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Chapter 2

Univariate Random Variable

Lecture 1 | 2020-09-09

Review probability model, random variable (r.v.), expectation, and moment generating function.

2.1 Probability Model and Random Variable

DEFINITION 2.1.1: Probability model

A probability model is used for a random experiment. It has three important components:
(I) Sample space
(II) Event
(III) Probability function

DEFINITION 2.1.2: Sample space

A sample space 𝑆 is the collection of all possible outcomes of one single random experiment.

DEFINITION 2.1.3: Event

An event 𝐴, 𝐵, … is a subset of 𝑆.

EXAMPLE 2.1.4

Toss a coin twice.
• 𝑆 = {(𝐻, 𝐻), (𝐻, 𝑇 ), (𝑇 , 𝐻), (𝑇 , 𝑇 )}
• 𝐴: First toss is a head (𝐻).

Clearly, 𝐴 = {(𝐻, 𝐻), (𝐻, 𝑇 )} ⊆ 𝑆, so 𝐴 is an event.

DEFINITION 2.1.5: Probability function

A probability function P( ⋅ ) is a function of events and satisfies:
(I) For any event 𝐴, P(𝐴) ≥ 0
(II) P(𝑆) = 1
(III) Additivity property: If 𝐴1, 𝐴2, 𝐴3, … are pairwise mutually exclusive events; that is, 𝐴𝑖 ∩ 𝐴𝑗 = ∅
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CHAPTER 2. UNIVARIATE RANDOM VARIABLE 3

for all 𝑖 ≠ 𝑗, then

P(
∞
⋃
𝑖=1

𝐴𝑖) =
∞

∑
𝑖=1

P(𝐴𝑖)

EXAMPLE 2.1.6

Toss a coin twice, given one event 𝐴,

P(𝐴) = # of outcomes in 𝐴
4

where 4 is the total number of outcomes in 𝑆. P( ⋅ ) satisfies the three properties, therefore P( ⋅ ) is a
probability function.

PROPOSITION 2.1.7: Additional Properties of the Probability Function

(1) P(∅) = 0 where ∅ = ⋃∞
𝑖=1 ∅.

(2) Let ̄𝐴 be the complementary event of 𝐴.
(i) ̄𝐴 ∪ 𝐴 = 𝑆
(ii) ̄𝐴 ∩ 𝐴 = ∅

P(𝐴) + P( ̄𝐴) = 1

(3) If 𝐴1 and 𝐴2 are mutually exclusive, then

P(𝐴1 ∪ 𝐴2) = P(𝐴1) + P(𝐴2).

(4) Generally,
P(𝐴1 ∪ 𝐴2) = P(𝐴1) + P(𝐴2) − P(𝐴1 ∩ 𝐴2)

𝐴1 𝐴2

𝐵1 𝐵2𝐴1 ∩ 𝐴2

𝐴1 ∪ 𝐴2 = 𝐵1 ∪ (𝐴1 ∩ 𝐴2) ∪ 𝐵2

(5) If 𝐴1 ⊆ 𝐴2, then P(𝐴1) ≤ P(𝐴2).



CHAPTER 2. UNIVARIATE RANDOM VARIABLE 4

𝐴1

𝐵1

𝐴2 = 𝐴1 ∪ 𝐵1

Proof of Proposition 2.1.7

Proof of (1): Let 𝐴1 = ∅, 𝐴2 = ∅, 𝐴3 = ∅, …, then

P(∅) = P(
∞
⋃
𝑖=1

𝐴𝑖) =
𝑛

∑
𝑖=1

P(𝐴𝑖) =
𝑛

∑
𝑖=1

P(∅)

DEFINITION 2.1.8: Conditional probability

Suppose 𝐴 and 𝐵 are two events with P(𝐵) > 0. The conditional probability of 𝐴 given that 𝐵 is

P(𝐴 | 𝐵) = P(𝐴 ∩ 𝐵)
P(𝐵)

DEFINITION 2.1.9: Independent events

Suppose 𝐴 and 𝐵 are two events. 𝐴 and 𝐵 are independent events if and only if

P(𝐴 ∩ 𝐵) = P(𝐴)P(𝐵)

Clearly, P(𝐴 | 𝐵) = P(𝐴) if and only if 𝐴 and 𝐵 are independent since

P(𝐴 | 𝐵) = P(𝐴 ∩ 𝐵)
P(𝐵)

= P(𝐴)P(𝐵)
P(𝐵)

= P(𝐴)

EXAMPLE 2.1.10

Toss a coin twice.
• 𝐴: First toss is 𝐻
• 𝐵: Second toss is 𝑇

P(𝐴) = # of outcomes in 𝐴
4

= 2
4

and P(𝐵) = 2
4

P(𝐴 ∩ 𝐵) = 1
4

= P(𝐴)P(𝐵)

Therefore, 𝐴 and 𝐵 are independent.
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DEFINITION 2.1.11: Random variable

A random variable (r.v.) 𝑋 is a function from a sample space 𝑆 to the real numbers R; that is,

𝑋 ∶ 𝑆 → R

satisfies for any given 𝑥 ∈ R {𝑋 ≤ 𝑥} is an event.

{𝑋 ≤ 𝑥} = {𝑤 ∈ 𝑆 ∶ 𝑋(𝑤) ≤ 𝑥} ⊆ 𝑆

EXAMPLE 2.1.12

Toss a coin twice. Let 𝑋 be the number of heads (𝐻) in two tosses. Verify that 𝑋 is a random variable.
Solution. Possible values of 𝑋: 0, 1, 2. Given 𝑥 ∈ R, {𝑋 ≤ 𝑥}.

• 𝑥 < 0 ⟹ {𝑋 ≤ 𝑥} = ∅
• 𝑥 = 0 ⟹ {𝑋 ≤ 𝑥} = {𝑋 = 0} = {(𝑇 , 𝑇 )} ⊆ 𝑆
• 𝑥 = 1 ⟹ {𝑋 ≤ 𝑥} = {𝑋 = 1} = {(𝐻, 𝑇 ), (𝑇 , 𝐻)} ⊆ 𝑆
• 𝑥 = 2 ⟹ {𝑋 ≤ 𝑥} = {𝑋 = 2} = {(𝐻, 𝐻)} ⊆ 𝑆

Thus, 𝑋 is a random variable.

DEFINITION 2.1.13: Cumulative distribution function

The cumulative distribution function (c.d.f.) of a random variable 𝑋 is defined by

𝐹(𝑥) = P(𝑋 ≤ 𝑥) for all 𝑥 ∈ R

Note that the c.d.f. is defined for all R.

DEFINITION 2.1.14: Properties — Cumulative Distribution Function

(1) 𝐹 is a non-decreasing function; that is, if 𝑥1 ≤ 𝑥2, then 𝐹(𝑥1) ≤ 𝐹(𝑥2).
By looking at:

• {𝑋 ≤ 𝑥1} ⊆ {𝑋 ≤ 𝑥2} if 𝑥1 ≤ 𝑥2.
(2) lim

𝑥→∞
𝐹(𝑥) = 1 and lim

𝑥→−∞
𝐹(𝑥) = 0.

By looking at:
• {𝑋 ≤ 𝑥} → 𝑆 as 𝑥 → ∞.
• {𝑋 ≤ 𝑥} → ∅ as 𝑥 → −∞.

(3) 𝐹(𝑥) is a right continuous function; that is, for any 𝑎 ∈ R,

lim
𝑥→𝑎+

𝐹(𝑥) = 𝐹(𝑎)

𝑎
Figure 2.1: Right Continuous



CHAPTER 2. UNIVARIATE RANDOM VARIABLE 6

𝑎
Figure 2.2: Not Right Continuous

PROPOSITION 2.1.15: Additional Properties of Cumulative Distribution Function

(1) P(𝑎 < 𝑋 ≤ 𝑏) = P(𝑋 ≤ 𝑏) − P(𝑋 ≤ 𝑎) = 𝐹(𝑏) − 𝐹(𝑎)
(2) P(𝑋 = 𝑥) = P(Jump at 𝑥) = lim

𝑡→𝑥+
𝐹(𝑡) − lim

𝑡→𝑥−
𝐹(𝑡) = 𝐹(𝑥) − lim

𝑡→𝑥−
𝐹(𝑡)

Lecture 2 | 2020-09-09

2.2 Discrete Random Variables
DEFINITION 2.2.1: Discrete random variable

If a random variable 𝑋 can only take finite or countable values, 𝑋 is a discrete random variable.

REMARK 2.2.2

When we say countable, we mean something you can enumerate such as Z or N+.

DEFINITION 2.2.3: Probability function

If 𝑋 is a discrete random variable, then the probability function (p.f.) of 𝑋 is given by

𝑓(𝑥) = {
P(𝑋 = 𝑥) if 𝑋 can take value 𝑥
0 if 𝑋 cannot take value 𝑥

DEFINITION 2.2.4: Support

The set 𝐴 = {𝑥 ∶ 𝑓(𝑥) > 0} is called the support of 𝑋. These are all the possible values 𝑋 can take.

PROPOSITION 2.2.5: Properties of the Probability Function

(1) 𝑓(𝑥) ≥ 0 for all 𝑥 ∈ R
(2) ∑

𝑥∈𝐴
𝑓(𝑥) = 1

Review some commonly used discrete random variables:

• Bernoulli. 𝑋 ∼ Bernoulli(𝑝) where 𝑋 can only take two possible values 0 (failure) or 1 (success). Let 𝑝
be the probability of a success for a single trial. So,

P(𝑋 = 1) = 𝑝 and P(𝑋 = 0) = 1 − 𝑝
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EXAMPLE 2.2.6: Bernoulli

Toss a coin twice. Let 𝑋 be the number of heads. Therefore, 𝑋 ∼ Bernoulli(𝑝).

• Binomial. 𝑋 ∼ Binomial(𝑛, 𝑝). Suppose we have Bernoulli Trials:

– We run 𝑛 trials

– Each trial is independent of each other

– Each trial has two possible outcomes: 0 (failure), 1 (success)

P(𝑋 = 1) = 𝑝

Let 𝑋 be the number of success across these 𝑛 trials and 𝑝 be the success probability for a single trial.

𝑋 =
𝑛

∑
𝑖=1

𝑋𝑖

𝑋𝑖 is the outcome of the 𝑖th trial.
P(𝑋𝑖 = 1) = 𝑝

where 𝑋𝑖 ∼ Bernoulli(𝑝).

• Geometric. 𝑋 ∼ Geometric(𝑝). Let 𝑋 be the number of failures before the first success.

EXAMPLE 2.2.7: Geometric

𝑋 = number of tails before you get the first head. Therefore, 𝑋 ∼ Geometric(𝑝).

𝑋 can take values 0, 1, 2, ….
P(𝑋 = 𝑥) = (1 − 𝑝)𝑥𝑝

• Negative Binomial. 𝑋 ∼ Negative Binomial(𝑟, 𝑝). Let 𝑋 be the number of failures before you get 𝑟
success. 𝑋 can take values 0, 1, 2, …

𝑓(𝑥) = P(𝑋 = 𝑥) = (𝑥 + 𝑟 − 1
𝑥

)(1 − 𝑝)𝑥𝑝𝑟−1𝑝

EXAMPLE 2.2.8: Negative Binomial

𝑋 = number of tails before you get the 𝑟th head. Therefore, 𝑋 ∼ Negative Binomial(𝑟, 𝑝).

• Poisson. 𝑋 ∼ Poisson(𝜇)
𝑓(𝑥) = P(𝑋 = 𝑥) = 𝜇𝑥

𝑥!
𝑒−𝜇

where 0 ≤ 𝑥 ∈ Z.

2.3 Continuous Random Variables
DEFINITION 2.3.1: Continuous random variable

If the possible values of 𝑋 is an interval or real line, 𝑋 is a continuous random variable. In this case,
𝐹(𝑥) is continuous and differentiable almost everywhere. (It’s not differentiable for at most a countable
set of points).

Note that this is not a rigorous definition, but it will be used in this course.
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DEFINITION 2.3.2: Probability density function, Support

The probability density function (p.d.f.) of a continuous random variable is

𝑓(𝑥) = {𝐹 ′(𝑥) if 𝐹(𝑥) is differentiable at 𝑥
0 otherwise

The set 𝐴 = {𝑥 ∶ 𝑓(𝑥) > 0} is called the support of 𝑋.

Continuous case: 𝑓(𝑥) ≠ P(𝑋 = 𝑥)
P(𝑥 < 𝑋 ≤ 𝑥 + 𝛿) ≈ 𝑓(𝑥)𝛿

since
lim
𝛿→0

𝐹(𝑥 + 𝛿) − 𝐹(𝑥)
𝛿

= 𝐹 ′(𝑥) = 𝑓(𝑥)

where 𝐹(𝑥 + 𝛿) − 𝐹(𝑥) = P(𝑥 ≤ 𝑋 ≤ 𝑥 + 𝛿).

DEFINITION 2.3.3: Properties — Probability Density Function

(I) 𝑓(𝑥) ≥ 0 for all 𝑥 ∈ R

(II) ∫
∞

−∞
𝑓(𝑥) 𝑑𝑥 = 1

(III) 𝐹(𝑥) = ∫
𝑥

−∞
𝑓(𝑡) 𝑑𝑡 with 𝐹(−∞) = 0

(IV) 𝑓(𝑥) = 𝐹 ′(𝑥)
(V) P(𝑋 = 𝑥) = 0 ≠ 𝑓(𝑥)

(VI) P(𝑎 < 𝑋 ≤ 𝑏) = P(𝑎 ≤ 𝑋 ≤ 𝑏) = P(𝑎 < 𝑋 < 𝑏) = P(𝑎 ≤ 𝑋 < 𝑏) = 𝐹(𝑏) − 𝐹(𝑎) = ∫
𝑏

𝑎
𝑓(𝑥) 𝑑𝑥

since P(𝑋 = 𝑎) = P(𝑋 = 𝑏) = 0.

EXAMPLE 2.3.4

Suppose the c.d.f. of 𝑋 is

𝐹(𝑥) =

⎧{{
⎨{{⎩

0 𝑥 ≤ 𝑎
𝑥 − 𝑎
𝑏 − 𝑎

𝑎 < 𝑥 < 𝑏

1 𝑥 ≥ 𝑏

Find the p.d.f. of 𝑋.
Solution.

𝑓(𝑥) =
⎧{
⎨{⎩

1
𝑏 − 𝑎

𝑎 < 𝑥 < 𝑏
0 otherwise

We note that 𝑋 ∼ Uniform(𝑎, 𝑏).

EXAMPLE 2.3.5

Let the p.d.f. be defined as follows.

𝑓(𝑥) =
⎧{
⎨{⎩

𝜃
𝑥𝜃+1 𝑥 ≥ 1

0 𝑥 < 1

(i) For what values of 𝜃 is 𝑓 a p.d.f.
(ii) Find 𝐹(𝑥).
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(iii) Find P(−2 < 𝑋 < 3).
Solution.
(i) Note that

𝜃
𝑥𝜃+1 ≥ 0 for all 𝜃 ≥ 0.

Case 1: 𝜃 = 0. 𝑓(𝑥) ≡ 0, then 𝑓 cannot be a p.d.f. since ∫∞
−∞

𝑓(𝑥) 𝑑𝑥 = 0 ≠ 1
Case 2: 𝜃 > 0.

