 −1 −1
7 +1 −1 +1 +1 −1 −1 +1 −1
8 +1 +1 +1 +1 +1 +1 +1 +1

• We need to choose one interaction column to alias a new factor D with.

↪ This tell us when to run factor D at low vs. high.
∗ We could choose AB, AC, BC, or ABC. Which one is the right choice?

· We choose D = ABC because the effect sparsity principle tells us that high order
interactions are less likely to be significant.

∗ The complete aliasing structure is:

Defining relation → I = ABCD

A = BCD

B = ACD

C = ABD
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D = ABC

AB = CD

AC = BD

BC = AD

• What would have happened if we had chosen D = AB or D = AC or D = BC as design generators
instead of D = ABC?

• Which one of these designs is the best?

↪ We’ll come back to this.

EXAMPLE 7.1.3: 25−2 Example

• In addition to choosing an alias for factor D like we just did with the 24−1 design, we also need
to choose an alias for factor E.

We now have 𝑝 = 2 design generators D = ABC, E = BC.

* The 25−2 fractional factorial design that results from these choices is visualized below:

* In general, the number of design generators will always equal 𝑝.

• These design generators give rise to the following defining relation:

{D = ABC → I = ABCD
E = BC → I = BCE } → I = ABCD = BCE = ABCD × BCE = AB2C2DE = ADE

Therefore, I = ABCD = BCE = ADE.

• As usual, this may be used to determine the complete aliasing structure:

A = BCD = ABCE = DE

B = ACD = CE = ABDE

C = ABD = BE = ACDE

D = ABC = BCDE = AE

E = ABCDE = BC = AD

AB = CD = ACE = BDE

AC = BD = ABE = CDE

* Every effect is aliased (i.e., confounded) with 3 other effects.

* In general, the number of effects aliased with a given effect is 2𝑝 − 1.

* Thus, in a 2𝐾−𝑝 fractional factorial design, every effect estimate actually jointly quantifies 2𝑝

effects.

• SUMMARY: To design a 2𝐾−𝑝 fractional factorial experiment, you must:

* Look at the model matrix (with 𝑛 = 1) for a full 2𝐾−𝑝 design with 𝐾 − 𝑝 factors.
* Choose 𝑝 interaction columns to alias an additional 𝑝 factors with.
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* Use the ±1’s in these columns to dictate, for each condition, whether the 𝑝 additional factors are
run at their low or high level.

But how do we know which interactions to choose?

7.1.3 Resolution
* Due to the confounding that results from aliasing a new main effect with an existing interaction, it is
important to think carefully about which interaction to choose as an alias.

* It is best to avoid aliasing a new factor with an interaction that is likely to be significant because
separately estimating significant effects is desirable.

– High order interaction terms (that are unlikely to be significant) are good choices for aliases.

• This notion is quantified by the resolution of the fractional factorial design.

→ A design is resolution 𝑅 if main effects are aliased with interaction effects involving at least 𝑅 − 1
factors.

What is the smallest order interaction your main effects are aliased with? Resolution is that
number +1.

• The easiest way to determine 𝑅 is by looking at the defining relation.

– Each of the terms in the equivalence is referred to as a word.

→ The length of the shortest word is the resolution of the design.

* The defining relations for 23−1, 24−1, and 25−2 designs are:

I = ABC

I = ABCD

I = ABCD = BCE = ADE

For 23−1 and 25−2 designs: shortest word has length 3. Therefore, it’s a Resolution III design.
For 24−1 design: shortest word has length 4. Therefore, it’s a Resolution IV design.
These designs are described succinctly as:

23−1
III , 24−1

IV , 25−2
III

• General notation: 2𝐾−𝑝
𝑅 where

– 2: number of levels.
– 𝐾: number of factors.
– 𝑝: degree of fractioning.
– 𝑅: resolution.

* In general, higher resolution designs are to be preferred over lower resolution designs.

– Resolution IV and V designs are to be preferred over a resolution III design.
↪ Because the resolution IV and V designs do not alias main effects with two-factor interactions.

• The resolution of a fractional factorial experiment is determined by two things:

1. The degree of fractioning desired (i.e., the size of 𝑝 relative to 𝐾).
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2. The design generators chosen for aliasing.

* Given 𝐾 and 𝑝, we should choose design generators that maximize resolution.

• Let us return to the 24−1 example.

Design Generator Defining Relation
D = ABC I = ABCD
D = AB I = ABD
D = AC I = ACD
D = BC I = BCD

* The generator D = ABC is the best because it gives rise to a resolution IV design.

• Another way to justify the maximum resolution criterion is by the projective property of fractional
factorial designs.

* A resolution 𝑅 fractional factorial design can be projected into a full factorial design on any subset
of 𝑅 − 1 factors.

– Let’s visualize this with the 23−1 design:
– This property can be exploited when analyzing the experimental data.

↪ If 𝑅 − 1 (or fewer) factors have significant main effects, they can be analyzed as full factorial
designs without confounding.

* Maximizing 𝑅 maximizes the size of the projected full factorial design.

7.1.4 Minimum Aberration
• The maximum resolution criterion is one way to choose design generators.

• But what if several choices lead to the same resolution? Then how do we choose?
Minimum Aberration Criterion.

• Consider a 27−2
IV design which is resolution IV and explores 𝐾 = 7 factors in 𝑚 = 32 conditions.

– Three design generator configurations that all give rise to a 27−2
IV design are shown below:

Design Design Generators Defining Relation
1 F = ABC,G = ABD I = ABCF = ABDG = CDFG
2 F = ABC,G = CDE I = ABCF = CDEG = ABDEFG
3 F = ABCD,G = ABCE I = ABCDF = ABCEG = DEFG

The shortest word length is 4, therefore 𝑅 = 4.
– How should we choose among these? Is one better than the others?

* We can compare these designs on the basis of how many words of length 4 appear in the
defining relation. Word lengths: (4, 4, 4), (4, 4, 6), (5, 5, 4).

* Design 3 minimizes this number, and hence minimizes the number of main effects aliased with
the lowest-order interactions.

* In general, for a given resolution 𝑅 the minimum aberration design is one which minimizes
the number of minimum-length words in the defining relation.

→ These designs are preferred since they minimize the number times main effects are aliased with
the lowest order ((𝑅 − 1)-factor) interactions.
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7.2 Analyzing 2𝐾−𝑝 Fractional Factorial Experiments
* We have seen that 2𝐾−𝑝 fractional factorial designs are a clever alternative to full 2𝐾 designs for
purposes of factor screening.