∫
∞

−∞
𝑓(𝑥) 𝑑𝑥 = ∫

1

−∞
𝑓(𝑥) 𝑑𝑥 + ∫

∞

1
𝑓(𝑥) 𝑑𝑥 = ∫

∞

1

𝜃
𝑥𝜃+1 𝑑𝑥 = [−𝑥−𝜃]

∞

1
= 1

Therefore, 𝑓 is a p.d.f. when 𝜃 > 0.
(ii) 𝐹(𝑥) = P(𝑋 ≤ 𝑥).

Case 1: 𝑥 < 1.

P(𝑋 ≤ 𝑥) = ∫
𝑥

−∞
𝑓(𝑡) 𝑑𝑡 = 0

Case 2: 𝑥 ≥ 1.

P(𝑋 ≤ 𝑥) = ∫
𝑥

−∞
𝑓(𝑡) 𝑑𝑡 = ∫

1

−∞
𝑓(𝑡) 𝑑𝑡 + ∫

𝑥

1
𝑓(𝑡) 𝑑𝑡 = ∫

𝑥

1

𝜃
𝑡𝜃+1 𝑑𝑡 = [−𝑡−𝜃]

𝑥

1
= 1 − 𝑥−𝜃

Therefore,

𝐹(𝑥) = {1 − 𝑥−𝜃 𝑥 ≥ 1
0 𝑥 < 1

(iii) P(−2 < 𝑋 < 3). Either use the c.d.f. we found or the p.d.f.
Using the c.d.f. we have

𝐹(3) − 𝐹(−2) = (1 − 3−𝜃) − 0

Using the p.d.f. we have

∫
3

−2
𝑓(𝑥) 𝑑𝑥 = ∫

1

−2
𝑓(𝑥) 𝑑𝑥 + ∫

3

1
𝑓(𝑥) 𝑑𝑥 = ∫

3

1
𝑓(𝑥) 𝑑𝑥 = exercise

Lecture 3 | 2020-09-13

We first introduce a function that will be used.

DEFINITION 2.3.6: Gamma function

The gamma function, denoted 𝛤(𝛼) for all 𝛼 > 0, is given by

𝛤(𝛼) = ∫
∞

0
𝑥𝛼−1𝑒−𝑥 𝑑𝑥

PROPOSITION 2.3.7: Properties of the Gamma Function

(1) 𝛤(𝛼) = (𝛼 − 1)𝛤(𝛼 − 1) for 𝛼 > 1
(2) 𝛤(𝑛) = (𝑛 − 1)! when 𝑛 ∈ Z+, where 𝛤(1) = 1.

(3) 𝛤(1
2

) =
√

𝜋
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EXAMPLE 2.3.8

The p.d.f. is given by

𝑓(𝑥) =
⎧{
⎨{⎩

𝑥𝛼−1𝑒−𝑥/𝛽

𝛤(𝛼)𝛽𝛼 𝑥 > 0

0 𝑥 ≤ 0

where 𝛼 > 0 and 𝛽 > 0. 𝑋 ∼ Gamma(𝛼, 𝛽).
We also say that 𝛼 is the scale parameter and 𝛽 is the shape parameter for this distribution.
Verify that 𝑓(𝑥) is a p.d.f.
Solution. Showing 𝑓(𝑥) ≥ 0 is trivial. Now,

∫
∞

−∞
𝑓(𝑥) 𝑑𝑥 = ∫

∞

0

𝑥𝛼−1𝑒−𝑥/𝛽

𝛤(𝛼)𝛽𝛼 𝑑𝑥

Let 𝑦 = 𝑥/𝛽 ⟹ 𝑥 = 𝑦𝛽 and 𝑑𝑥 = 𝛽 𝑑𝑦. Therefore,

∫
∞

−∞
𝑓(𝑥) 𝑑𝑥 = ∫

∞

0

𝑦𝛼−1𝛽𝛼−1𝑒−𝑦

𝛤(𝛼)𝛽𝛼 (𝛽) 𝑑𝑦 = 1
𝛤(𝛼)

∫
∞

0
𝑦𝛼−1𝑒−𝑦 𝑑𝑦 = 1

EXAMPLE 2.3.9

Suppose the p.d.f. is given by

𝑓(𝑥) =
⎧{
⎨{⎩

𝛽
𝜃𝛽 𝑥𝛽−1exp{−(𝑥

𝜃
)

𝛽

} 𝑥 > 0

0 𝑥 ≤ 0

with 𝛼 > 0 and 𝛽 > 0. 𝑋 ∼ Weibull(𝜃, 𝛽).
Verify that 𝑓(𝑥) is a p.d.f.
Solution. 𝑓(𝑥) ≥ 0 for every 𝑥 ∈ R. Now,

∫
∞

−∞
𝑓(𝑥) 𝑑𝑥 = ∫

∞

0

𝛽
𝜃𝛽 𝑥𝛽−1exp{−(𝑥

𝜃
)

𝛽

} 𝑑𝑥

Let 𝑦 = (𝑥/𝜃)𝛽 ⟹ 𝑥 = 𝜃𝑦1/𝛽 and 𝑑𝑥 = (𝜃/𝛽)𝑦(1/𝛽)−1 𝑑𝑦. Therefore,

∫
∞

−∞
𝑓(𝑥) 𝑑𝑥 = ∫

∞

0

𝛽
𝜃𝛽 𝜃𝛽−1𝑦(𝛽−1)/𝛽𝑒−𝑦 𝜃

𝛽
𝑦(1/𝛽)−1 𝑑𝑦 = ∫

∞

0
𝑒−𝑦 𝑑𝑦 = 𝛤(1) = 1

EXAMPLE 2.3.10: Normal

The p.d.f. is given by

𝑓(𝑥) = 1√
2𝜋𝜎

exp{−(𝑥 − 𝜇)2

2𝜎2 }

for 𝑥 ∈ R, −∞ < 𝜇 < ∞, 𝜎2 > 0. Verify that 𝑓(𝑥) is a p.d.f.
Solution. 𝑓(𝑥) ≥ 0 for every 𝑥 ∈ R.
Case 1: 𝜇 = 0 and 𝜎2 = 1, then we say 𝑋 follows a standard normal distribution. We want to show
that

∫
∞

−∞

1√
2𝜋

exp{−𝑥2

2
} 𝑑𝑥 = 1
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Since the function is symmetrical around 0, we have the following equivalent integral.

2 ∫
∞

0

1√
2𝜋

exp{−𝑥2

2
} 𝑑𝑥

Let 𝑦 = 𝑥2/2 ⟹ 𝑥 =
√

2𝑦 and 𝑑𝑥 =
√

2
2

𝑦−1/2 𝑑𝑦. Therefore,

= 2√
2𝜋

∫
∞

0
𝑒−𝑦

√
2

2
𝑦−1/2 𝑑𝑦 = 1√

𝜋
∫

∞

0
𝑦1/2−1𝑒−𝑦 𝑑𝑦 = ( 1√

𝜋
)𝛤(1

2
) = 1

Case 2: For general 𝜇 and 𝜎2,

∫
∞

−∞

1√
2𝜋𝜎

exp{−(𝑥 − 𝜇)2

2𝜎2 } 𝑑𝑥

Let 𝑧 = 𝑥 − 𝜇
𝜎

⟹ 𝑥 = 𝜇 + 𝜎𝑧 and 𝑑𝑥 = 𝜎 𝑑𝑧. Therefore,

= ∫
∞

−∞

1√
2𝜋𝜎

exp{−𝑧2

2
}𝜎 𝑑𝑧 = ∫

∞

−∞

1√
2𝜋

exp{−𝑧2

2
} 𝑑𝑧 = 1

using Case 1.

2.4 Expectation

DEFINITION 2.4.1: Expectation (Discrete)

Suppose 𝑋 is a discrete random variable with support 𝐴 and p.f. 𝑓(𝑥). Then,

E[𝑋] = ∑
𝑥∈𝐴

𝑥𝑓(𝑥)

if ∑
𝑥∈𝐴

|𝑥|𝑓(𝑥) < ∞ (finite). If ∑
𝑥∈𝐴

|𝑥|𝑓(𝑥) = ∞ (infinite), then E[𝑋] does not exist.

DEFINITION 2.4.2: Expectation (Continuous)

Suppose 𝑋 is a continuous random variable with support 𝐴 and p.d.f. 𝑓(𝑥). Then,

E[𝑋] = ∫
∞

−∞
𝑥𝑓(𝑥) 𝑑𝑥

if ∫
∞

−∞
|𝑥|𝑓(𝑥) 𝑑𝑥 < ∞ (finite). Similarly, if ∫

∞

−∞
|𝑥|𝑓(𝑥) 𝑑𝑥 = ∞ (infinite), then E[𝑋] does not exist.

EXAMPLE 2.4.3: Discrete

Suppose
𝑓(𝑥) = 1

𝑥(𝑥 + 1)
= 1

𝑥
− 1

𝑥 + 1
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for 𝑥 = 1, 2, …. The support set is 𝐴 = {1, 2, …}. We note that 𝑓(𝑥) is a p.f. since 𝑓(𝑥) ≥ 0 and

∑
𝑥∈𝐴

𝑓(𝑥) =
∞

∑
𝑥=1

( 1
𝑥

− 1
𝑥 + 1

) = 1 − 1
2

+ 1
2

− 1
3

+ ⋯ = 1

Find E[𝑋].
Solution.

∑
𝑥∈𝐴

|𝑥|𝑓(𝑥) =
∞

∑
𝑥=1

𝑥( 1
𝑥

− 1
𝑥 + 1

) =
∞

∑
𝑥=1

1
𝑥 + 1

= ∞

Therefore, E[𝑋] does not exist!

EXAMPLE 2.4.4: Continuous

Let the p.d.f. be defined as 𝑓(𝑥) = 1
𝑥2 + 1

for 𝑥 ∈ R. This is known as the Cauchy distribution (or
Student’s T-distribution with 1 degree of freedom). Find E[𝑋].
Solution.

∫
∞

−∞
|𝑥|𝑓(𝑥) 𝑑𝑥 = ∫

∞

−∞
|𝑥| 1

𝑥2 + 1
𝑑𝑥 = 2 ∫

∞

0

𝑥
𝑥2 + 1

𝑑𝑥 = [ln|𝑥2 + 1|]∞
0

= ∞

E[𝑋] does not exist! The following is wrong:

E[𝑋] = ∫
∞

−∞
𝑥𝑓(𝑥) 𝑑𝑥 = ∫

∞

−∞

𝑥
1 + 𝑥2 𝑑𝑥 = 0

since the integral above with |𝑥| is infinite. You must always remember to check that the E[𝑋] is finite
(using |𝑥|) for both the discrete and continuous case whenever the support is negative.

EXAMPLE 2.4.5: Bernoulli and Binomial Random Variable

Suppose 𝑋 ∼ Bernoulli(𝑝).

P(𝑋 = 1) = 𝑝 and P(𝑋 = 0) = 1 − 𝑝

We know E[𝑋] = (1)P(𝑋 = 1) + (0)P(𝑋 = 0) = 𝑝.
Now suppose 𝑋 ∼ Binomial(𝑛, 𝑝). Find E[𝑋].
Solution.

E[𝑋] = ∑
𝑥∈𝐴

𝑥𝑓(𝑥) =
𝑛

∑
𝑥=0

𝑥(𝑛
𝑥

)𝑝𝑥(1 − 𝑝)𝑛−𝑥

This is hard to do. But, we know we can use the relationship between the Binomial and Bernoulli
random variable so,

𝑋 =
𝑛

∑
𝑖=1

𝑋𝑖

Therefore,

E[𝑋] = E[
𝑛

∑
𝑖=1

𝑋𝑖] =
𝑛

∑
𝑖=1

E[𝑋𝑖] = 𝑛𝑝

EXAMPLE 2.4.6

Suppose for a random variable 𝑋 the p.d.f. is given by 𝑓(𝑥) = 𝜃
𝑥𝜃+1 for 𝑥 ≥ 1 and 0 when 𝑥 < 1. Assume
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𝜃 > 0. Find E[𝑋], and determine the values of 𝜃 for which E[𝑋] exists.
Solution.

∫
∞

−∞
|𝑥|𝑓(𝑥) 𝑑𝑥 = ∫

∞

1
(𝑥) 𝜃

𝑥𝜃+1 𝑑𝑥 = 𝜃 ∫
∞

1

1
𝑥𝜃 𝑑𝑥 < ∞ ⟺ 𝜃 > 1

from MATH 138. Therefore, if 𝜃 > 1 then E[𝑋] exists. Also,

E[𝑋] = ∫
∞

−∞
𝑥𝑓(𝑥) 𝑑𝑥 = ∫

∞

1

𝜃𝑥
𝑥𝜃+1 𝑑𝑥 = 𝜃 ∫

∞

1

1
𝑥𝜃 𝑑𝑥 = 𝜃

𝜃 − 1

DEFINITION 2.4.7: Expectation (Discrete)

If 𝑋 is a discrete random variable with probability function 𝑓(𝑥) and support set 𝐴, then the expectation
of the random variable 𝑔(𝑋) is defined by

E[𝑔(𝑋)] = ∑
𝑥∈𝐴

𝑔(𝑥)𝑓(𝑥)

provided the sum converges absolutely; that is, provided

∑
𝑥∈𝐴

|𝑔(𝑥)|𝑓(𝑥) < ∞

DEFINITION 2.4.8: Expectation (Continuous)

If 𝑋 is a continuous random variable with p.d.f. 𝑓(𝑥) and support set 𝐴, then the expectation of the
random variable 𝑔(𝑋) is defined by

E[𝑔(𝑋)] = ∫
∞

−∞
𝑔(𝑥)𝑓(𝑥) 𝑑𝑥

provided the integral converges absolutely; that is, provided

∫
∞

−∞
|𝑔(𝑥)|𝑓(𝑥) 𝑑𝑥 < ∞

THEOREM 2.4.9: Expectation is a Linear Operator

Suppose 𝑋 is a random variable with probability (density) function 𝑓(𝑥), and 𝑎 and 𝑏 are real constants,
and 𝑔(𝑥) and ℎ(𝑥) are real-valued functions. Then,

E[𝑎𝑋 + 𝑏] = 𝑎E[𝑋] + 𝑏

E[𝑎𝑔(𝑋) + 𝑏ℎ(𝑋)] = 𝑎E[𝑔(𝑋)] + 𝑏E[ℎ(𝑋)]

DEFINITION 2.4.10: Variance

The variance of a random variable is defined as

𝜎2 = V(𝑋) = E[(𝑋 − 𝜇)2]

where 𝜇 = E[𝑋].
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DEFINITION 2.4.11: Special Expectations

(I) The 𝑘th moment (about 0): E[𝑋𝑘]
(II) The 𝑘th moment about the mean E[(𝑋 − 𝜇)𝑘]

THEOREM 2.4.12: Properties of Variance

If 𝑋 is a random variable, then
V(𝑋) = E[𝑋2] − 𝜇2

where 𝜇 = E[𝑋]. Note that the variance of 𝑋 exists if E[𝑋2] < ∞.

EXAMPLE 2.4.13

Suppose 𝑋 ∼ Poisson(𝜃), the p.f. is defined as 𝑓(𝑥) = 𝜃𝑥

𝑥!
𝑒−𝜃 for 0 ≤ 𝑥 ∈ Z. Find E[𝑋] and V(𝑋).