– They still explore 𝐾 factors, but in just a fraction of the conditions required by a full 2𝐾 design.
↪ (1/2)𝑝 as many.

– This is made possible by aliasing and reliance on the principle of effect sparsity.
– However, this aliasing causes confounding which can complicate conclusions.

↪ Can’t separately estimate confounded effects.
– We try to mitigate the negative side effects of confounding by choosing designs with maximum

resolution and minimum aberration.

• It turns out that the analysis of a 2𝐾−𝑝 fractional factorial design is not very different from the analysis
of a full 2𝐾 factorial design.

– We visually summarize effects of interest via main and interaction effect plots.
– Regression models are used to test hypotheses of the form (to determine whether a given effect is

significantly different from zero):
𝐇0: 𝛽 = 0.

→ 𝑡-tests in linear regression.
→ 𝑍-tests in logistic regression.

• Now we have to deal with confounding. Recall: two effects that are confounded cannot be separately
estimated.

→ Just 2𝐾−𝑝 effects (and hence 𝛽’s) can be estimated. The number of 𝛽’s estimable is the number of
conditions. However, there are 2𝐾 effects, so we’re not estimating all of them.

→ Each of these 𝛽’s jointly quantifies 2𝑝 different effects.

– It is therefore important to know the complete aliasing structure of the design to be fully aware of
which effects are confounded.

• Accounting for this confounding is particularly important when interpreting effect estimates and
evaluating their significance.

EXAMPLE 7.2.1: The 25−2
III Example

Suppose we find that the main effect of factor A is significant. What can we conclude?

A = BCD = ABCE = DE

We can’t be 100% certain the significance of the effect is solely due to the main effect of A.

• It could be that MEA is significant.

• It could be that IEBCD is significant.

• It could be that IEABCE is significant.

• It could be that IEDE is significant.

• Or they could all be significant.

• Or individually none of these are significant, but in aggregate they are.
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* The uncertainty surrounding this interpretation motivates why we avoid confounding effects that are
likely to be significant with other ones that are also likely to be significant.

↪ Maximizing resolution and minimizing aberration should help here.

* Next week, in an illustrative example of a 28−4 fractional factorial experiment, we will demonstrate how
to estimate and carefully interpret the effects of the factors involved.

Week 11

7.2.1 The Chehalem Example
• Here we consider an example from Montgomery (2019) in which a 28−4 fractional factorial experiment

was used in the production of wine to study the influence of a variety of factors on a particular vintage
of Pinot Noir.

• In this experiment 𝐾 = 8 factors were investigated each at two levels (the factors and their levels are
shown in Table 7.1) which, if a full factorial experiment was used, would have required 256 conditions.

Table 7.1: Factors and levels for the wine example.

Factor Low (−) High (+)
Pinot Noir clone (A) Pommard Wädenswil
Oak type (B) Allier Tronçais
Age of barrel (C) Old New
Yeast/skin contact (D) Champagne Montrachet
Stems (E) None All
Barrel toast (F) Light Medium
Whole cluster (G) None 10%
Fermentation temperature (H) Low (75∘F max) High (92∘F max)

• To keep the experiment as small as possible a 28−4
IV fractional factorial experiment was performed that

required only 16 conditions (i.e., 16 different wines).

• The response variable in this case is the rating of the wine as determined by 5 raters.

• Thus, 16 different wines were produced (based on the 16 unique combinations of these factors’ levels)
and 𝑛 = 5 raters tasted and rated each of them (low scores are good, large scores are bad). The design
matrix and a summary of the response is provided in Table 7.2.

• Because the response variable in this setting is continuous, we use linear regression to analyze the data
from this experiment.

• Because only 24 = 16 conditions were used, we can only fit a model with 16 regression coefficients. In
the context of a full 24 factorial experiment, this would be the model with 4 main effects, 6 two-factor
interactions, 4 three-factor interactions and 1 four-factor interaction:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 8.5000 0.2658 31.985 < 2e-16 ***
A 0.8750 0.2658 3.293 0.001619 **
B 0.9250 0.2658 3.481 0.000906 ***
C 0.6250 0.2658 2.352 0.021772 *
D -2.3000 0.2658 -8.655 2.27e-12 ***
A:B -0.3500 0.2658 -1.317 0.192532
A:C 1.3000 0.2658 4.892 7.07e-06 ***
A:D -0.8750 0.2658 -3.293 0.001619 **

https://www.chehalemwines.com/
https://www.wiley.com/en-ca/Design+and+Analysis+of+Experiments C+10th+Edition-p-9781119492443
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Table 7.2: Design matrix and response summary for the 28−4 fractional factorial wine experiment.

Condition A B C D E = BCD F = ACD G = ABC H = ABD Average Rating = ̄𝑦
1 −1 −1 −1 −1 −1 −1 −1 −1 9.6
2 +1 −1 −1 −1 −1 +1 +1 +1 10.8
3 −1 +1 −1 −1 +1 −1 +1 +1 12.6
4 +1 +1 −1 −1 +1 +1 −1 −1 9.2
5 −1 −1 +1 −1 +1 +1 +1 −1 9.0
6 +1 −1 +1 −1 +1 −1 −1 +1 15.0
7 −1 +1 +1 −1 −1 +1 −1 +1 5.0
8 +1 +1 +1 −1 −1 −1 +1 −1 15.2
9 −1 −1 −1 +1 +1 +1 −1 +1 2.2
10 +1 −1 −1 +1 +1 −1 +1 −1 7.0
11 −1 +1 −1 +1 −1 +1 +1 −1 8.8
12 +1 +1 −1 +1 −1 −1 −1 +1 2.8
13 −1 −1 +1 +1 −1 −1 +1 +1 4.6
14 +1 −1 +1 +1 −1 +1 −1 −1 2.4
15 −1 +1 +1 +1 +1 −1 −1 −1 9.2
16 +1 +1 +1 +1 +1 +1 +1 +1 12.6

B:C 0.4500 0.2658 1.693 0.095261 .
B:D 1.2250 0.2658 4.610 1.98e-05 ***
C:D 0.3750 0.2658 1.411 0.163063
A:B:C 1.5750 0.2658 5.927 1.35e-07 ***
A:B:D -0.3000 0.2658 -1.129 0.263168
A:C:D -1.0000 0.2658 -3.763 0.000367 ***
B:C:D 1.1000 0.2658 4.139 0.000104 ***
A:B:C:D 0.4750 0.2658 1.787 0.078613 .

• But this output does not involve the factors E, F, G or H –– it only directly references factors A, B, C
and D.

• This is because of confounding.

– The BCD interaction estimate also corresponds to the main effect of E.
– The ACD interaction estimate also corresponds to the main effect of F.
– The ABC interaction estimate also corresponds to the main effect of G.
– The ABD interaction estimate also corresponds to the main effect of H.

* While we cannot technically separate these effects, we assume that the three-factor interactions are
negligible, and hence any significant effect observed is due to the aliased main effect.

• The same model summary from above is shown in below, but this time with factors E, F, G and H
referenced instead of the three-factor interactions:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 8.5000 0.2658 31.985 < 2e-16 ***
A 0.8750 0.2658 3.293 0.001619 **
B 0.9250 0.2658 3.481 0.000906 ***
C 0.6250 0.2658 2.352 0.021772 *
D -2.3000 0.2658 -8.655 2.27e-12 ***
E 1.1000 0.2658 4.139 0.000104 ***
F -1.0000 0.2658 -3.763 0.000367 ***
G 1.5750 0.2658 5.927 1.35e-07 ***



CHAPTER 7. 2𝐾−𝑃 FRACTIONAL FACTORIAL EXPERIMENTS 92

H -0.3000 0.2658 -1.129 0.263168
A:B -0.3500 0.2658 -1.317 0.192532
A:C 1.3000 0.2658 4.892 7.07e-06 ***
A:D -0.8750 0.2658 -3.293 0.001619 **
A:E 0.4750 0.2658 1.787 0.078613 .
A:F 0.3750 0.2658 1.411 0.163063
A:G 0.4500 0.2658 1.693 0.095261 .
A:H 1.2250 0.2658 4.610 1.98e-05 ***

* All main effects are significant except for factor H (fermentation temperature).
* Also, the AC, AD, and AH interactions are significant. However, factors D, E, F, G, are most
influential, so it’s more likely that the significance of these two-factor interactions is driven by
aliased interactions involving D, E, F, G.

AC = DF, AD = EG, AH = FG

* We will therefore speculate that it’s the DF, EG, and FG interactions that are important.

• Figure 7.1 depicts the main effect plots for all eight factors.
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Figure 7.1: Main effect plots for the wine example.

• Figure 7.2 depicts the interaction effect plots for the three significant interactions.
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Figure 7.2: Interaction effect plots for the wine example.
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– If yeast type is Montrachet, then the effect of Barrel toast is minimal.
– The effect of whole clusters is minimal if Barrel toast is light.
– Effect of the whole cluster is minimal when all stems are used.

• [R Code] Fractional_Factorial_Example

https://github.com/Hextical/university-notes/blob/master/year-3/semester-3/STAT 430/code/W11/Fractional_Factorial_Example.R


Chapter 8

RESPONSE SURFACE
METHODOLOGY

* Effective experimentation is sequential

– Information gained in one experiment can help to inform future experiments.
– This is the philosophy of response surface methodology.

• We have seen that the primary purpose of screening experiments is to identify which among numerous
factors are the ones that significantly influence the response variable.

↪ Phase 1: Factor screening with two-level designs.

* Now we discuss how screening experiments may be followed-up by further experiments whose primary
purpose is response optimization.

↪ We use the method of steepest ascent/descent (phase 2) and response surface designs (phase
3) to locate optimal settings of the factors that were identified as significant in the screening phase.
∗ Phase 4: Confirmation.

8.1 Overview of Response Optimization
Coded Factors

• Here we consider 𝐾′ ≤ 𝐾 design factors which are a subset of the 𝐾 factors investigated during the
screening phase.

• The set of possible values these factors can take on is referred to as the region of operability.

* It is this region that we explore and in which we run our experiments to determine the optimal
operating condition.

EXAMPLE 8.1.1

If the design factor is discount amount, then the region of operability is [0, 100].

• Although this region specifies acceptable factor values in their natural units (such as dollars, minutes,
percent, etc.), we typically work on a transformed scale.

• Just like in the regression models used in the experiments, we represent each factor by a coded variable
𝑥 that takes on the values −1 and +1 when the factor is at its low and high levels.

94
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* When the factor is categorical this coding is arbitrary.
– When the factor is numeric the coding arises through the following transformation:

𝑥 = 𝑈 − (𝑈𝗛 + 𝑈𝗟)/2
(𝑈𝗛 − 𝑈𝗟)/2

∗ 𝑈 is any value of the factor in natural units.
· 𝑈𝗛 and 𝑈𝗟 are “high” and “low” levels of the factor recorded in natural units.

∗ 𝑥 is the transformed version of 𝑈 in coded units.
· If 𝑈 = 𝑈𝗛, then 𝑥 = +1, and if 𝑈 = 𝑈𝗟, then 𝑥 = −1.

EXAMPLE 8.1.2

Assume we’re experimenting with discount amount where 𝑈𝗟 = 20% and 𝑈𝗛 = 50%. Then
𝑥 = (𝑈 − 35)/15 may be used to convert from natural units to coded units.

∗ If 𝑈 = 50, then 𝑥 = +1.

∗ If 𝑈 = 20, then 𝑥 = −1.

∗ If 𝑈 = 40, then 𝑥 = 1/3.

∗ If 𝑈 = 60, then 𝑥 = 5/3.

– This equation may also be inverted allowing for conversion from the coded units back to the
natural units as follows:

𝑈 = 𝑥 × 𝑈𝗛 − 𝑈𝗟
2

+ 𝑈𝗛 + 𝑈𝗟
2

∗ Translating from coded to natural units is especially useful when translating the location of
the optimum from coded units to natural units.

EXAMPLE 8.1.3

Optimal 𝑥 = 1.45 → 𝑈 = 1.45(15) + 35 = 56.75%.

• Adopting this notation, the objective of response optimization may be stated as determining the value
of 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝐾′)⊤ (and hence 𝑼 = (𝑈1, 𝑈2, … , 𝑈𝐾′)⊤) at which we expect the response to be
optimized.

The Models
• The goal of response optimization may be achieved via response surface experimentation where one

seeks to characterize the relationship between the expected response 𝔼[𝑌 ] and the 𝐾′ design factors.