Solution. The support is non-negative, so |𝑥| = 𝑥. Therefore,

E[𝑋] =
∞

∑
𝑥=0

𝑥𝜃𝑥

𝑥!
𝑒−𝜃 =

∞
∑
𝑥=0

𝑥
𝑥!

𝜃𝑥𝑒−𝜃 = 𝜃
∞

∑
𝑥=1

𝜃𝑥−1

(𝑥 − 1)!
𝑒−𝜃

Let 𝑦 = 𝑥 − 1, then

E[𝑋] = 𝜃
∞

∑
𝑦=0

𝜃𝑦

𝑦!
𝑒−𝜃 = 𝜃(𝑒−𝜃)𝑒𝜃

since we know 𝑒𝜃 =
∞

∑
𝑦=0

𝜃𝑦

𝑦!
. Therefore, E[𝑋] = 𝜃.

V(𝑋) = E[𝑋2] − 𝜇2

Let’s find E[𝑋2]:

E[𝑋2] =
∞

∑
𝑥=0

𝑥2 𝜃𝑥

𝑥!
𝑒−𝜃

=
∞

∑
𝑥=1

𝑥
(𝑥 − 1)!

𝜃𝑥𝑒−𝜃

=
∞

∑
𝑥=1

(𝑥 − 1) + 1
(𝑥 − 1)!

𝜃𝑥𝑒−𝜃

=
∞

∑
𝑥=1

𝑥 − 1
(𝑥 − 1)!

𝜃𝑥𝑒−𝜃 +
∞

∑
𝑥=1

1
(𝑥 − 1)!

𝜃𝑥𝑒−𝜃

Looking at the first sum (since the second sum was computed before and is 𝜃)
∞

∑
𝑥=1

𝑥 − 1
(𝑥 − 1)!

𝜃𝑥𝑒−𝜃 =
∞

∑
𝑥=2

𝜃2

(𝑥 − 2)!
𝜃𝑥−2𝑒−𝜃

Let 𝑦 = 𝑥 − 2:
∞

∑
𝑥=2

𝜃2

(𝑥 − 2)!
𝜃𝑥−2𝑒−𝜃 =

∞
∑
𝑦=0

𝜃2𝜃𝑦

𝑦!
𝑒−𝜃 = 𝜃2

Therefore,
E[𝑋2] = 𝜃2 + 𝜃

Therefore,
V(𝑋) = E[𝑋2] − 𝜇2 = (𝜃2 + 𝜃) − 𝜃2 = 𝜃
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EXAMPLE 2.4.14

If 𝑋 ∼ Gamma(𝛼, 𝛽), prove that

E[𝑋𝑝] = 𝛽𝑝𝛤(𝛼 + 𝑝)
𝛤(𝛼)

for 𝑝 > −𝛼.
Solution. Recall that

𝑓(𝑥) =
⎧{
⎨{⎩

𝑥𝛼−1𝑒−𝑥/𝛽

𝛤(𝛼)𝛽𝛼 𝑥 > 0

0 𝑥 ≤ 0

So,

E[𝑋𝑝] = ∫
∞

−∞
𝑥𝑝𝑓(𝑥) 𝑑𝑥 = ∫

∞

0
𝑥𝑝 𝑥𝛼−1𝑒−𝑥/𝛽

𝛤(𝛼)𝛽𝛼 𝑑𝑥

There are two methods to solve this integral:
Method 1: Rewrite the function as the p.d.f. of a gamma distribution.

= ∫
∞

0

𝑥𝑝+𝛼−1𝑒−𝑥/𝛽

𝛤(𝛼)𝛽𝛼 𝑑𝑥

which is close to the p.d.f. of Gamma(𝑝 + 𝛼, 𝛽).

= ∫
∞

0

𝑥𝑝+𝛼−1𝑒−𝑥/𝛽

𝛤(𝛼 + 𝑝)𝛽𝛼+𝑝 × 𝛤(𝛼 + 𝑝)𝛽𝛼+𝑝

𝛤(𝛼)𝛽𝛼⎵⎵⎵⎵⎵⎵
constant

𝑑𝑥 = 𝛤(𝛼 + 𝑝)𝛽𝑝

𝛤(𝛼)
× 1

Method 2: Rewrite the function as a gamma function.

E[𝑋𝑝] = ∫
∞

0

𝑥(𝑝+𝛼)−1𝑒−𝑥/𝛽

𝛤(𝛼)𝛽𝛼 𝑑𝑥

Let 𝑦 = 𝑥/𝛽 ⟹ 𝑥 = 𝛽𝑦 and 𝑑𝑥 = 𝛽 𝑑𝑦. Therefore,

= ∫
∞

0

𝛽𝑝+𝛼−1𝑦(𝑝+𝛼)−1𝑒−𝑦

𝛤(𝛼)𝛽𝛼 (𝛽) 𝑑𝑦 = 𝛽𝑝

𝛤(𝛼)
∫

∞

0
𝑦(𝑝+𝛼)−1𝑒−𝑦 𝑑𝑦 = 𝛤(𝑝 + 𝛼)

𝛤(𝛼)
𝛽𝑝

Additionally,

• E[𝑋] = 𝛽𝛤(𝛼 + 1)
𝛤(𝛼)

= 𝛼𝛽

• E[𝑋2] = 𝛽2𝛤(𝛼 + 2)
𝛤(𝛼)

= 𝛽2(𝛼 + 1)𝛤(𝛼 + 1)
𝛤(𝛼)

= 𝛼(𝛼 + 1)𝛽2

• V(𝑋) = E[𝑋2] − 𝜇2 = 𝛼(𝛼 + 1)𝛽2 − 𝛼2𝛽2 = 𝛼𝛽2

2.5 Moment Generating Functions

DEFINITION 2.5.1: Moment generating function

Suppose 𝑋 is a random variable, then
𝑀(𝑡) = E[𝑒𝑡𝑋]



CHAPTER 2. UNIVARIATE RANDOM VARIABLE 16

is called the moment generating function (m.g.f.) of 𝑋 if 𝑀(𝑡) exists for 𝑡 ∈ (−ℎ, ℎ) with some ℎ > 0.

REMARK 2.5.2

If we are able to find some ℎ > 0 such that for any 𝑡 ∈ (−ℎ, ℎ), E[𝑒𝑡𝑋] < ∞, then we say 𝑀(𝑡) is the
m.g.f. of 𝑋.

EXAMPLE 2.5.3

Suppose 𝑋 ∼ Gamma(𝛼, 𝛽). Find 𝑀(𝑡). Recall the p.d.f. is

𝑓(𝑥) =
⎧{
⎨{⎩

𝑥𝛼−1𝑒−𝑥/𝛽

𝛤(𝛼)𝛽𝛼 𝑥 > 0

0 𝑥 ≤ 0

Solution.

𝑀(𝑡) = E[𝑒𝑡𝑋]

= ∫
∞

−∞
𝑒𝑡𝑥𝑓(𝑥) 𝑑𝑥

= ∫
∞

0
𝑒𝑡𝑥 𝑥𝛼−1𝑒−𝑥/𝛽

𝛤(𝛼)𝛽𝛼 𝑑𝑥

= ∫
∞

0

𝑥𝛼−1exp{− 𝑥
1

(1/𝛽)−𝑡
}

𝛤(𝛼)𝛽𝛼 𝑑𝑥

= ∫
∞

0

𝑥𝛼−1𝑒−𝑥/ ̃𝛽

𝛤(𝛼)𝛽𝛼 𝑑𝑥

where
̃𝛽 = 1

( 1
𝛽

− 𝑡)

Continuing,

= ∫
∞

0

𝑥𝛼−1𝑒−𝑥/ ̃𝛽

𝛤(𝛼) ̃𝛽𝛼
(

̃𝛽𝛼

𝛽𝛼 ) 𝑑𝑥

=
̃𝛽𝛼

𝛽𝛼 (1)

= (1 − 𝛽𝑡)−𝛼

The moment generating function must be non-negative since 1 − 𝛽𝑡 > 0 and therefore, 𝑡 < 1/𝛽. Take
ℎ = 1/𝛽.

EXAMPLE 2.5.4

If 𝑋 ∼ Poisson(𝜃), the p.f. is given by 𝑓(𝑥) = 𝜃𝑥𝑒−𝜃

𝑥!
for 0 ≤ 𝑥 ∈ Z. Find 𝑀(𝑡).
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Solution.

𝑀(𝑡) = E[𝑒𝑡𝑋]

=
∞

∑
𝑥=0

𝑒𝑡𝑥 𝜃𝑥𝑒−𝜃

𝑥!

=
∞

∑
𝑥=0

(𝑒𝑡𝜃)𝑥𝑒−𝜃

𝑥!

= 𝑒−𝜃
∞

∑
𝑥=0

(𝑒𝑡𝜃)𝑥

𝑥!
= 𝑒−𝜃exp{𝑒𝑡𝜃}
= exp{𝜃(𝑒𝑡 − 1)}

for all 𝑡 ∈ R.

Three important properties of 𝑀(𝑡).

THEOREM 2.5.5: Moment Generating Function of a Linear Function

Suppose that the moment generating function of 𝑋 is 𝑀𝑋(𝑡). Then 𝑌 = 𝑎𝑋 + 𝑏 has moment generating
function

𝑀𝑌(𝑡) = 𝑒𝑏𝑡𝑀𝑋(𝑎𝑡)

Proof of Theorem 2.5.5

𝑀𝑌(𝑡) = E[𝑒𝑡𝑌] = E[𝑒𝑡(𝑎𝑋+𝑏)] = 𝑒𝑏𝑡 E[𝑒𝑎𝑡𝑋] = 𝑒𝑏𝑡𝑀𝑋(𝑎𝑡)

EXAMPLE 2.5.6

(i) If 𝑍 ∼ 𝒩(0, 1), find 𝑀𝑍(𝑡).
(ii) If 𝑋 ∼ 𝒩(𝜇, 𝜎2), find 𝑀𝑋(𝑡).

Solution.
(i)

𝑀𝑍(𝑡) = E[𝑒𝑡𝑍]

= ∫
∞

−∞
𝑒𝑡𝑥 1√

2𝜋
exp{−𝑥2

2
} 𝑑𝑥

= ∫
∞

−∞

1√
2𝜋

exp{−𝑥2 − 2𝑡𝑥
2

} 𝑑𝑥

= ∫
∞

−∞

1√
2𝜋

exp{−(𝑥 − 𝑡)2 − 𝑡2

2
} 𝑑𝑥 complete the square

= exp{𝑡2

2
} ∫

∞

−∞

1√
2𝜋

exp{−(𝑥 − 𝑡)2

2
} 𝑑𝑥

where the integral is the p.d.f. of 𝒩(𝜇 = 𝑡, 𝜎2 = 1). Therefore,

E[𝑒𝑡𝑍] = exp{𝑡2

2
}

(ii) 𝑋 = 𝜎𝑍 + 𝜇 where 𝑍 ∼ 𝒩(0, 1).

𝑀𝑋(𝑡) = 𝑒𝜇𝑡𝑀𝑍(𝜎𝑡) = 𝑒𝜇𝑡exp{(𝜎𝑡)2

2
} = exp{(𝜎𝑡)2

2
+ 𝜇𝑡}
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THEOREM 2.5.7: Moments from Moment Generating Function

Suppose 𝑋 has moment generating function 𝑀(𝑡).

𝑀 (𝑘)(0) = E[𝑋𝑘]

EXAMPLE 2.5.8

Gamma(𝛼, 𝛽) has m.g.f. 𝑀(𝑡) = (1 − 𝛽𝑡)−𝛼 for 𝑡 < 1/𝛽. What is E[𝑋] and V(𝑋)?
Solution. For E[𝑋] we find 𝑀 ′(𝑡).

𝑀 ′(𝑡) = (−𝛼)(1 − 𝛽𝑡)−𝛼−1(−𝛽) = (𝛼𝛽)(1 − 𝛽𝑡)−𝛼−1

We know,
E[𝑋] = 𝑀 ′(0) = 𝛼𝛽

For V(𝑋) we find 𝑀 ′′(𝑡).
𝑀 ′′(𝑡) = (𝛼𝛽)(−𝛼 − 1)(−𝛽)(1 − 𝛽𝑡)−𝛼−2

Now, 𝑀 ′′(0) = 𝛼𝛽2(𝛼 + 1) = E[𝑋2]. Therefore,

V(𝑋) = E[𝑋2] − 𝜇2 = 𝛼𝛽2(𝛼 + 1) − (𝛼𝛽)2 = 𝛼𝛽2

EXAMPLE 2.5.9

The m.g.f. of Poisson(𝜃) is 𝑀(𝑡) = exp{𝜃(𝑒𝑡 − 1)}. Find E[𝑋] and V(𝑋).
Solution.

𝑀 ′(𝑡) = exp{𝜃(𝑒𝑡 − 1)}𝜃𝑒𝑡

Therefore,
E[𝑋] = 𝑀 ′(0) = 𝜃

Now,
𝑀 ′′(𝑡) = exp{𝜃(𝑒𝑡 − 1)}𝜃2𝑒2𝑡 + 𝜃𝑒𝑡exp{𝜃(𝑒𝑡 − 1)}

Therefore,
𝑀 ′′(0) = E[𝑋2] = 𝜃2 + 𝜃

So,
V(𝑋) = E[𝑋2] − 𝜇2 = 𝜃2 + 𝜃 − (𝜃)2 = 𝜃

THEOREM 2.5.10: Uniqueness of Moment Generating Functions

𝑋 and 𝑌 have the same moment generating function if and only if 𝑋 and 𝑌 have the same distribution.

EXAMPLE 2.5.11

Suppose 𝑋 has m.g.f. 𝑀𝑋(𝑡) = exp{𝑡2

2
}.

(i) Find m.g.f. of 𝑌 = 2𝑋 − 1
(ii) Find E[𝑌 ] and V(𝑌 )
(iii) What is the distribution of 𝑌.
Solution.
(i) 𝑀𝑌(𝑡) = 𝑒−𝑡exp{(2𝑡)2

2
} = exp{2𝑡2 − 𝑡}.

(ii)

𝑀 ′
𝑌(𝑡) = exp{2𝑡2 − 𝑡}(4𝑡 − 1)



CHAPTER 2. UNIVARIATE RANDOM VARIABLE 19

Therefore,
E[𝑌 ] = 𝑀 ′

𝑌(0) = −1

Also,
𝑀 ′′

𝑌 (𝑡) = exp{2𝑡2 − 𝑡}(4𝑡 − 1)2 + 4exp{2𝑡2 − 𝑡}

and
E[𝑌 2] = 𝑀 ′′

𝑌 (0) = 1 + 4 = 5

Therefore,
V(𝑌 ) = E[𝑌 2] − 𝜇2 = 5 − 1 = 4

(iii) 𝑀𝑌(𝑡) = exp{2𝑡2 − 𝑡} is the m.g.f. of 𝒩(−1, 4) since if 𝑋 ∼ 𝒩(𝜇, 𝜎2), then (by previous example)

𝑀𝑋(𝑡) = 𝑒𝜇𝑡exp{𝜎2𝑡2

2
}

Lecture 5 | 2020-09-20

EXAMPLE 2.5.12: Uniqueness Theorem

Suppose 𝑀𝑋(𝑡) = (1 − 2𝑡)−1. What is the distribution of 𝑋?
Solution. 𝑋 ∼ Gamma(𝛼 = 1, 𝛽 = 2).