• In the case of a continuous response, we may write this relationship generally as:

𝔼[𝑌 ] = 𝑓(𝑥1, 𝑥2, … , 𝑥𝐾′)

and in the case of a binary response:

log( 𝔼[𝑌 ]
1 − 𝔼[𝑌 ]

) = 𝑓(𝑥1, 𝑥2, … , 𝑥𝐾′)

• In both cases, the function 𝑓(𝑥1, 𝑥2, … , 𝑥𝐾′) represents the true but unknown response surface.

– If we knew 𝑓( ⋅ ), we could easily find the values of 𝑥1, … , 𝑥𝐾′ that optimize it.



CHAPTER 8. RESPONSE SURFACE METHODOLOGY 96

• Because 𝑓( ⋅ ) is unknown, we must fit models that approximate this surface. As usual, we use linear
and logistic regression.

• Although many models may be used to approximate the response surface we exploit Taylor’s Theorem
and use low-order polynomials:

– First-order model:
𝜂 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝐾′𝑥𝐾′

↪ Main effects only.
– First-order + Interaction model:

𝜂 = 𝛽0 +
𝐾′

∑
𝑗=1

𝛽𝑗𝑥𝑗 + ∑
𝑗<ℓ

𝛽𝑗ℓ𝑥𝑗𝑥ℓ

↪ Main effect + two-factor interactions.
– Second-order model:

𝜂 = 𝛽0 +
𝐾′

∑
𝑗=1

𝛽𝑗𝑥𝑗 + ∑
𝑗<ℓ

𝛽𝑗ℓ𝑥𝑗𝑥ℓ +
𝐾′

∑
𝑗=1

𝛽𝑗𝑗𝑥2
𝑗

↪ Quadratic effects in addition to main effects and two-factor interactions.

• Examples of such response surfaces (for 𝐾′ = 2) are visualized in Figure 8.1:

* We must acknowledge that the approximation of 𝑓(𝑥1, 𝑥2, … , 𝑥𝐾′) by 𝜂 (regardless of whether 𝜂 is
first-order or second-order) is likely to be poor when considered across the entire 𝑥-space.

→ However, in the small localized region of an experiment, such low-order polynomials should well-
approximate 𝑓( ⋅ ).

→ Which model is appropriate is dictated by the goal of the experiment.

– In the context of factor screening we saw that first-order and first-order-plus-interaction models
suited our needs.

– But in order to identify maxima/minima we require the second-order model as it is capable of
modelling concavity/convexity.

– Therefore, second-order models are used for response surface optimization.

8.2 Method of Steepest Ascent/Descent
• We use the method of steepest of ascent/descent to determine roughly where in the 𝑥-space the optimum

lies.

– Hence, this tells us where a response surface design and a second-order model would be most
useful.

* We want to find the “vicinity” of the optimum.

* The method is gradient-based and designed to identify the direction that when traversed moves you
toward the optimum as quickly as possible.
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(a) 𝜂 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 (Plane)
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(b) 𝜂 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽12𝑥1𝑥2 (Twisted Plane)

−10 −5 0 5 10

−
10

−
5

0
5

10

(c) 𝜂 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽12𝑥1𝑥2 + 𝛽11𝑥2
1 + 𝛽22𝑥2

2

Figure 8.1: Example 3D surface and 2D contour plots of first-order (Figure 8.1a), first-order-plus-interaction
(Figure 8.1b) and second-order (Figure 8.1c) response surfaces.
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8.2.1 The Path of Steepest Ascent/Descent
• We use a 2𝐾′ (or 2𝐾′−𝑝) factorial experiment to estimate a first-order response surface:

̂𝜂 = ̂𝛽0 + ̂𝛽1𝑥1 + ̂𝛽2𝑥2 + ⋯ + ̂𝛽𝐾′𝑥𝐾′

• The gradient of this surface is then calculated:

𝒈 = ∇ ̂𝜂 = ( 𝜕 ̂𝜂
𝜕𝑥1

, 𝜕 ̂𝜂
𝜕𝑥2

, … , 𝜕 ̂𝜂
𝜕𝑥𝐾′

)
⊤

– This gradient defines the path of steepest ascent/descent (i.e., the direction of steepest
increase/decrease on the fitted surface).

– If maximizing the response is of interest, then we should ascend the surface by moving in the
direction of +𝒈:

𝒙′ = 𝒙 + 𝜆𝒈 (1)

– If minimizing the response is of interest, then we should descend the surface by moving in the
direction of −𝒈:

𝒙′ = 𝒙 − 𝜆𝒈 (2)

– With a fixed step size 𝜆 we move from 𝒙 to 𝒙′.
– We typically define the step size as:

𝜆 =
𝛥𝑥𝑗

| ̂𝛽𝑗|

∗ Pick factor 𝑗, the one you know the most about, or the one that is hardest to manipulate.
∗ 𝛥𝑥𝑗 is the step size of factor 𝑗 in coded units.
∗ ̂𝛽𝑗 is the estimated coefficient corresponding to factor 𝑗 in the estimated first-order response
model.

Steepest Ascent/Descent Algorithm

1. The first condition along the path of steepest ascent/descent is at the origin of the 𝑥-space
𝒙0 = (0, 0)⊤ (i.e., the centre of the 2𝐾′ factorial design that was used to fit ̂𝜂). Data is collected
and the metric of interest is calculated.

2. Then the step size 𝜆 is determined.

3. The location of the next condition is determined by formula (1) in the case of maximization and (2)
in the case of minimization. Data is collected and the metric of interest is calculated.

4. Repeat Step 3 until incremental improvements in the MOI cease.

5. Return to the location of the best MOI value and test for curvature.

→ If the test for curvature suggests that you are not yet in the vicinity of the optimum, fit a new
first-order model and repeat Steps 1 to 4.

→ If the test for curvature suggests that you are in the vicinity of the optimum, use a response
surface design to fit a full second-order model and hence precisely identify the coordinates of
the optimum.
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8.2.2 Checking for Curvature
• A test for quadratic curvature is an important component of the method of steepest ascent/descent.

* The presence of quadratic curvature signifies that you are in the vicinity of the optimum.

• Such a test is possible when a 2𝐾′ factorial experiment is augmented with a centre point condition.

– The centre point condition is defined (in coded units) as 𝑥1 = 𝑥2 = ⋯ = 𝑥𝐾′ = 0.
– Located at the centre of the cuboidal region defined by the 2𝐾′ factorial conditions.

* The data arising from a 2𝐾′ factorial design is insufficient to estimate a second-order linear predictor.

* We are able to estimate the main effects and the two-factor interaction effects, but not the quadratic
effects.