Chapter 3

Multivariate Random Variables

3.1 Joint and Marginal Cumulative Distribution Functions
Purpose: to characterize a joint distribution of two random variables.

DEFINITION 3.1.1: Joint cumulative distribution function

Suppose 𝑋 and 𝑌 are two random variables. The joint cumulative distribution function of 𝑋 and 𝑌 is
given by

𝐹(𝑥, 𝑦) = P(𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦)

for (𝑥, 𝑦) ∈ R2.

P(𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦): “What is the probability these two events occur simultaneously”

REMARK 3.1.2

Since {𝑋 ≤ 𝑥} and {𝑌 ≤ 𝑦} are both events, 𝐹(𝑥, 𝑦) is well-defined as we consider {𝑋 ≤ 𝑥} ∩ {𝑌 ≤ 𝑦}.

REMARK 3.1.3

If we have more than two random variables, say 𝑋1, 𝑋2, … , 𝑋𝑛 We can similarly define the cumulative
distribution function as

𝐹(𝑥1, … , 𝑥𝑛) = P(𝑋1 ≤ 𝑥1, … , 𝑋𝑛 ≤ 𝑥𝑛)

However, in this course we will only focus on two events 𝑋 and 𝑌.

DEFINITION 3.1.4: Joint cumulative distribution function

(I) 𝐹 is non-decreasing in 𝑥 for fixed 𝑦
(II) 𝐹 is non-decreasing in 𝑦 for fixed 𝑥
(III) lim

𝑥→−∞
𝐹(𝑥, 𝑦) = 0 and lim

𝑦→−∞
𝐹(𝑥, 𝑦) = 0

By looking at
{𝑋 ≤ 𝑥}

→0
as 𝑥→−∞

∩ {𝑌 ≤ 𝑦}
→0

as 𝑦→−∞

(IV)
lim

(𝑥,𝑦)→(−∞,−∞)
𝐹(𝑥, 𝑦) = 0 and lim

(𝑥,𝑦)→(∞,∞)
𝐹(𝑥, 𝑦) = 1

20
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DEFINITION 3.1.5: Marginal distribution function

The marginal distribution function of 𝑋 is given by

𝐹1(𝑥) = lim
𝑦→∞

𝐹(𝑥, 𝑦) = P(𝑋 ≤ 𝑥)

for 𝑥 ∈ R.
The marginal distribution function if 𝑌 is given by

𝐹2(𝑦) = lim
𝑥→∞

𝐹(𝑥, 𝑦) = P(𝑌 ≤ 𝑦)

for 𝑦 ∈ R.

REMARK 3.1.6

The definition of marginal distribution function tells us that we can know all information about marginal
c.d.f. from the joint c.d.f. but the marginal c.d.f. cannot give full information about joint c.d.f.

3.2 Bivariate Discrete Distributions
DEFINITION 3.2.1: Joint discrete random variables

Suppose 𝑋 and 𝑌 are both discrete random variables, then (𝑋, 𝑌 ) are joint discrete random variables
𝑋 and 𝑌.

DEFINITION 3.2.2: Joint probability function, Support

Suppose 𝑋 and 𝑌 are discrete random variables. The joint probability function of 𝑋 and 𝑌 is given by

𝑓(𝑥, 𝑦) = P(𝑋 = 𝑥, 𝑌 = 𝑦)

for (𝑥, 𝑦) ∈ R2.
The set 𝐴 = {(𝑥, 𝑦) ∶ 𝑓(𝑥, 𝑦) > 0} is called the joint support of (𝑋, 𝑌 ).

DEFINITION 3.2.3: Properties — Joint Probability Function

(I) 𝑓(𝑥, 𝑦) ≥ 0 for (𝑥, 𝑦) ∈ R2

(II) ∑
(𝑥,𝑦)∈𝐴

𝑓(𝑥, 𝑦) = 1

(III) For any set 𝑅 ⊆ R2

P((𝑋, 𝑌 ) ∈ 𝑅) = ∑
(𝑥,𝑦)∈𝑅

𝑓(𝑥, 𝑦)

EXAMPLE 3.2.4

Suppose we want to find P(𝑋 ≤ 𝑌 ). What is the corresponding set 𝑅?
Solution. 𝑅 = {(𝑥, 𝑦) ∶ 𝑥 ≤ 𝑦}
Suppose we want to find P(𝑋 + 𝑌 ≤ 1). What is the corresponding set 𝑅?
Solution. 𝑅 = {(𝑥, 𝑦) ∶ 𝑥 + 𝑦 ≤ 1}
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DEFINITION 3.2.5: Marginal probability function

Suppose 𝑋 and 𝑌 are discrete random variables with joint probability function 𝑓(𝑥, 𝑦).
The marginal probability function of 𝑋 is given by

𝑓1(𝑥) = P(𝑋 = 𝑥) = P(𝑋 = 𝑥, 𝑌 < ∞) = ∑
𝑦

𝑓(𝑥, 𝑦)

for 𝑥 ∈ R.
The marginal probability function of 𝑌 is given by

𝑓2(𝑦) = P(𝑌 = 𝑦) = P(𝑋 < ∞, 𝑌 = 𝑦) = ∑
𝑥

𝑓(𝑥, 𝑦)

for 𝑦 ∈ R.

EXAMPLE 3.2.6

Suppose that 𝑋 and 𝑌 are discrete random variables with joint p.f. 𝑓(𝑥, 𝑦) = 𝑘𝑞2𝑝𝑥+𝑦 where
• 0 ≤ 𝑥 ∈ Z
• 0 ≤ 𝑦 ∈ Z
• 0 < 𝑝 < 1
• 𝑞 = 1 − 𝑝

(i) Determine 𝑘.
(ii) Find marginal p.f. of 𝑋 and find marginal p.f. of 𝑌.
(iii) Find P(𝑋 ≤ 𝑌 ).
Solution.
(i) 𝑘 > 0 since if 𝑘 = 0 then the summation of the joint p.f. will be 0 (but needs to be 1).

∞
∑
𝑥=0

∞
∑
𝑦=0

𝑓(𝑥, 𝑦) = 1

Therefore,

𝑘(
∞

∑
𝑥=0

∞
∑
𝑦=0

𝑝𝑥+𝑦𝑞2) = 𝑘𝑞2(
∞

∑
𝑥=0

𝑝𝑥)(
∞

∑
𝑦=0

𝑝𝑦) = 𝑘𝑞2( 1
1 − 𝑝

)( 1
1 − 𝑝

) = 𝑘

Thus, 𝑘 = 1.
(ii) Marginal p.f. of 𝑋:

𝑓1(𝑥) = P(𝑋 = 𝑥) =
∞

∑
𝑦=0

𝑞2𝑝𝑥+𝑦 = 𝑞2𝑝𝑥(
∞

∑
𝑦=0

𝑝𝑦) = 𝑞2𝑝𝑥( 1
1 − 𝑝

) = 𝑝𝑥(1 − 𝑝)

Support of 𝑋: [0, ∞).
By symmetry,

𝑓2(𝑦) = P(𝑌 = 𝑦) = 𝑞𝑝𝑦

Support of 𝑌: [0, ∞).
(iii) Find P(𝑋 ≤ 𝑌 ).
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P(𝑋 ≤ 𝑌 ) =
∞

∑
𝑥=0

∞
∑
𝑦=𝑥

(𝑞2𝑝𝑥+𝑦)

=
∞

∑
𝑥=0

𝑞2𝑝𝑥
∞

∑
𝑦=𝑥

𝑝𝑦

=
∞

∑
𝑥=0

𝑞2𝑝𝑥( 𝑝𝑥

1 − 𝑝
)

= 𝑞
∞

∑
𝑥=0

𝑝2𝑥

= 𝑞( 1
1 − 𝑝2 )

= 1
1 + 𝑝

REMARK 3.2.7: Interesting Fact

If 𝑋 and 𝑌 are continuous random variables and have the same distribution and independent,

P(𝑋 ≤ 𝑌 ) = 1
2

3.3 Bivariate Continuous Distributions
DEFINITION 3.3.1: Joint probability density function, Support

If the joint c.d.f. of (𝑋, 𝑌 ) can be written as

𝐹(𝑥, 𝑦) = ∫
𝑥

−∞
∫

𝑦

−∞
𝑓(𝑠, 𝑡) 𝑑𝑡 𝑑𝑠

for all (𝑥, 𝑦) ∈ R2, then 𝑋 and 𝑌 are joint continuous random variables with joint probability density
function 𝑓(𝑥, 𝑦) where

𝑓(𝑥, 𝑦) =
⎧{
⎨{⎩

𝜕2𝐹(𝑥, 𝑦)
𝜕𝑥𝜕𝑦

if exists

0 otherwise

The set 𝐴 = {(𝑥, 𝑦) ∶ 𝑓(𝑥, 𝑦) > 0} is called the support of (𝑋, 𝑌 ).

REMARK 3.3.2

We will arbitrarily define 𝑓(𝑥, 𝑦) to be equal to 0 when
𝜕2

𝜕𝑥𝜕𝑦
[𝐹(𝑥, 𝑦)] does not exist, although we can

define it to be any real number.

DEFINITION 3.3.3: Properties — Joint Probability Density Function

(I) 𝑓(𝑥, 𝑦) ≥ 0 for all (𝑥, 𝑦) ∈ R2
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(II) For any set 𝑅 ⊆ R2:

P((𝑋, 𝑌 ) ∈ 𝑅) = ∬
(𝑥,𝑦)∈𝑅

𝑓(𝑥, 𝑦)𝑑𝑥 𝑑𝑦

EXAMPLE 3.3.4

To find P(𝑋 ≤ 𝑌 ), the region is 𝑅 = {(𝑥, 𝑦) ∶ 𝑥 ≤ 𝑦}. Therefore,

P(𝑋 ≤ 𝑦) = ∬
𝑥≤𝑦

𝑓(𝑥, 𝑦)𝑑𝑥 𝑑𝑦

DEFINITION 3.3.5: Marginal probability density function

Suppose 𝑋 and 𝑌 are continuous random variables with p.d.f. 𝑓(𝑥, 𝑦). Themarginal probability density
function of 𝑋 is given by

𝑓1(𝑥) = ∫
∞

−∞
𝑓(𝑥, 𝑦) 𝑑𝑦

for 𝑥 ∈ R and the marginal probability density function of 𝑌 is given by

𝑓2(𝑦) = ∫
∞

−∞
𝑓(𝑥, 𝑦) 𝑑𝑥

for 𝑦 ∈ R.

P((𝑋, 𝑌 ) ∈ R) = ∬
𝑅

𝑓(𝑥, 𝑦)𝑑𝑥 𝑑𝑦 = ∫
𝑥

∫
𝑦

𝑓(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦

Helpful theorem from MATH 237 that some of you may have forgotten:

THEOREM 3.3.6: †

𝑦 first, then 𝑥
Let 𝑅 ⊂ R2 be defined by

𝑦ℓ(𝑥) ≤ 𝑦 ≤ 𝑦𝑢(𝑥) and 𝑥ℓ ≤ 𝑥 ≤ 𝑥𝑢

where 𝑦ℓ(𝑥) and 𝑦𝑢(𝑥) are continuous for 𝑥ℓ ≤ 𝑥 ≤ 𝑥𝑢. If 𝑓(𝑥, 𝑦) is continuous on 𝑅, then

∬
𝑅

𝑓(𝑥, 𝑦)𝑑𝐴 = ∫
𝑥𝑢

𝑥ℓ

∫
𝑦𝑢(𝑥)

𝑦ℓ(𝑥)
𝑓(𝑥, 𝑦) 𝑑𝑦 𝑑𝑥

𝑥 first, then 𝑦
Let 𝑅 ⊂ R2 be defined by

𝑥ℓ(𝑦) ≤ 𝑥 ≤ 𝑥𝑢(𝑦) and 𝑦ℓ ≤ 𝑦 ≤ 𝑦𝑢

where 𝑥ℓ(𝑦) and 𝑥𝑢(𝑦) are continuous for 𝑦ℓ ≤ 𝑦 ≤ 𝑦𝑢. If 𝑓(𝑥, 𝑦) is continuous on 𝑅, then

∬
𝑅

𝑓(𝑥, 𝑦)𝑑𝐴 = ∫
𝑦𝑢

𝑦ℓ

∫
𝑥𝑢(𝑦)

𝑥ℓ(𝑦)
𝑓(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦

We use ℓ for “lower” and 𝑢 for “upper.”
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EXAMPLE 3.3.7

Describe the region 𝑅 above the 𝑥-axis.

-1.5 -1 -0.5 0.5 1 1.50

0.5

1

Solution. 𝑅 can be described by the set of two inequalities (you can actually verify this in Desmos if
you really forgot how this works):

0 ≤ 𝑦 ≤ 1

𝑦 − 1 ≤ 𝑥 ≤ 1 − 𝑦

Using the theorem above,

∫
1

0
∫

1−𝑦

𝑦−1
𝑓(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦

Lecture 6 | 2020-09-20

Author’s note: Diagrams will be omitted for most of the text, unless the example is not trivial. Students are
encouraged to draw the diagrams when following the examples.

EXAMPLE 3.3.8

Let 𝑋 and 𝑌 be continuous random variables with joint p.d.f.

𝑓(𝑥, 𝑦) = {𝑥 + 𝑦 0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑦 ≤ 1
0 otherwise

(i) Show 𝑓(𝑥, 𝑦) is a joint p.d.f.
(ii) Find

(a) P(𝑋 ≤ 1/3, 𝑌 ≤ 1/2)
(b) P(𝑋 ≤ 𝑌 )
(c) P(𝑋 + 𝑌 ≤ 1/2)
(d) P(𝑋𝑌 ≤ 1/2)

(iii) Find marginal p.d.f. of 𝑋 and 𝑌.
Solution.
(i) Note that 𝑓(𝑥, 𝑦) ≥ 0. We need to show

∫
∞

−∞
∫

∞

−∞
𝑓(𝑥, 𝑦) 𝑑𝑦 𝑑𝑥 = 1



CHAPTER 3. MULTIVARIATE RANDOM VARIABLES 26

∫
1

0
∫

1

0
(𝑥 + 𝑦) 𝑑𝑦 𝑑𝑥 = ∫

1

0
[𝑥 + 𝑦2

2
]

1

0
𝑑𝑥 = ∫

1

0
(𝑥 + 1

2
) 𝑑𝑥 = [𝑥2

2
+ 𝑥

2
]

1

0
= 1

(ii) (a) 𝑅 = {(𝑥, 𝑦) ∶ 0 ≤ 𝑥 ≤ 1/3, 0 ≤ 𝑦 ≤ 1/2}.

∫
1/3

0
∫

1/2

0
(𝑥 + 𝑦) 𝑑𝑦 𝑑𝑥 = 5

72

(b) 𝑅 = {(𝑥, 𝑦) ∶ 0 ≤ 𝑥 ≤ 1, 𝑥 ≤ 𝑦 ≤ 1}.

∫
1

0
∫

1

𝑥
(𝑥 + 𝑦) 𝑑𝑦 𝑑𝑥 = 1

2

(c) 𝑅 = {(𝑥, 𝑦) ∶ 0 ≤ 𝑥 ≤ 1/2, 0 ≤ 𝑦 ≤ (1/2) − 𝑥}

∫
1/2

0
∫

(1/2)−𝑥

0
(𝑥 + 𝑦) 𝑑𝑦 𝑑𝑥 = 1

24

(d) 𝑅1 = {(𝑥, 𝑦) ∶ 0 ≤ 𝑥 ≤ 1/2, 0 ≤ 𝑦 ≤ 1} and 𝑅2 = {(𝑥, 𝑦) ∶ 1/2 ≤ 𝑥 ≤ 1, 0 ≤ 𝑦 ≤ (1/2)/𝑥}.
Therefore, we need to evaluate two double integrals.

∫
1/2

0
∫

1

0
(𝑥 + 𝑦) 𝑑𝑦 𝑑𝑥 + ∫

1

1/2
∫

(1/2)/𝑥

0
(𝑥 + 𝑦) 𝑑𝑦 𝑑𝑥 = 3

4

0.5 10

0.5

1

(iii) The support of 𝑋 is [0, 1].
𝑓1(𝑥) = 0 ⟺ 𝑥 < 0 or 𝑥 > 1

Therefore, we focus on 0 ≤ 𝑥 ≤ 1.

𝑓1(𝑥) = ∫
∞

−∞
𝑓(𝑥, 𝑦) 𝑑𝑦 = ∫

1

0
(𝑥 + 𝑦) 𝑑𝑦 = [𝑥 + 𝑦2

2
]

1

0
= 𝑥 + 1

2

Thus,

𝑓1(𝑥) =
⎧{
⎨{⎩

𝑥 + 1
2

0 ≤ 𝑥 ≤ 1

0 otherwise

𝑓2(𝑦) is similar by symmetry.

EXAMPLE 3.3.9

Suppose

𝑓(𝑥, 𝑦) = {
𝑘𝑒−𝑥−𝑦 0 < 𝑥 < 𝑦 < ∞
0 otherwise

is the joint p.d.f. of (𝑋, 𝑌 ).
(i) Find 𝑘.
(ii) Find

(a) P(𝑋 ≤ 1/3, 𝑌 ≤ 1/2)
(b) P(𝑋 ≤ 𝑌 )
(c) P(𝑋 + 𝑌 ≥ 1)
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(iii) Marginal p.d.f. of 𝑋 and 𝑌.
(iv) Suppose 𝑇 = 𝑋 + 𝑌, find the p.d.f. of 𝑇.
Solution.
(i) We know 𝑓(𝑥, 𝑦) ≥ 0 ⟺ 𝑘 ≥ 0. Actually, 𝑘 > 0 since if 𝑘 = 0, then 𝑓(𝑥, 𝑦) ≡ 0. We solve 𝑘 by

solving the following:

∫
∞

−∞
∫

∞

−∞
𝑓(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦 = 1

Therefore,

∫
∞

0
∫

∞

𝑥
𝑘𝑒−𝑥−𝑦 𝑑𝑦 𝑑𝑥 = 𝑘

2

Thus, 𝑘/2 = 1 ⟹ 𝑘 = 2.
(ii) (a) P(𝑋 ≤ 1/3, 𝑌 ≤ 1/2).

𝑅 = {(𝑥, 𝑦) ∶ 0 ≤ 𝑥 ≤ 1/3, 𝑥 ≤ 𝑦 ≤ 1/2}

Therefore,

P(𝑋 ≤ 1/3, 𝑌 ≤ 1/2) = ∫
1/3

0
∫

1/2

𝑥
2𝑒−𝑥−𝑦 𝑑𝑦 𝑑𝑥

= 1 − 𝑒−2/3 + 2(𝑒−5/6 − 𝑒−1/2)
≈ 0.1427

(b) P(𝑋 ≤ 𝑌 ). Note that the region is the same as the support. Therefore,

P(𝑋 ≤ 𝑌 ) = ∬
𝑥≤𝑦

𝑓(𝑥, 𝑦)𝑑𝑥 𝑑𝑦 = 1

(c) P(𝑋 + 𝑌 ≥ 1). Note that this region is a bit complicated, so we will consider 1 − P(𝑋 + 𝑌 <
1) = 1 − P(𝑋 + 𝑌 ≤ 1). The equal sign does not account for any area (it’s continuous, but
not required to know in this course).

𝑅 = {(𝑥, 𝑦) ∶ 0 ≤ 𝑥 ≤ 1/2, 𝑥 ≤ 𝑦 ≤ 1 − 𝑥}

P(𝑋 + 𝑌 ≤ 1) = ∫
1/2

0
∫

1−𝑥

𝑥
2𝑒−𝑥𝑒−𝑦 𝑑𝑦 𝑑𝑥

= 1 − 2𝑒−1

Thus, P(𝑋 + 𝑌 ≥ 1) = 1 − P(𝑋 + 𝑌 ≤ 1) = 1 − (1 − 2𝑒−1) = 2𝑒−1.
(iii) Marginal p.d.f. of 𝑋. The support of 𝑋 is (0, ∞). We know 𝑥 > 0, so

𝑓1(𝑥) = ∫
∞

−∞
𝑓(𝑥, 𝑦) 𝑑𝑦 = ∫

∞

𝑥
2𝑒−𝑥−𝑦 𝑑𝑦 = 2𝑒−𝑥[−𝑒−𝑦]

∞

𝑥
= 2𝑒−2𝑥

The marginal p.d.f. of 𝑌. The support of 𝑌 is (0, ∞). We know 𝑦 > 0, so

𝑓2(𝑦) = ∫
𝑦

0
2𝑒−𝑥−𝑦 𝑑𝑥 = 2𝑒−𝑦[−𝑒−𝑥]

𝑦

0
= 2𝑒−𝑦(1 − 𝑒−𝑦) = 2𝑒−𝑦 − 2𝑒−2𝑦

(iv) Suppose 𝑇 = 𝑋 + 𝑌, find the p.d.f. of 𝑇. We first find the c.d.f. of 𝑇, then we take the derivative of
𝑇.
Support of 𝑇 is (0, ∞).
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When 𝑡 ≤ 0, 𝐹𝑇(𝑡) = P(𝑇 ≤ 𝑡) = 0, so we only focus on 𝑡 > 0, so 𝐹𝑇(𝑡) = P(𝑇 ≤ 𝑡).

𝑅 = {(𝑥, 𝑦) ∶ 0 ≤ 𝑥 ≤ 𝑡/2, 𝑥 ≤ 𝑦 ≤ 𝑡 − 𝑥}

Therefore,

𝐹𝑇(𝑡) = ∫
𝑡/2

0
∫

𝑡−𝑥

𝑥
2𝑒−𝑥−𝑦 𝑑𝑦 𝑑𝑥

= 1 − 𝑒−𝑡 − 𝑡𝑒−𝑡

So,

𝐹𝑇(𝑡) = {
1 − 𝑒−𝑡 − 𝑡𝑒−𝑡 𝑡 > 0
0 𝑡 ≤ 0

Therefore, by computing
𝑑
𝑑𝑡

[𝐹𝑇(𝑡)], the p.d.f. of 𝑇 is

𝑓𝑇(𝑡) = {
𝑡𝑒−𝑡 𝑡 > 0
0 𝑡 ≤ 0

Lecture 7 | 2020-09-27

3.4 Independence

DEFINITION 3.4.1: Independent

For any two random variables, we say 𝑋 and 𝑌 are independent if and only if

P(𝑋 ∈ 𝐴, 𝑌 ∈ 𝐵) = P(𝑋 ∈ 𝐴)P(𝑌 ∈ 𝐵)

for any two sets 𝐴 and 𝐵 of real numbers.

THEOREM 3.4.2: Independent Random Variables

Suppose 𝑋 and 𝑌 are random variables. 𝑋 and 𝑌 are independent if and only if
(1) 𝐹(𝑥, 𝑦) = 𝐹1(𝑥)𝐹2(𝑦), or
(2) 𝑓(𝑥, 𝑦) = 𝑓1(𝑥)𝑓2(𝑦).

THEOREM 3.4.3

Let 𝑔 and ℎ be real-valued functions. If 𝑋 and 𝑌 are independent, then 𝑔(𝑋) and ℎ(𝑌 ) are independent.

EXAMPLE 3.4.4

If 𝑋 and 𝑌 are independent, then 𝑋2 and 𝑌 2 are independent. However, if 𝑋2 and 𝑌 2 are independent,
then 𝑋 and 𝑌 may not be independent. Can you find an example here? Choose 𝑋 where

P(𝑋 = 1) = P(𝑋 = −1) = 1
2
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EXAMPLE 3.4.5

Consider the joint discrete random variable 𝑓(𝑥, 𝑦) = 𝑞2𝑝𝑥+𝑦, where 0 ≤ 𝑥 ∈ Z and 0 ≤ 𝑦 ∈ Z. Then
𝑓1(𝑥) = 𝑞𝑝𝑥 and 𝑓2(𝑦) = 𝑞𝑝𝑦. Therefore, 𝑓(𝑥, 𝑦) = 𝑓1(𝑥)𝑓2(𝑦) shows that 𝑋 and 𝑌 are independent.

Consider 𝑓(𝑥, 𝑦) = {𝑥 + 𝑦 0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑦 ≤ 1
0 otherwise

We’ve shown that

𝑓1(𝑥) =
⎧{
⎨{⎩

𝑥 + 1
2

0 ≤ 𝑥 ≤ 1

0 otherwise

𝑓2(𝑦) =
⎧{
⎨{⎩

𝑦 + 1
2

0 ≤ 𝑦 ≤ 1

0 otherwise

We see that 𝑓(𝑥, 𝑦) ≠ 𝑓1(𝑥)𝑓2(𝑦) therefore, 𝑋 and 𝑌 are not independent.

THEOREM 3.4.6: Factorization Theorem for Independence

Suppose 𝑋 and 𝑌 are random variables with joint probability (density) function 𝑓(𝑥, 𝑦). Suppose also that
𝐴 is the support set of (𝑋, 𝑌 ), 𝐴1 is the support set of 𝑋, and 𝐴2 is the support set of 𝑌. Then 𝑋 and 𝑌 are
independent random variables if and only if there exist non-negative functions 𝑔(𝑥) and ℎ(𝑦) such that

𝑓(𝑥, 𝑦) = 𝑔(𝑥)ℎ(𝑦) ∀(𝑥, 𝑦) ∈ 𝐴1 × 𝐴2

where 𝐴1 × 𝐴2 = {(𝑥, 𝑦) ∶ 𝑥 ∈ 𝐴1, 𝑦 ∈ 𝐴2}.

REMARK 3.4.7

Equivalently, we can check that both conditions are met:
• The support of 𝐴 is a square or rectangle.
• The range of 𝑋 does not depend on the values of 𝑦 and the range of 𝑌 does not depend on the

values of 𝑥.

EXAMPLE 3.4.8

𝑓(𝑥, 𝑦) = 𝜃𝑥+𝑦𝑒−2𝜃

𝑥!𝑦!
where 0 ≤ 𝑥, 𝑦 ∈ Z. Are 𝑋 and 𝑌 independent or not? Find the marginal p.f. of 𝑋

and 𝑌.
Solution.

𝑓(𝑥, 𝑦) = 𝜃𝑥

𝑥!
𝑒−𝜃

⎵
𝑔(𝑥)

𝜃𝑦

𝑦!
𝑒−𝜃

⎵
ℎ(𝑦)

The range of 𝑋 does not depend on the value of 𝑦. Therefore, 𝑋 and 𝑌 are independent.

𝑓1(𝑥) =
∞

∑
𝑦=0

𝑓(𝑥, 𝑦) = 𝜃𝑥𝑒−𝜃

𝑥!
0 ≤ 𝑥 ∈ Z

𝑓2(𝑦) =
∞

∑
𝑥=0

𝑓(𝑥, 𝑦) = 𝜃𝑦𝑒−𝜃

𝑦!
0 ≤ 𝑦 ∈ Z

If we’ve shown that 𝑋 and 𝑌 are independent, then we can verify

𝑓(𝑥, 𝑦) = 𝑔(𝑥)ℎ(𝑦)

With 𝑓1(𝑥) = 𝐶1𝑔(𝑥) and 𝑓2(𝑦) = 𝐶2ℎ(𝑦) where 𝐶1, 𝐶2 ∈ R is a constant. We know that 𝐶1𝐶2 = 1.
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EXAMPLE 3.4.9

If 𝑋 and 𝑌 have joint p.d.f. 𝑓(𝑥, 𝑦) = 3
2

𝑦(1 − 𝑥2) where −1 ≤ 𝑥 ≤ 1 and 0 ≤ 𝑦 ≤ 1. Are 𝑋 and 𝑌
independent? Find 𝑓1(𝑥) and 𝑓2(𝑦).
Solution. 𝑓(𝑥, 𝑦) = (1 − 𝑥2)⎵⎵⎵

ℎ(𝑥)

3
2 𝑦⎵

𝑔(𝑦)

and 𝐴 = {(𝑥, 𝑦) ∶ −1 ≤ 𝑥 ≤ 1, 0 ≤ 𝑦 ≤ 1} is a rectangle. Therefore, 𝑋

and 𝑌 are independent. So,

𝑓1(𝑥) = 𝐶1ℎ(𝑥) = 𝐶1(1 − 𝑥2) for − 1 ≤ 𝑥 ≤ 1

So, let’s consider the integral:

∫
1

−1
𝑓1(𝑥) 𝑑𝑥 = 𝐶1 ∫

1

−1
(1 − 𝑥2) 𝑑𝑥 = 1 ⟹ 𝐶1 = 3

4

Using our previous result, we know that

𝑓2(𝑦) = 1
𝐶1

ℎ(𝑦) = 4
3

⋅ 3
2

𝑦 = 2𝑦 0 ≤ 𝑦 ≤ 1

EXAMPLE 3.4.10: Uniform Distribution on a Semicircle

𝑓(𝑥, 𝑦) = 2
𝜋

where 0 ≤ 𝑥 ≤ √1 − 𝑦2 and −1 ≤ 𝑦 ≤ 1. The area of the semicircle is given by 𝜋/2. Are 𝑋
and 𝑌 independent? Find 𝑓1(𝑥) and 𝑓2(𝑦).
Solution. 𝑓(𝑥, 𝑦) = 2/𝜋. Take 𝑔(𝑥) = 1 and ℎ(𝑦) = 2/𝜋. Also, this is not
a rectangle, so 𝑋 and 𝑌 are not independent. Similarly, for a particular
value of 𝑥 we can easily see that 𝑦 depends on 𝑥.
The support of 𝑋 is [0, 1].

𝑓1(𝑥) =

√
1−𝑥2

∫
−

√
1−𝑥2

2
𝜋

𝑑𝑦 = 4
𝜋

√
1 − 𝑥2

The support of 𝑌 is [−1, 1].

𝑓2(𝑦) =

√1−𝑦2

∫
0

2
𝜋

𝑑𝑥 = 2
𝜋

√1 − 𝑦2

Neither of these marginal distributions are uniform.

10

-1

1
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3.5 Joint Expectation
This section: extend the definition of expectation from univariate to bivariate cases.