• With the addition of the centre point condition, one additional effect may be estimated: the pure
quadratic effect.

𝛽𝗣𝗤 =
𝐾′

∑
𝑗=1

𝛽𝑗𝑗

• A test of 𝐇0: 𝛽𝗣𝗤 = 0 is a test of overall curvature.

EXAMPLE 8.2.1: 𝐾′ = 2

• When 𝐾′ = 2, the second-order linear predictor is:

𝜂 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽12𝑥1𝑥2 + 𝛽11𝑥2
1 + 𝛽22𝑥2

2

• In a 22 factorial design plus a centre point, we have the following five unique experimental
conditions: (𝑥1, 𝑥2) ∈ {(−1, −1), (+1, −1), (−1, +1), (+1, +1), (0, 0)} which respectively give rise
to five unique variants of the linear predictor, which we define as:

𝜂𝗟𝗟 = 𝛽0 − 𝛽1 − 𝛽2 + 𝛽12 + 𝛽11 + 𝛽22

𝜂𝗛𝗟 = 𝛽0 + 𝛽1 − 𝛽2 − 𝛽12 + 𝛽11 + 𝛽22

𝜂𝗟𝗛 = 𝛽0 − 𝛽1 + 𝛽2 − 𝛽12 + 𝛽11 + 𝛽22

𝜂𝗛𝗛 = 𝛽0 + 𝛽1 + 𝛽2 + 𝛽12 + 𝛽11 + 𝛽22

𝜂𝗖 = 𝛽0

* With only these five conditions, we cannot separately estimate 𝛽11 and 𝛽22, but we can estimate
𝛽𝗣𝗤 = 𝛽11 + 𝛽22.

• Notice that:
𝛽𝗣𝗤 = 𝜂𝗟𝗟 + 𝜂𝗛𝗟 + 𝜂𝗟𝗛 + 𝜂𝗛𝗛

4
− 𝜂𝗖

• The estimate is therefore:
̂𝛽𝗣𝗤 = ̂𝜂𝗟𝗟 + ̂𝜂𝗛𝗟 + ̂𝜂𝗟𝗛 + ̂𝜂𝗛𝗛

4
− ̂𝜂𝗖

* If this difference, and hence ̂𝛽𝗣𝗤, is small then it suggests that the response values observed
in the factorial conditions are similar to those observed in the centre point condition and
hence that there isn’t significant curvature in the response surface.

* If ̂𝛽𝗣𝗤 is very different from zero, it suggests that there is significant quadratic curvature.
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• We formally test 𝐇0: ̂𝛽𝗣𝗤 using 𝑡-tests (or 𝑍-tests) in a linear (or logistic) regression model that
has linear predictor:

𝜂 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽12𝑥1𝑥2 + 𝛽𝗣𝗤𝑥𝗣𝗤

where

𝑥𝗣𝗤 = {1 (𝑥1, 𝑥2) ∈ {(−1, −1), (+1, −1), (−1, +1), (+1, +1)}
0 (𝑥1, 𝑥2) = (0, 0)

which indicates whether a response observation came from a factorial condition or the centre
point condition.

• If 𝛽𝗣𝗤 is significantly different from 0 then it suggests that both 𝛽11 and 𝛽22 are significantly
non-zero, and therefore that there is significant quadratic curve.

• For general 𝐾′, we conduct a 2𝐾′ factorial experiment with a centre point and then test for curvature
using a regression model with linear predictor:

𝜂 = 𝛽0 +
𝐾′

∑
𝑗=1

𝛽𝑗𝑥𝑗 + ∑
𝑗<ℓ

𝛽𝑗ℓ𝑥𝑗𝑥ℓ + 𝛽𝗣𝗤𝑥𝗣𝗤

where now

𝛽𝗣𝗤 =
𝐾′

∑
𝑗=1

𝛽𝑗𝑗

and 𝑥𝗣𝗤 is again a binary indicator indicating whether a response value was observed in a factorial
condition or the centre point condition.

* No matter the value of 𝐾′, the pure quadratic effect is always represented by a single term in the model.

– As such, the test for curvature is always a test of 𝐇0: 𝛽𝗣𝗤 = 0 and is carried out with ordinary
𝑡-tests in a linear regression and 𝑍-tests in a logistic regression.

• The intuitive estimate for 𝛽𝗣𝗤 in the 𝐾′ = 2 case also generalizes:

̂𝛽𝗣𝗤 = ̂̄𝜂𝗙 − ̂𝜂𝗖

where

→ ̂̄𝜂𝗙 is the average if the estimated linear predictor values in the factorial conditions.
→ ̂𝜂𝗖 is the estimated linear predictor value at the centre point.

• IMPORTANT: This test assumes that all the 𝛽𝑗𝑗’s, 𝑗 = 1, 2, … , 𝐾′, have the same sign.

– If they didn’t, then it’s possible that significantly large 𝛽𝑗𝑗’s could cancel each other out, making
𝛽𝗣𝗤 = ∑𝐾′

𝑗=1 𝛽𝑗𝑗 close to zero.

↪ We are misled into thinking that we are not in the vicinity of the quadratic curvature, even
when we are.

* This assumption is fine as long as the experiment is not conducted near a saddle point on the
response surface.
↪ This problem can only be identified by separately estimating each of the quadratic effects.
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8.2.3 The Netflix Example
• Here we illustrate the method of steepest descent using a modified version of the hypothetical Netflix

experiment from your final project.

• We focus on the Preview Length factor (defined analogously as in your project) and a Preview Size
factor (which corresponds to the size of the enlarged window a preview is played in).

• We begin with a 22 factorial experiment with a centre point condition. The factor levels in coded and
natural units are shown in Table 8.1.

Table 8.1: Average browsing time by condition in the 22 + 𝗖𝗣 Netflix experiment.

Condition Preview Length (s) 𝑥1 Preview Size 𝑥2 Average Browsing Time (min)
1 90 −1 0.2 −1 22.163
2 120 +1 0.2 −1 22.197
3 90 −1 0.5 +1 20.223
4 120 +1 0.5 +1 21.982
5 105 0 0.35 0 22.046

• Prior to embarking down the path of steepest descent, a curvature test was performed to determine
whether this experimental region was already in the vicinity of the optimum.

• The linear regression model with linear predictor:

𝜂 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽12𝑥1𝑥2 + 𝛽𝗣𝗤𝑥𝗣𝗤

was fit. The resulting output is shown in Table 8.2.

Table 8.2: Summary of 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽12𝑥1𝑥2 + 𝛽𝗣𝗤𝑥𝗣𝗤.

Estimate Std. Error 𝑡-value Pr(> |𝑡|)
(Intercept) 22.046 0.195 112.979 <2.222 × 10−16

𝑥1 0.448 0.098 4.595 4.777 × 10−6

𝑥2 −0.539 0.098 −5.524 4.036 × 10−8

𝑥𝗣𝗤 −0.405 0.218 −1.855 6.386 × 10−2

𝑥1:𝑥2 0.431 0.098 4.419 1.076 × 10−5

• To begin the method of steepest descent procedure, we use the aforementioned data to fit the first order
regression model with linear predictor:

̂𝜂 = ̂𝛽0 + ̂𝛽1𝑥1 + ̂𝛽2𝑥2

The model summary is shown in Table 8.3.

Table 8.3: Summary of ̂𝛽0 + ̂𝛽1𝑥1 + ̂𝛽2𝑥2.

Estimate Std. Error 𝑡-value Pr(> |𝑡|)
(Intercept) 21.722 0.088 246.852 <2.222 × 10−16

𝑥1 0.448 0.098 4.556 5.714 × 10−6

𝑥2 −0.539 0.098 −5.478 5.202 × 10−8

• Figure 8.2 depicts the contours of the estimated first-order response surface.
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Figure 8.2: Contour plot for the estimated first-order response surface for the Netflix experiment.

• We calculate the gradient:

𝒈 = ( ̂𝛽1, ̂𝛽2)⊤ = ( 𝜕 ̂𝜂
𝜕𝑥1

, 𝜕 ̂𝜂
𝜕𝑥2

)
⊤

= (0.448, −0.539)⊤

* This path of steepest descent is depicted by the dashed black line in Figure 8.3. The red dots signify the
experimental conditions conducted along this path, beginning from the centre point (𝑥1, 𝑥2) = (0, 0).
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Figure 8.3: Contour plot for the path of steepest descent for the Netflix experiment.

• The locations in coded and natural units for each of these conditions are provided in Table 8.4.

– Note that a step size of:

𝜆 = 𝛥𝑥1

| ̂𝛽1|
= 1/3

|0.448|

was used, where the value 1/3 was chosen to ensure steps of 5 seconds in Preview Lengths.

• The average browsing time in each condition is reported in Table 8.4 and visualized in Figure 8.4.
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Table 8.4: Average browsing time along the path of steepest descent.

Condition Preview Length (s) 𝑥1 Preview Size 𝑥2 Average Browsing Time (min)
0 105 0 0.350 0 21.998
1 100 −0.333 0.410 0.401 21.672
2 95 −0.667 0.470 0.801 21.258
3 90 −1.000 0.530 1.202 19.105
4 85 −1.333 0.590 1.603 18.245
5 80 −1.667 0.651 2.004 15.944
6 75 −2.000 0.711 2.404 14.889
7 70 −2.333 0.771 2.805 17.160
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Figure 8.4: Average browsing time along the path of steepest descent.
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* Clearly that Step 6 corresponded to the lowest observed average browsing time, and so we should
perform another test of curvature in this region to determine whether we’ve reached the vicinity of the
optimum.

• In order to do so, another 22 factorial experiment with a centre point needs to be run. The factor levels
in coded and natural units for this next experiment are shown in Table 8.5.

Table 8.5: Average browsing time by condition in the second 22 + 𝗖𝗣 Netflix experiment.

Condition Preview Length (s) 𝑥1 Preview Size 𝑥2 Average Browsing Time (min)
1 60 −1 0.6 −1 14.571
2 90 +1 0.6 −1 18.173
3 60 −1 0.8 +1 18.220
4 90 +1 0.8 +1 18.655
5 75 0 0.7 0 14.831

• Once again we fit a linear regression model with linear predictor:

𝜂 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽12𝑥1𝑥2 + 𝛽𝗣𝗤𝑥𝗣𝗤

• The resulting output is shown in Table 8.6.

Table 8.6: Summary of 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽12𝑥1𝑥2 + 𝛽𝗣𝗤𝑥𝗣𝗤.

Estimate Std. Error 𝑡-value Pr(> |𝑡|)
(Intercept) 14.831 0.189 78.397 <2.22 × 10−16

𝑥1 1.009 0.095 10.668 <2.22 × 10−16

𝑥2 1.033 0.095 10.920 <2.22 × 10−16

𝑥𝗣𝗤 2.573 0.212 12.167 <2.22 × 10−16

𝑥1:𝑥2 −0.792 0.095 −8.372 <2.22 × 10−16

– Reject 𝐇0: 𝛽𝗣𝗤 = 0, therefore we conclude there is a quadratic curve.

• [R Code] PSTD_example

Week 12

8.3 Response Surface Experiments
* Effective experimentation is sequential: information gained in one experiment can help to inform future
experiments.

• Screening experiments are used to identify which among numerous factors are the ones that significantly
influence the response variable.

• We follow these up with further experimentation where the goal is response optimization.

– Method of Steepest Ascent/Descent.
– Response Surface Designs.

• In these investigations, response optimization requires investigating and characterizing response surfaces
of the form:

𝔼[𝑌 ] = 𝑓(𝑥1, 𝑥2, … , 𝑥𝐾′)

https://github.com/Hextical/university-notes/blob/master/year-3/semester-3/STAT 430/code/W11/PSTD_example.R


CHAPTER 8. RESPONSE SURFACE METHODOLOGY 105

(for a continuous response) and

log( 𝔼[𝑌 ]
1 − 𝔼[𝑌 ]

) = 𝑓(𝑥1, 𝑥2, … , 𝑥𝐾′)

(for a binary response).

Finding the Optimum
• Supposing that sufficient data is collected and the second-order model may be fitted, we obtain the

estimated response surface.