DEFINITION 3.5.1: Joint exepectation

Suppose ℎ(𝑥, 𝑦) is a real-valued function.
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If 𝑋 and 𝑌 are discrete random variables with joint probability function 𝑓(𝑥, 𝑦) and support set 𝐴 then

E[ℎ(𝑋, 𝑌 )] = ∑
(𝑥,𝑦)∈𝐴

ℎ(𝑥, 𝑦)𝑓(𝑥, 𝑦)

provided the joint sum converges absolutely.
If 𝑋 and 𝑌 are continuous random variables with joint probability density function 𝑓(𝑥, 𝑦) then

E[ℎ(𝑋, 𝑌 )] = ∫
∞

−∞
∫

∞

−∞
ℎ(𝑥, 𝑦)𝑓(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦

provided the joint integral converges absolutely.

EXAMPLE 3.5.2

E[𝑋𝑌 ] =

⎧{{
⎨{{⎩

∑
𝑥

∑
𝑦

𝑥𝑦𝑓(𝑥, 𝑦) 𝑋, 𝑌 are joint discrete

∫
∞

−∞
∫

∞

−∞
𝑥𝑦𝑓(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦 𝑋, 𝑌 are joint continuous

E[𝑋] =

⎧{{
⎨{{⎩

∑
𝑥

∑
𝑦

𝑥𝑓(𝑥, 𝑦) 𝑋, 𝑌 are joint discrete

∫
∞

−∞
∫

∞

−∞
𝑥𝑓(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦 𝑋, 𝑌 are joint continuous

Alternatively,

E[𝑋] = ∑
𝑥

𝑥𝑓1(𝑥) = ∑
𝑥

𝑥[∑
𝑦

𝑓(𝑥, 𝑦)]

PROPOSITION 3.5.3: Linearity Property

Suppose 𝑋 and 𝑌 are random variables with joint probability (density) function 𝑓(𝑥, 𝑦), 𝑎 and 𝑏 are
constants, and 𝑔(𝑥, 𝑦) and ℎ(𝑥, 𝑦) are real-valued functions. Then

E[𝑎𝑔(𝑋, 𝑌 ) + 𝑏ℎ(𝑋, 𝑌 )] = 𝑎E[𝑔(𝑋, 𝑌 )] + 𝑏E[ℎ(𝑋, 𝑌 )]

COROLLARY 3.5.4

If 𝑋1, … , 𝑋𝑛 are random variables and 𝑎1, … , 𝑎𝑛 are real constants then

E[
𝑛

∑
𝑖=1

𝑎𝑖𝑋𝑖] =
𝑛

∑
𝑖=1

𝑎𝑖 E[𝑋𝑖]

THEOREM 3.5.5: Expectation and Independence

(1) If 𝑋 and 𝑌 are independent random variables and 𝑔(𝑥) and ℎ(𝑦) are real-valued functions then

E[𝑔(𝑋)ℎ(𝑌 )] = E[𝑔(𝑋)]E[ℎ(𝑌 )]

(2) More generally, if 𝑋1, … , 𝑋𝑛 are independent random variables and ℎ is a real-valued function then

E[
𝑛

∏
𝑖=1

ℎ(𝑋𝑖)] =
𝑛

∏
𝑖=1

E[ℎ(𝑋𝑖)]
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DEFINITION 3.5.6: Covariance

The covariance of random variables 𝑋 and 𝑌 is defined by

Cov(𝑋, 𝑌 ) = E[(𝑋 − 𝜇𝑋)(𝑌 − 𝜇𝑌)]

where 𝜇𝑋 = E[𝑋] and 𝜇𝑌 = E[𝑌 ].

THEOREM 3.5.7: Covariance and Independence

If 𝑋 and 𝑌 are random variables then

Cov(𝑋, 𝑌 ) = E[𝑋𝑌 ] − 𝜇𝑋𝜇𝑌

If 𝑋 and 𝑌 are independent then Cov(𝑋, 𝑌 ) = 0.

Proof of Theorem 3.5.7

Cov(𝑋, 𝑌 ) = E[(𝑋 − 𝜇𝑋)(𝑌 − 𝜇𝑌)]
= E[𝑋𝑌 − 𝜇𝑋𝑌 − 𝜇𝑌𝑋 + 𝜇𝑋𝜇𝑌]
= E[𝑋𝑌 ] − 𝜇𝑋 E[𝑌 ] − 𝜇𝑌 E[𝑋] + 𝜇𝑋𝜇𝑌

= E[𝑋𝑌 ] − E[𝑋]E[𝑌 ] − E[𝑌 ]E[𝑋] + E[𝑋]E[𝑌 ]
= E[𝑋𝑌 ] − E[𝑋]E[𝑌 ]

Now, if 𝑋 and 𝑌 are independent, then by Theorem 3.5.5, E[𝑋𝑌 ] = E[𝑋]E[𝑌 ] = 0. Thus, Cov(𝑋, 𝑌 ) =
0.

THEOREM 3.5.8: Results for Covariance

(1) Cov(𝑋, 𝑋) = E[(𝑋 − 𝜇𝑋)(𝑋 − 𝜇𝑋)] = E[(𝑋 − 𝜇𝑋)2] = V(𝑋)
(2) Cov(𝑋 + 𝑌 , 𝑍) = Cov(𝑋, 𝑍) + Cov(𝑌 , 𝑍)

THEOREM 3.5.9: Variance of a Linear Combination

(1) Suppose 𝑋 and 𝑌 are random variables and 𝑎 and 𝑏 are real constants then

V(𝑎𝑋 + 𝑏𝑌 ) = 𝑎2 V(𝑋) = 𝑏2 V(𝑌 ) + 2𝑎𝑏Cov(𝑋, 𝑌 )

(2) Suppose 𝑋1, … , 𝑋𝑛 are random variables and 𝑎1, … , 𝑎𝑛 are real constants then

V(
𝑛

∑
𝑖=1

𝑎𝑖𝑋𝑖) =
𝑛

∑
𝑖=1

𝑎2
𝑖 V(𝑋𝑖) + ∑

𝑖≠𝑗
𝑎𝑖𝑎𝑗Cov(𝑋𝑖, 𝑋𝑗)

⎵⎵⎵⎵⎵⎵⎵⎵
(𝑛

2) terms

=
𝑛

∑
𝑖=1

𝑎2
𝑖 V(𝑋𝑖) + 2 ∑

𝑖<𝑗
𝑎𝑖𝑎𝑗Cov(𝑋𝑖, 𝑋𝑗)

⎵⎵⎵⎵⎵⎵⎵⎵⎵
(𝑛

2) terms

(3) If 𝑋1, … , 𝑋𝑛 are random variables and 𝑎1, … , 𝑎𝑛 are real constants then

V(
𝑛

∑
𝑖=1

𝑎𝑖𝑋𝑖) =
𝑛

∑
𝑖=1

𝑎2
𝑖 V(𝑋𝑖)
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EXAMPLE 3.5.10

Suppose the joint p.f. of 𝑋 and 𝑌 is 𝑓(𝑥, 𝑦) = 𝜃𝑥+𝑦𝑒−2𝜃

𝑥!𝑦!
, where 0 ≤ 𝑥, 𝑦 ∈ Z. Find V(2𝑋 + 3𝑌 ).

Solution.
𝑓(𝑥, 𝑦) = (𝜃𝑥𝑒−𝜃

𝑥!
)

⎵⎵⎵⎵
𝑔(𝑥)

(𝜃𝑦𝑒−𝜃

𝑦!
)

⎵⎵⎵⎵
ℎ(𝑦)

Thus, the range of 𝑋 does not depend on 𝑌. Therefore, 𝑋 and 𝑌 are independent. In other words, we
can write

𝑓1(𝑥) = 𝐶𝜃𝑥𝑒−𝜃

𝑥!
0 ≤ 𝑥 ∈ Z

Since
∞

∑
𝑥=0

𝜃𝑥𝑒−𝜃

𝑥!
= 1 as it is Poisson we get that 𝐶 = 1. Also,

𝑓2(𝑦) = 𝜃𝑦𝑒−𝜃

𝑦!
0 ≤ 𝑦 ∈ Z

Thus, V(𝑋) = 𝜃 and V(𝑌 ) = 𝜃. Finally,

V(2𝑋 + 3𝑌 ) = 4V(𝑋) + 9V(𝑌 ) = 13𝜃

EXAMPLE 3.5.11

The joint p.d.f. of 𝑋 and 𝑌 is 𝑓(𝑥, 𝑦) = {𝑥 + 𝑦 𝑥, 𝑦 ∈ [0, 1]
0 otherwise

.

Find V(𝑋 + 𝑌 ).
Solution. We know V(𝑋 + 𝑌 ) = V(𝑋) + V(𝑌 ) + 2Cov(𝑋, 𝑌 ). Recall that

𝑓1(𝑥) =
⎧{
⎨{⎩

𝑥 + 1
2

𝑥 ∈ [0, 1]

0 otherwise
𝑓2(𝑦) =

⎧{
⎨{⎩

𝑦 + 1
2

𝑦 ∈ [0, 1]

0 otherwise

E[𝑋] = ∫
1

0
𝑥(𝑥 + 1

2
) 𝑑𝑥 = 7

12

E[𝑋2] = ∫
1

0
𝑥2(𝑥 + 1

2
) 𝑑𝑥 = 5

12

⟹ V(𝑋) = E[𝑋2] − 𝜇2
𝑋 = 5

12
− ( 7

12
)

2

= 11
144

We know that E[𝑌 ] = 7/12, V(𝑌 ) = 11/144. Now,

E[𝑋𝑌 ] = ∫
1

0
∫

1

0
𝑥𝑦(𝑥 + 𝑦) 𝑑𝑦 𝑑𝑥 = 1

3

⟹ Cov(𝑋, 𝑌 ) = E[𝑋𝑌 ] − 𝜇𝑋𝜇𝑌 = 1
3

− ( 7
12

)( 7
12

) = − 1
144

Hence,
V(𝑋 + 𝑌 ) = V(𝑋) + V(𝑌 ) + 2Cov(𝑋, 𝑌 ) = 11

144
+ 11

144
− 2

144
= 20

144
= 5

36
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DEFINITION 3.5.12: Correlation coefficient

The correlation coefficient of random variables 𝑋 and 𝑌 is defined by

𝜌(𝑋, 𝑌 ) = Cov(𝑋, 𝑌 )
√V(𝑋)√V(𝑌 )

REMARK 3.5.13

𝜌(𝑋, 𝑌 ) can only be used to characterize linear association between 𝑋 and 𝑌. For example, there might
exist some quadratic relationship between 𝑋 and 𝑌 but 𝜌(𝑋, 𝑌 ) → 0.

EXAMPLE 3.5.14

𝑌 = 𝑋2 and 𝑋 ∼ 𝒩(0, 1). Note that 𝜌(𝑋, 𝑌 ) = 0, but obviously there is some relationship between 𝑋
and 𝑌.

THEOREM 3.5.15

If 𝜌(𝑋, 𝑌 ) is the correlation coefficient of random variables 𝑋 and 𝑌, then −1 ≤ 𝜌(𝑋, 𝑌 ) ≤ 1
(1) 𝜌(𝑋, 𝑌 ) = 1 ⟺ 𝑌 = 𝑎𝑋 + 𝑏 with 𝑎 > 0.
(2) 𝜌(𝑋, 𝑌 ) = −1 ⟺ 𝑌 = 𝑎𝑋 + 𝑏 with 𝑎 < 0.

EXAMPLE 3.5.16

Let 𝑓(𝑥, 𝑦) = {𝑥 + 𝑦 𝑥, 𝑦 ∈ [0, 1]
0 otherwise

. Find 𝜌(𝑋, 𝑌 ).

Solution. Recall that V(𝑋) = V(𝑌 ) = 11/144 and Cov(𝑋, 𝑌 ) = −1/144. So,

𝜌(𝑋, 𝑌 ) = −1/144
√11/144√11/144

= − 1
11
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3.6 Conditional Distributions
DEFINITION 3.6.1: Conditional probability (density) function

Suppose that 𝑋 and 𝑌 have joint probability (density) function 𝑓(𝑥, 𝑦), and marginal probability
(density) functions 𝑓1(𝑥) and 𝑓2(𝑦) respectively. Suppose also that the support set of (𝑋, 𝑌 ) is 𝐴 =
{(𝑥, 𝑦) ∶ 𝑓(𝑥, 𝑦) > 0}.
The conditional probability (density) function of 𝑋 given 𝑌 = 𝑦 is

𝑓1(𝑥 ∣ 𝑦) = 𝑓(𝑥, 𝑦)
𝑓2(𝑦)

provided 𝑓2(𝑦) > 0 (𝑥, 𝑦) ∈ 𝐴

The conditional probability (density) function of 𝑌 given 𝑋 = 𝑥

𝑓2(𝑦 ∣ 𝑥) = 𝑓(𝑥, 𝑦)
𝑓1(𝑥)

provided 𝑓1(𝑥) > 0 (𝑥, 𝑦) ∈ 𝐴
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PROPOSITION 3.6.2: Properties — Conditional Probability Function

𝑓1(𝑥 ∣ 𝑦) and 𝑓2(𝑦 ∣ 𝑥) are both probability functions; that is,

𝑓1(𝑥 ∣ 𝑦) ≥ 0 and ∑
𝑥

𝑓1(𝑥 ∣ 𝑦) = 1 ⟹ 𝑓1(𝑥 ∣ 𝑦) is a p.f.

𝑓2(𝑦 ∣ 𝑥) ≥ 0 and ∑
𝑦

𝑓2(𝑦 ∣ 𝑥) = 1 ⟹ 𝑓2(𝑦 ∣ 𝑥) is a p.f.

PROPOSITION 3.6.3: Properties — Conditional Probability Function

𝑓1(𝑥 ∣ 𝑦) and 𝑓2(𝑦 ∣ 𝑥) are both probability density functions; that is,

𝑓1(𝑥 ∣ 𝑦) ≥ 0 and ∫
∞

−∞
𝑓1(𝑥 ∣ 𝑦) 𝑑𝑥 = 1 ⟹ 𝑓1(𝑥 ∣ 𝑦) is a p.d.f.

𝑓2(𝑦 ∣ 𝑥) ≥ 0 and ∫
∞

−∞
𝑓2(𝑦 ∣ 𝑥) 𝑑𝑦 = 1 ⟹ 𝑓2(𝑦 ∣ 𝑥) is a p.d.f.

EXAMPLE 3.6.4

Let 𝑓(𝑥, 𝑦) = {8𝑥𝑦 0 < 𝑦 < 𝑥 < 1
0 otherwise

Find
(i) 𝑓1(𝑥 ∣ 𝑦)
(ii) 𝑓2(𝑦 ∣ 𝑥)

Solution.
(i) To find 𝑓1(𝑥 ∣ 𝑦), we need to calculate 𝑓2(𝑦).

𝑓2(𝑦) = ∫
1

𝑦
8𝑥𝑦 𝑑𝑥 = −4𝑦3 + 4𝑦 0 < 𝑦 < 1

By definition,

𝑓1(𝑥 ∣ 𝑦) = 𝑓(𝑥, 𝑦)
𝑓2(𝑦)

= 8𝑥𝑦
4𝑦 − 4𝑦3 = 2𝑥

1 − 𝑦2 0 < 𝑦 < 1

Given 0 < 𝑦 < 1, the support of 𝑋 is 𝑦 < 𝑥 < 1.
(ii) To find 𝑓2(𝑦 ∣ 𝑥), we need to calculate 𝑓1(𝑥).