̂𝜂 = ̂𝛽0 +
𝐾′

∑
𝑗=1

̂𝛽𝑗𝑥𝑗 + ∑
𝑗<ℓ

̂𝛽𝑗ℓ𝑥𝑗𝑥ℓ +
𝐾′

∑
𝑗=1

̂𝛽𝑗𝑗𝑥2
𝑗

• This expression may be re-written in vector-matrix notation as:

̂𝜂 = ̂𝛽0 + 𝒙⊤𝒃 + 𝒙⊤𝐁𝒙

where

𝒙 =
⎡
⎢⎢
⎣

𝑥1
𝑥2
⋮

𝑥𝐾′

⎤
⎥⎥
⎦

, 𝒃 =
⎡
⎢
⎢
⎣

̂𝛽1
̂𝛽2

⋮
̂𝛽𝐾′

⎤
⎥
⎥
⎦

, 𝐁 =
⎡
⎢
⎢
⎣

̂𝛽11
1
2

̂𝛽12 ⋯ 1
2

̂𝛽1𝐾′

1
2

̂𝛽12
̂𝛽22 ⋯ 1

2
̂𝛽2𝐾′

⋮ ⋮ ⋱ ⋮
1
2

̂𝛽1𝐾′
1
2

̂𝛽2𝐾′ ⋯ ̂𝛽𝐾′𝐾′

⎤
⎥
⎥
⎦

– 𝒙 is a 𝐾′ × 1 vector of specific factor values.
– 𝒃 is a 𝐾′ × 1 vector of the estimates of the main effect coefficients.
– 𝐁 is a 𝐾′ ×𝐾′ symmetric matrix of second-order effect estimates (i.e., the second-order interactions

and quadratic effects).

• In order to find the value of 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝐾′)⊤ that maximizes/minimizes the expected response,
we must find the stationary point of the estimated response surface.

• The stationary point is:
𝒙𝘀 = −1

2
𝐁−1𝒃

which is found by solving:
𝜕 ̂𝜂
𝜕𝒙

= 𝒃 + 2𝐁𝒙 = 𝟎

• The optimal expected response is:
𝔼[𝑌 ] = ̂𝜂𝘀 = ̂𝛽0 + 1

2
𝒙⊤

𝘀 𝒃

in the case of linear regression and

𝔼[𝑌 ] = exp[ ̂𝜂𝘀]
1 + exp[ ̂𝜂𝘀]

=
exp[ ̂𝛽0 + 1

2 𝒙⊤
𝘀 𝒃]

1 + exp[ ̂𝛽0 + 1
2 𝒙⊤

𝘀 𝒃]

in the case of logistic regression.

• For practical implementation of this solution, the stationary point 𝒙𝘀 must be translated into optimal
operating conditions in natural units 𝑼𝘀 using the following conversion formula:

𝑈 = 𝑥 × 𝑈𝗛 − 𝑈𝗟
2

+ 𝑈𝗛 + 𝑈𝗟
2
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* However, for us to be confident that 𝒙𝘀 indeed optimizes 𝑓( ⋅ ), we must be confident that 𝜂 and, in
particular, that ̂𝜂 adequately represents 𝑓( ⋅ ).

* Since we only expect the second-order approximation to be adequate in a small localized region, it
is important that this small localized region contains the true optimum.

– It is quite unlikely that the values of 𝑥1, 𝑥2, … , 𝑥𝐾′ considered in the screening phase are close to
the optimum.

* This is why we needed the method of steepest ascent/descent.
* This intermediate phase of experimentation helped us determine roughly where the region of
the optimum lies.

8.3.1 The Central Composite Design
* The goal of a response surface experiment is to be able to fit a full second-order response surface model.

– This requires estimating (𝐾′ + 1)(𝐾′ + 2)/2 coefficients.

• Several such designs exist (i.e., “response surface”), but here we study one in particular: the central
composite design (CCD).

• A CCD is typified by three different types of experimental conditions:

i. two-level factorial conditions,
ii. a centre point condition, and
iii. axial, or star, conditions.

• In other words,

i. The factorial conditions constitute a full 2𝐾′ factorial design.
ii. The centre point condition sits at 𝑥1 = 𝑥2 = ⋯ = 𝑥𝐾′ = 0 in the centre of the factorial ones.
iii. The axial conditions sit ‘outside’ of the factorial ones at ±𝑎 on each of the 𝐾′ factors’ axes. Note

that 𝑎 is defined in coded units.

• When investigating 𝐾′ factors the central composite design therefore requires 2𝐾′ + 2𝐾′ + 1 distinct
experimental conditions.

• These designs may be visualized geometrically as we see in the figures below, for 𝐾′ = 1, 2, 3.

• The design matrices that give rise to these designs (for 𝐾′ = 1, 2, 3) are shown in Table 8.7.

• Choosing 𝑎:

– The value of 𝑎 is determined by the experimenter, and may be chosen to balance both practical
and statistical concerns.

– The experimenter must be mindful of the constraints imposed by the region of operability and
whether the natural-unit counterpart to 𝑎 is something inconvenient/infeasible.

– Barring practical constraints, two common choices for 𝑎 are 𝑎 = 1 and 𝑎 =
√

𝐾′.

• 𝑎 = 1:

– The CCD reduces to a 3𝐾′ design.
– It is referred to as face-centred central composite design.
– A benefit is that it requires just 3 (not 5) levels for every factor.
– Another benefit is that it is a cuboidal design and so it inherits some usual conveniences associated

with orthogonal cuboidal designs.
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Table 8.7: Design matrices associated with central composite designs on 𝐾′ = 1 (left), 𝐾′ = 2 (middle) and
𝐾′ = 3 (right) factors.

Condition 𝑥1

1 −1
2 +1
3 −𝑎
4 +𝑎
5 0

Condition 𝑥1 𝑥2

1 −1 −1
2 +1 −1
3 −1 +1
4 +1 +1
5 −𝑎 0
6 +𝑎 0
7 0 −𝑎
8 0 +𝑎
9 0 0

Condition 𝑥1 𝑥2 𝑥3

1 −1 −1 −1
2 +1 −1 −1
3 −1 +1 −1
4 +1 +1 −1
5 −1 −1 +1
6 +1 −1 +1
7 −1 +1 +1
8 +1 +1 +1
9 −𝑎 0 0
10 +𝑎 0 0
11 0 −𝑎 0
12 0 +𝑎 0
13 0 0 −𝑎
14 0 0 +𝑎
15 0 0 0

– You might choose 𝑎 = 1 if the region of the optimum is in a corner of the region of operability,
and hence 𝑎 = 1 keeps the experimental conditions inside the region of operability.

• 𝑎 =
√

𝐾′:

– In this design the axial conditions are at an equal distance from the centre point as the factorial
conditions.

– Such a design is referred to as spherical since it places all axial and factorial conditions on a
“hyper” sphere of radius

√
𝐾′.

– The benefit of such equal spacing is that it ensures that the estimate of the response surface at
each condition is equally precise.
↪ Designs with this property are called rotatable.

* No matter the choice of 𝑎 > 0, the CCD facilitates estimation of the full second-order response surface
model, and hence identification of the optimum.

8.3.2 The Lyft Example
• We illustrate the design and analysis of a central composite experiment in the context of a common

ride-sharing problem.

• Suppose that Lyft is interested in designing a promotional offer that maximizes ride-bookings during
an experimental period.

→ Previous screening experiments evaluated the influence of discount amount, discount duration, ride
type, time-of-day, and the method of dissemination. It was found that the most important factors were
discount amount (𝑥1) and discount duration (𝑥2).

• A previous steepest ascent exercise also suggested that the optimal discount duration is somewhere in
the vicinity of 4.5d and the optimal discount amount is somewhere in the vicinity of 50 %.

• To find optimal values of these factors a follow-up two-factor central composite design was run in order
to fit a second-order response surface model.

• The experimental conditions (in both coded and natural units) are shown in Table 8.8.



CHAPTER 8. RESPONSE SURFACE METHODOLOGY 108

Table 8.8: Booking rate by condition in the Lyft experiment.

Condition Discount Amount (%) 𝑥1 Discount Duration (d) 𝑥2 Booking Rate
1 25 −1 2 −1 0.71
2 75 +1 2 −1 0.32
3 25 −1 7 +1 0.71
4 75 +1 7 +1 0.35
5 85 +1.4 4.5 0 0.53
6 15 −1.4 4.5 0 0.50
7 50 0 8 +1.4 0.26
8 50 0 1 −1.4 0.78
9 50 0 4.5 0 0.72

• NOTE: that the experimenters had intended to perform axial conditions with 𝑎 =
√

2, but the
corresponding discount amounts and discount durations were:

(14.645 %, 85.355 %) and (0.964d, 8.036 d)

In the interest of defining experimental conditions with practically convenient levels they opted for
𝑎 = 1.4 yielding the discount amounts and durations shown in Table 8.8.

• 𝑛 = 500 users were then randomized into each of these 𝑚 = 9 conditions and for each user, whether
they booked a ride in the experimentation period was recorded.

– The booking rates in each condition are also shown in Table 8.8.

• The output from the fitted second-order logistic regression model is shown in Table 8.9.

Table 8.9: Summary of second-order logistic regression model.

Estimate Std. Error 𝑡-value Pr(> |𝑡|)
(Intercept) 0.943 0.100 9.474 <2.222 × 10−16

𝑥1 0.039 0.033 1.174 2.406 × 10−1

𝑥2 −0.807 0.036 −22.612 <2.222 × 10−16

I(𝑥2
1) −0.442 0.058 −7.637 2.221 × 10−14

I(𝑥2
2) −0.414 0.059 −6.989 2.770 × 10−12

𝑥1:𝑥2 0.034 0.048 0.700 4.840 × 10−1

• Contour plots of the fitted response surface are shown in Figure 8.5.

• The stationary point for this second-order model is located (in coded units) at 𝑥1 = 0.007, 𝑥2 = −0.973
using 𝒙𝘀 = − 1

2 𝐁−1𝒃.

– In the natural units this corresponds to a discount rate of 50.164 % that lasts for 2.067d.
– The predicted booking rate at this point is 0.792, with a 95 % prediction interval given by

(0.769, 0.814).

• A slightly less optimal but more practically feasible promotion would be a 50 % discount lasting 2d
(this is what Lyft should move forward with into a confirmation phase).

– This achieves a booking rate of 0.792 with a 95 % prediction interval of (0.769, 0.814).

• [R Code] CCD_example

https://github.com/Hextical/university-notes/blob/master/year-3/semester-3/STAT 430/code/W12/CCD_example.R
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Figure 8.5: 2D contour plots of the second-order Lyft model. Figure 8.5a: Coded-Unit Factor Space.
Figure 8.5b: Natural-Unit Factor Space.

8.4 RSM with Qualitative Factors
• What do you do if you have ≥ 1 categorical factors in addition to our numeric factor(s)?

* Everything that has been discussed thus far with respect to central composite designs and response
surface optimization has assumed that the factors under experimentation are quantitative (i.e., the
factors have numeric levels).

→ In the presence of one or more categorical factors we need to take additional care.

• When categorical factors are present, we can think of there being different response surfaces that relate
the response to the quantitative factors at each of the factorial combinations of the categorical factors’
levels.

• Thus, the general strategy is to enumerate all factorial combinations of the categorical factors’ levels
and employ the methods of response surface methodology independently within each.

– Perform the method of steepest ascent/descent independently on each surface
– Perform CCDs independently on each surface
– Independently fit second-order models for each surface
– Independently identify the stationary point on each surface

* Among all the candidate surfaces, the one with the most optimal optimum is the ‘winner.’

– The factor levels (numeric and categorical) that gave rise to it should be defined as the optimal
operating conditions.

* This investigation should now be followed up by a response surface experiment so that a full second-order
model may be fit and the optimum identified.
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EXAMPLE 8.4.1

uppose we have two numeric factors 𝑥1 and 𝑥2, and two categorical factors 𝑥3 [3 levels (𝗟, 𝗠, 𝗛)]
and 𝑥4 [2 levels (𝗟, 𝗛)]. There are six combinations of the categorical factors levels, and then at
each one of those six configurations, you can imagine a response surface that relates the expected
response to 𝑥1 and 𝑥2 holding at 𝑥3 and 𝑥4 fixed at that particular specification.

1. (𝑥3, 𝑥4) at (𝗟, 𝗟), then do RSM on 𝑥1 and 𝑥2.

2. (𝑥3, 𝑥4) at (𝗠, 𝗟), then do RSM on 𝑥1 and 𝑥2.

3. (𝑥3, 𝑥4) at (𝗛, 𝗟), then do RSM on 𝑥1 and 𝑥2.

4. (𝑥3, 𝑥4) at (𝗟, 𝗛), then do RSM on 𝑥1 and 𝑥2.

5. (𝑥3, 𝑥4) at (𝗠, 𝗛), then do RSM on 𝑥1 and 𝑥2.

6. (𝑥3, 𝑥4) at (𝗛, 𝗛), then do RSM on 𝑥1 and 𝑥2.

Optional: [R Code] Visualizing_response_surfaces

https://github.com/Hextical/university-notes/blob/master/year-3/semester-3/STAT 430/code/W12/Visualizing_response_surfaces.R
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