𝑓1(𝑥) = ∫
𝑥

0
8𝑥𝑦 𝑑𝑦 = 4𝑥3 0 < 𝑥 < 1

By definition,

𝑓2(𝑦 ∣ 𝑥) = 𝑓(𝑥, 𝑦)
𝑓1(𝑥)

= 8𝑥𝑦
4𝑥3 = 2𝑦

𝑥2 0 < 𝑥 < 1

Given 0 < 𝑥 < 1, the support of 𝑌 is 0 < 𝑦 < 𝑥.

EXAMPLE 3.6.5

𝑓(𝑥, 𝑦) = {𝑥 + 𝑦 𝑥, 𝑦 ∈ [0, 1]
0 otherwise
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Recall that 𝑓1(𝑥) = 𝑥 + 1/2 for 0 ≤ 𝑥 ≤ 1 and 𝑓2(𝑦) = 𝑦 + 1/2 for 0 ≤ 𝑦 ≤ 1. Therefore,

𝑓1(𝑥 ∣ 𝑦) = 𝑓(𝑥, 𝑦)
𝑓2(𝑦)

= 𝑥 + 𝑦
𝑦 + 1/2

Given 0 ≤ 𝑦 ≤ 1, the support of 𝑋 is 0 ≤ 𝑥 ≤ 1.

𝑓2(𝑦 ∣ 𝑥) = 𝑥 + 𝑦
𝑥 + 1/2

Given 0 ≤ 𝑥 ≤ 1, the support of 𝑌 is 0 ≤ 𝑦 ≤ 1.

EXAMPLE 3.6.6

𝑓(𝑥, 𝑦) = 𝑞2𝑝𝑥+𝑦 where 0 ≤ 𝑥, 𝑦 ∈ Z. Note we derived that 𝑓1(𝑥) = 𝑞𝑝𝑥 and 𝑓2(𝑦) = 𝑞𝑝𝑦. Therefore,

𝑓1(𝑥 ∣ 𝑦) = 𝑓(𝑥, 𝑦)
𝑓2(𝑦)

= 𝑞𝑝𝑥 = 𝑓1(𝑥)

𝑓2(𝑦 ∣ 𝑥) = 𝑓(𝑥, 𝑦)
𝑓1(𝑥)

= 𝑞𝑝𝑦 = 𝑓2(𝑦)

This is another way to show independence of 𝑋 and 𝑌.

THEOREM 3.6.7

𝑋 and 𝑌 are independent if and only if
(1) 𝑓1(𝑥 ∣ 𝑦) = 𝑓1(𝑥), and
(2) 𝑓2(𝑦 ∣ 𝑥) = 𝑓2(𝑦).

THEOREM 3.6.8: Product Rule

𝑓(𝑥, 𝑦) = 𝑓1(𝑥 ∣ 𝑦)𝑓2(𝑦) = 𝑓2(𝑦 ∣ 𝑥)𝑓1(𝑥)

EXAMPLE 3.6.9: Product rule

Suppose 𝑌 ∼ Poisson(𝜃) and 𝑋 ∣ 𝑌 = 𝑦 ∼ Binomial(𝑦, 𝑝). Find the marginal p.f. of 𝑋.
Before we get to the solution of this problem, let’s consider a physical setup.

• 𝑌: number of students who go to Tim Hortons in one day. Note that 𝑌 ∼ Poisson(𝜃).
• 𝑋 ∣ 𝑌 = 𝑦: number of students among these 𝑦 visitors

What is the distribution of 𝑋? We guess that 𝑋 ∼ Poisson(𝜃𝑝).
Solution.

𝑓1(𝑥 ∣ 𝑦) = (𝑦
𝑥

)𝑝𝑥(1 − 𝑝)𝑦−𝑥 𝑥 = 0, 1, … , 𝑦

𝑓2(𝑦) = 𝜃𝑦

𝑦!
𝑒−𝜃 0 ≤ 𝑦 ∈ Z

𝑓(𝑥, 𝑦) = 𝑓1(𝑥 ∣ 𝑦)𝑓2(𝑦)

= ( 𝑦!
𝑥!(𝑦 − 𝑥)!

𝑝𝑥(1 − 𝑝)𝑦−𝑥)𝜃𝑦

𝑦!
𝑒−𝜃

= (𝜃𝑥𝑝𝑥

𝑥!
)𝜃𝑦−𝑥(1 − 𝑝)𝑦−𝑥

(𝑦 − 𝑥)!
𝑒−𝜃
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(𝑋, 𝑌 ) support is 𝑥 = 0, 1, … , 𝑦 and 0 ≤ 𝑦 ∈ Z. Therefore,

𝑓1(𝑥) = ∑
𝑦

𝑓(𝑥, 𝑦)

=
∞

∑
𝑦=𝑥

((𝜃𝑝)𝑥

𝑥!
)((𝜃(1 − 𝑝))𝑦−𝑥

(𝑦 − 𝑥)!
𝑒−𝜃)

= 𝑒−𝜃(𝜃𝑝)𝑥

𝑥!

∞
∑
ℎ=0

[𝜃(1 − 𝑝)]ℎ

ℎ!
ℎ = 𝑦 − 𝑥

= 𝑒−𝜃(𝜃𝑝)𝑥

𝑥!
𝑒𝜃(1−𝑝)

= (𝜃𝑝)𝑥

𝑥!
𝑒−𝜃𝑝

Therefore, 0 ≤ 𝑥 ∈ Z and so 𝑋 ∼ Poisson(𝜃𝑝).

EXAMPLE 3.6.10

Suppose 𝑌 has p.d.f. 𝑓2(𝑦) = 𝑦𝛼−1

𝛤(𝛼)
𝑒−𝑦 for 𝑦 > 0; that is, 𝑌 ∼ Gamma(𝛼, 𝛽 = 1). The conditional p.d.f.

of 𝑋 given 𝑌 = 𝑦 is
𝑓1(𝑥 ∣ 𝑦) = 𝑦𝑒−𝑥𝑦 for 𝑥 > 0, 𝑦 > 0

Find the marginal p.d.f. of 𝑋.
Solution. Firstly, find the joint p.d.f. of (𝑋, 𝑌 ) is

𝑓(𝑥, 𝑦) = 𝑓1(𝑥 ∣ 𝑦)𝑓2(𝑦) = 𝑦𝑒−𝑥𝑦 𝑦𝛼−1

𝛤(𝛼)
𝑒−𝑦 = 𝑦𝛼

𝛤(𝛼)
𝑒−(𝑥+1)𝑦

The support of 𝑋 is (0, ∞). Recall that the gamma function is 𝛤(𝛼) = ∫
∞

0
𝑥𝛼−1𝑒−𝑥 𝑑𝑥.

The marginal p.d.f. of 𝑋 is

𝑓1(𝑥) = ∫
∞

−∞
𝑓(𝑥, 𝑦) 𝑑𝑦 = ∫

∞

0

𝑦𝛼𝑒−(𝑥+1)𝑦

𝛤(𝛼)
𝑑𝑦

Let 𝑡 = (𝑥 + 1)𝑦, therefore 𝑦 = 𝑡/(𝑥 + 1) and 𝑑𝑦 = 𝑑𝑡/(𝑥 + 1).

∫
∞

0

𝑡𝛼

(𝑥 + 1)𝛼𝛤(𝛼)
𝑒−𝑡 1

𝑥 + 1
𝑑𝑡 = 1

(𝑥 + 1)𝛼+1𝛤(𝛼)
∫

∞

0
𝑡𝛼𝑒−𝑡 𝑑𝑡 = 1

(𝑥 + 1)𝛼+1𝛤(𝛼)
𝛤(𝛼 + 1)

By Proposition 2.3.7, we know that 𝛤(𝛼 + 1) = (𝛼)𝛤(𝛼). Therefore,

𝛤(𝛼 + 1)
(𝑥 + 1)𝛼+1𝛤(𝛼)

= (𝛼)𝛤(𝛼)
(𝑥 + 1)𝛼+1𝛤(𝛼)

= 𝛼
(𝑥 + 1)𝛼+1

That is, 𝑓1(𝑥) = 𝛼
(𝑥 + 1)𝛼+1 and the support of 𝑋 is positive.

Lecture 10 | 2020-10-04



CHAPTER 3. MULTIVARIATE RANDOM VARIABLES 38

3.7 Conditional Expectation

DEFINITION 3.7.1: Conditional expectation

The conditional expectation of 𝑔(𝑌 ) given 𝑋 = 𝑥 is defined as

E[𝑔(𝑌 ) | 𝑋 = 𝑥] =

⎧{{
⎨{{⎩

∑
𝑦

𝑔(𝑦)𝑓2(𝑦 ∣ 𝑥) 𝑌 is discrete

∫
∞

−∞
𝑔(𝑦)𝑓2(𝑦 ∣ 𝑥) 𝑑𝑦 𝑌 is continuous

REMARK 3.7.2

• Supplementary notes: E[𝑔(𝑌 ) | 𝑋 = 𝑥] is denoted by E[𝑔(𝑌 ) | 𝑥].
We’re interested in

1. The conditional mean of 𝑌 given 𝑋 = 𝑥 is denoted E[𝑌 | 𝑋 = 𝑥] since 𝑔(𝑌 ) = 𝑌.
2. The conditional variance of 𝑌 given 𝑋 = 𝑥 is denoted by V(𝑌 | 𝑋 = 𝑥) and is given by

V(𝑌 | 𝑋 = 𝑥) = E[𝑌 2 | 𝑋 = 𝑥] − (E[𝑌 ∣ 𝑋 = 𝑥])2

3. E[𝑒𝑡𝑌 | 𝑋 = 𝑥], that is, 𝑔(𝑌 ) = 𝑒𝑡𝑌.

THEOREM 3.7.3: Independence

If 𝑋 and 𝑌 are independent random variables then

E[𝑔(𝑌 ) | 𝑋 = 𝑥] = E[𝑔(𝑌 )] and E[ℎ(𝑋) | 𝑌 = 𝑦] = E[ℎ(𝑋)]

In other words, the conditional expression becomes an unconditional one.

EXAMPLE 3.7.4

If 𝑋 and 𝑌 are independent, then

E[𝑌 | 𝑋 = 𝑥] = E[𝑌 ] and V(𝑌 | 𝑋 = 𝑥) = V(𝑌 )

Also, V(𝑌 | 𝑋 = 𝑥) = E[𝑌 2 | 𝑋 = 𝑥] − (E[𝑌 | 𝑋 = 𝑥])2 = E[𝑌 2] − (E[𝑌 ])2

THEOREM 3.7.5: Substitution Rule

If 𝑋 and 𝑌 be random variables and ℎ ∶ R2 → R then

E[ℎ(𝑋, 𝑌 ) | 𝑋 = 𝑥] = E[ℎ(𝑥, 𝑌 ) | 𝑋 = 𝑥]

EXAMPLE 3.7.6

• E[𝑋 + 𝑌 | 𝑋 = 𝑥] = E[𝑥 + 𝑌 | 𝑋 = 𝑥] = 𝑥 + E[𝑌 | 𝑋 = 𝑥]
• E[𝑋𝑌 | 𝑋 = 𝑥] = E[𝑥𝑌 | 𝑋 = 𝑥] = 𝑥E[𝑌 | 𝑋 = 𝑥]

THEOREM 3.7.7

The conditional expectation has all properties of expectation like linearity.
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EXAMPLE 3.7.8

𝑓(𝑥, 𝑦) = {8𝑥𝑦 0 < 𝑦 < 𝑥 < 1
0 otherwise

We’ve found that 𝑓1(𝑥 ∣ 𝑦) = (2𝑥)/(1−𝑦2) for 0 < 𝑦 < 1 and 𝑦 < 𝑥 < 1.

E[𝑋 | 𝑌 = 𝑦] = ∫
∞

−∞
𝑥𝑓1(𝑥 ∣ 𝑦) 𝑑𝑥 = ∫

1

𝑦
(𝑥) 2𝑥

1 − 𝑦2 𝑑𝑥 = (2
3

)1 − 𝑦3

1 − 𝑦2 = (2
3

)𝑦2 + 𝑦 + 1
𝑦 + 1

E[𝑋2 | 𝑌 = 𝑦] = ∫
1

𝑦
(𝑥2) 2𝑥

1 − 𝑦2 𝑑𝑦 = (2
4

)1 − 𝑦4

1 − 𝑦2 = (1
2

)(𝑦2 + 1) 0 < 𝑦 < 1

V(𝑋 | 𝑌 = 𝑦) = (1
2

)(1 + 𝑦2) − (4
9

)(1 + 𝑦 + 𝑦2)2

(1 + 𝑦)2 0 < 𝑦 < 1

EXAMPLE 3.7.9

Suppose 𝑌 ∼ Poisson(𝜃) and 𝑋 ∣ 𝑌 = 𝑦 ∼ Binomial(𝑦, 𝑝). Then,

E[𝑋 | 𝑌 = 𝑦] = 𝑦𝑝 and V(𝑋 | 𝑌 = 𝑦) = 𝑦𝑝(1 − 𝑝)

REMARK 3.7.10

Note that E[𝑔(𝑌 ) | 𝑋] ≠ E[𝑔(𝑌 ) | 𝑋 = 𝑥].
E[𝑔(𝑌 ) | 𝑋] is a random variable because it’s a function of 𝑋, denoted by ℎ(𝑋). Its value is given by
ℎ(𝑥) = E[𝑔(𝑌 ) | 𝑋 = 𝑥] for 𝑋 = 𝑥.
How to get it? Two steps.

• Step 1: Find E[𝑔(𝑌 ) | 𝑋 = 𝑥] = ℎ(𝑥)
• Step 2: Replace 𝑥 with 𝑋 to get the random variable E[𝑔(𝑌 ) | 𝑋] = ℎ(𝑋).

EXAMPLE 3.7.11

Suppose 𝑌 ∼ Poisson(𝜃) and 𝑋 ∣ 𝑌 = 𝑦 ∼ Binomial(𝑦, 𝑝). Then,

E[𝑋 | 𝑌 = 𝑦] = 𝑦𝑝 ⟹ E[𝑋 ∣ 𝑌 ] = 𝑌 𝑝

These concepts lead to the Double Expectation Theorem or more commonly known as the Law of Total
Expectation.

THEOREM 3.7.12: Double Expectation (Law of Total Expectation)

Suppose 𝑋 and 𝑌 are random variables then

E[𝑔(𝑌 )] = E[E[𝑔(𝑌 ) | 𝑋]]

In particular, E[𝑌 ] = E[E[𝑌 | 𝑋]].

EXAMPLE 3.7.13

Suppose 𝑌 ∼ Poisson(𝜃) and 𝑋 ∣ 𝑌 = 𝑦 ∼ Binomial(𝑦, 𝑝). Find E[𝑋].
Solution. By Theorem 3.7.12 we have

E[𝑋] = E[E[𝑋 | 𝑌 ]] = E[𝑌 𝑝] = 𝑝E[𝑌 ] = 𝑝𝜃

Recall that we’ve shown that 𝑋 ∼ Poisson(𝑝𝜃) ⟹ E[𝑋] = 𝑝𝜃.
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THEOREM 3.7.14: Law of Total Variance

Suppose 𝑋 and 𝑌 are random variables then

V(𝑌 ) = E[V(𝑌 | 𝑋)] + V(E[𝑌 | 𝑋])

REMARK 3.7.15

V(𝑌 | 𝑋) is a random variable and function of 𝑋.
How to get it? Two steps:

1. V(𝑌 | 𝑋 = 𝑥) = E[𝑌 2 | 𝑋 = 𝑥] − (E[𝑌 | 𝑋 = 𝑥])2.
2. Replace 𝑥 with 𝑋 to get the random variable V(𝑌 | 𝑋).

EXAMPLE 3.7.16

𝑌 ∼ Poisson(𝜃), 𝑋 ∣ 𝑌 = 𝑦 ∼ Binomial(𝑦, 𝑝). Find V(𝑋).
Solution. We know that 𝑋 ∼ Poisson(𝑝𝜃), then V(𝑋) = 𝑝𝜃. But we can alternatively use the Double
Expectation Theorem.

V(𝑋) = E[V(𝑋 | 𝑌 )] + V(E[𝑋 | 𝑌 ])

To find V(𝑋 | 𝑌 ),
V(𝑋 | 𝑌 = 𝑦) = 𝑦𝑝(1 − 𝑝) ⟹ V(𝑋 | 𝑌 ) = 𝑌 𝑝(1 − 𝑝)

To find E[𝑋 | 𝑌 ],
E[𝑋 | 𝑌 = 𝑦] = 𝑦𝑝 ⟹ E[𝑋 | 𝑌 ] = 𝑌 𝑝

Therefore,

V(𝑋) = E[𝑌 𝑝(1 − 𝑝)] + V(𝑝𝑌 ) = 𝑝(1 − 𝑝)E[𝑌 ] + 𝑝2 V(𝑌 ) = 𝑝(1 − 𝑝)𝜃 + 𝑝2𝜃 = 𝑝𝜃

EXAMPLE 3.7.17

Suppose 𝑋 ∼ Uniform(0, 1) and 𝑌 ∣ 𝑋 = 𝑥 ∼ Binomial(10, 𝑥). Find E[𝑌 ] and V(𝑌 ).

E[𝑌 ] = E[E[𝑌 | 𝑋]]

Two steps to find E[𝑌 | 𝑋].

E[𝑌 | 𝑋 = 𝑥] = 10𝑥 ⟹ E[𝑌 | 𝑋] = 10𝑋

E[𝑌 ] = E[10𝑋] = 10E[𝑋] = 10(1 + 0
2

) = 5

V(𝑌 ) = E[V(𝑌 | 𝑋)] = V(E[𝑌 | 𝑋])

Two steps to find V(𝑌 | 𝑋).

V(𝑌 | 𝑋 = 𝑥) = 10𝑥(1 − 𝑝) ⟹ V(𝑌 | 𝑋) = 10𝑋(1 − 𝑋)
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V(𝑌 ) = E[10𝑋(1 − 𝑋)] + V(10𝑋)
= 10E[𝑋] − 10E[𝑋2] + 100V(𝑋)

= 10(1 + 0
2

) − 10[V(𝑋) + (E[𝑋])2] + 100V(𝑋)

= 5 − 10[(0 − 1)2

12
+ (1 + 0

2
)

2

] + 100[(0 − 1)2

12
]

= 5 − 10( 1
12

+ 1
4

) + 100( 1
12

)

= 5 − 10(1
3

) + 100
12

= 10

EXAMPLE 3.7.18

Suppose 𝑌 ∼ Poisson(𝜃) and 𝑋 ∣ 𝑌 = 𝑦 ∼ Binomial(𝑦, 𝑝). Find the m.g.f. of 𝑋 using the Double
Expectation Theorem. [We could use the formula sheet to find 𝑀𝑋(𝑡) since we already know 𝑋 ∼
Poisson(𝑝𝜃)]
Solution. By definition, the m.g.f. of 𝑋 is

𝑀𝑋(𝑡) = E[𝑒𝑡𝑋] = E[E[𝑒𝑡𝑋 ∣ 𝑌]]

Given 𝑌 = 𝑦,

E[𝑒𝑡𝑋 ∣ 𝑌 = 𝑦] =
𝑦

∑
𝑥=0

𝑒𝑡𝑥(𝑦
𝑥

)𝑝𝑥(1 − 𝑝)𝑦−𝑥

=
𝑦

∑
𝑥=0

(𝑦
𝑥

)(𝑝𝑒𝑡)𝑥(1 − 𝑝)𝑦−𝑥

= (1 − 𝑝 + 𝑝𝑒𝑡)𝑦

Therefore, E[𝑒𝑡𝑋 ∣ 𝑌] = (1 − 𝑝 + 𝑝𝑒𝑡)𝑌. Therefore,

𝑀𝑋(𝑡) = E[(1 − 𝑝 + 𝑝𝑒𝑡)𝑌]

=
∞

∑
𝑦=0

(1 − 𝑝 + 𝑝𝑒𝑡)𝑦 𝜃𝑦𝑒−𝜃

𝑦!

= 𝑒−𝜃
∞

∑
𝑦=0

[𝜃(1 − 𝑝 + 𝑝𝑒𝑡)]𝑦

𝑦!

= 𝑒−𝜃exp{𝜃(1 − 𝑝 + 𝑝𝑒𝑡)}
= exp{𝜃𝑝(𝑒𝑡 − 1)}

Actually, this is the m.g.f. of Poisson(𝜃𝑝).
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3.8 Joint Moment Generating Functions

DEFINITION 3.8.1: Joint moment generating function

If 𝑋 and 𝑌 are random variables, then

𝑀(𝑡1, 𝑡2) = E[𝑒𝑡1𝑋+𝑡2𝑌]

is called the joint moment generating function of 𝑋 and 𝑌 if 𝑀(𝑡1, 𝑡2) exists for |𝑡1| < ℎ1 and |𝑡2| < ℎ2
for some ℎ1, ℎ2 > 0.

REMARK 3.8.2

In general, suppose 𝑋1, … , 𝑋𝑛 are random variables, then

𝑀(𝑡1, … , 𝑡𝑛) = E[exp{
𝑛

∑
𝑖=1

𝑡𝑖𝑋𝑖}]

is the joint moment generating function if it exists for |𝑡𝑖| < ℎ𝑖 for some ℎ𝑖 > 0 where 𝑖 = 1, … , 𝑛.

REMARK 3.8.3: Applications of Joint Moment Generating Functions

(1) From joint m.g.f. to marginal m.g.f. Given 𝑀(𝑡1, 𝑡2) for |𝑡1| < ℎ1 and |𝑡2| < ℎ2 with ℎ1, ℎ2 > 0,

𝑀𝑋(𝑡1) = 𝑀(𝑡1, 𝑡2 = 0) = E[𝑒𝑡1𝑋]

𝑀𝑌(𝑡2) = 𝑀(0, 𝑡2) = E[𝑒𝑡2𝑌]

(2) Independence Property. 𝑋 and 𝑌 are independent if and only if

𝑀(𝑡1, 𝑡2) = 𝑀𝑋(𝑡1)𝑀𝑌(𝑡2)

More generally, if 𝑋1, … , 𝑋𝑛 are independent, then

𝑀(𝑡1, … , 𝑡𝑛) =
𝑛

∏
𝑖=1

𝑀𝑋𝑖
(𝑡𝑖)

EXAMPLE 3.8.4

Suppose 𝑓(𝑥, 𝑦) = 𝑒−𝑦 for 0 < 𝑥 < 𝑦 is the joint p.d.f. of (𝑋, 𝑌 ). Find the joint m.g.f. of 𝑋 and 𝑌. Are
they independent? Find the marginal p.d.f. of 𝑋 and 𝑌.
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Solution.

𝑀(𝑡1, 𝑡2) = E[𝑒𝑡1𝑋+𝑡2𝑌]

= ∫
∞

0
[∫

𝑦

0
𝑒𝑡1𝑥+𝑡2𝑦𝑒−𝑦 𝑑𝑥] 𝑑𝑦

= ∫
∞

0
𝑒(𝑡2−1)𝑦[ 1

𝑡1
𝑒𝑡1𝑥]

𝑦

0
𝑑𝑦

= 1
𝑡1

∫
∞

0
𝑒(𝑡2−1)𝑦(𝑒𝑡1𝑦 − 1) 𝑑𝑦

= 1
𝑡1

∫
∞

0
𝑒(𝑡1+𝑡2−1)𝑦 − 𝑒(𝑡2−1)𝑦 𝑑𝑦

= 1
𝑡1

( 1
1 − 𝑡1 − 𝑡2

− 1
1 − 𝑡2

)

= 1
(1 − 𝑡1 − 𝑡2)(1 − 𝑡2)

with 𝑡2 − 1 < 0 and 𝑡1 + 𝑡2 − 1 < 0. Therefore, 𝑡2 < 1 and 𝑡1 + 𝑡2 < 1.

𝑀𝑋(𝑡1) = 𝑀(𝑡1, 𝑡2 = 0) = 1
1 − 𝑡1

which is the m.g.f. of Exponential(1).

𝑀𝑌(𝑡2) = 𝑀(𝑡1 = 0, 𝑡2) = 1
(1 − 𝑡2)2

which is the m.g.f. of Gamma(𝛼 = 2, 𝛽 = 1). Note that the joint support is a triangle (not a rectangle),
so obviously 𝑀(𝑡1, 𝑡2) ≠ 𝑀𝑋(𝑡1)𝑀𝑌(𝑡2). Thus, 𝑋 and 𝑌 are not independent.

EXAMPLE 3.8.5: Additivity of Poisson Random Variables

Suppose 𝑋 ∼ Poisson(𝜃1) and 𝑌 ∼ Poisson(𝜃2) with 𝑋 and 𝑌 independent. Prove that 𝑋 + 𝑌 ∼
Poisson(𝜃1 + 𝜃2).
Solution. We can try to find the p.d.f. of 𝑋 + 𝑌 (direct method). Alternatively, find 𝑀𝑋+𝑌(𝑡).

𝑀𝑋+𝑌(𝑡) = E[𝑒𝑡𝑋+𝑡𝑌]
= E[𝑒𝑡𝑋𝑒𝑡𝑌] 𝑋 and 𝑌 independent
= E[𝑒𝑡𝑋]E[𝑒𝑡𝑌]
= exp{𝜃1(𝑒𝑡 − 1)}exp{𝜃2(𝑒𝑡 − 1)}
= exp{(𝜃1 + 𝜃2)(𝑒𝑡 − 1)}

which is the m.g.f. of Poisson(𝜃1 + 𝜃2).

Lecture 12 | 2020-10-18
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3.9 Multinomial Distribution
DEFINITION 3.9.1: Multinomial distribution

(𝑋1, … , 𝑋𝑘) are joint discrete random variables with joint p.f. given by

𝑓(𝑥1, … , 𝑥𝑘) = P(𝑋1 = 𝑥1, … , 𝑋𝑘 = 𝑥𝑘) = 𝑛!
𝑥1!𝑥2! ⋯ 𝑥𝑘!

𝑝𝑥1
1 ⋯ 𝑝𝑥𝑘

𝑘

where 𝑥𝑖 = 0, 1, … , 𝑛 (𝑖 = 1, 2, … , 𝑘). Furthermore, ∑𝑘
𝑖=1 𝑥𝑖 = 𝑛, ∑𝑘

𝑖=1 𝑝𝑖 = 1, for 0 < 𝑝𝑖 < 1
𝑖 = 1, … , 𝑘. Then, (𝑋1, … , 𝑋𝑘) follows a multinomial distribution.

(𝑋1, … , 𝑋𝑘) ∼ Multinomial(𝑛; 𝑝1, … , 𝑝𝑘)

EXAMPLE 3.9.2: Possible Application

• There are 𝑘 boxes and each box has same balls.
• The probability of choosing a ball from the 𝑖th box is 𝑝𝑖 for 𝑖 = 1, 2, … , 𝑘.
• We randomly choose 𝑛 balls from 𝑘 boxes.

Let 𝑋𝑖 ≔ number of boxes from the 𝑖th box for 𝑖 = 1, 2, … , 𝑘. Then,

(𝑋1, … , 𝑋𝑘) ∼ Multinomial(𝑛; 𝑝1, … , 𝑝𝑘)

Note: if there are only two boxes, then 𝑋1 ∼ Binomial(𝑛, 𝑝1).

PROPOSITION 3.9.3: Properties — Multinomial Distribution

If (𝑋1, … , 𝑋𝑘) ∼ Multinomial(𝑛; 𝑝1, … , 𝑝𝑘), then
(1) 𝑀(𝑡1, … , 𝑡𝑘) = E[𝑒𝑡1𝑋1+⋯+𝑡𝑘𝑋𝑘 ] = (𝑝1𝑒𝑡1 + ⋯ + 𝑝𝑘𝑒𝑡𝑘)𝑛 where |𝑡𝑖| < ∞ for 𝑖 = 1, … , 𝑘.
(2) 𝑋𝑖 ∼ Binomial(𝑛, 𝑝𝑖) for 𝑖 = 1, … , 𝑘.
(3) If 𝑇 = 𝑋𝑖 + 𝑋𝑗 for 𝑖 ≠ 𝑗, then 𝑇 ∼ Binomial(𝑛, 𝑝𝑖 + 𝑝𝑗)
(4) Cov(𝑋𝑖, 𝑋𝑗) = −𝑛𝑝𝑖𝑝𝑗 for 𝑖 ≠ 𝑗
(5) The conditional probability function of 𝑋𝑖 given 𝑋𝑗 = 𝑥𝑗 for 𝑖 ≠ 𝑗 is

𝑋𝑖 ∣ 𝑋𝑗 = 𝑥𝑗 ∼ Binomial(𝑛 − 𝑥𝑗,
𝑝𝑖

1 − 𝑝𝑗
)

(6) The conditional distribution of 𝑋𝑖 given 𝑇 = 𝑋𝑖 + 𝑋𝑗 for 𝑖 ≠ 𝑗 is

𝑋𝑖 ∣ 𝑋𝑖 + 𝑋𝑗 ∼ Binomial(𝑡, 𝑝𝑖
𝑝𝑖 + 𝑝𝑗

)

Proof of Proposition 3.9.3

Proof of (1): Too long for my poor soul to type. Proof requires the Multinomial Theorem.
Proof of (2): The moment generating function of 𝑋𝑖 for 𝑖 = 1, … , 𝑘 is

𝑀(0, … , 0, 𝑡, 0, … , 0) = [𝑝𝑖𝑒𝑡𝑖 + (1 − 𝑝𝑖)]
𝑛 𝑡𝑖 ∈ R

which is the moment generating function of a Binomial(𝑛, 𝑝𝑖) random variable. By Theorem 2.5.10 we
have 𝑋𝑖 ∼ Binomial(𝑛, 𝑝𝑖) for 𝑖 = 1, … , 𝑘.
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Proof of (3): The moment generating function of 𝑇 = 𝑋𝑖 + 𝑋𝑗 for 𝑖 ≠ 𝑗 is

𝑀𝑇(𝑡) = E[𝑒𝑡𝑇]
= E[𝑒𝑡(𝑋𝑖+𝑋𝑗)]
= E[𝑒𝑡𝑋𝑖+𝑡𝑋𝑗]
= 𝑀(0, … , 0, 𝑡, 0, … , 0, 𝑡, 0, … , 0)
= (𝑝1 + ⋯ + 𝑝𝑖𝑒𝑡 + ⋯ + 𝑝𝑗𝑒𝑡 + ⋯ + 𝑝𝑘−1 + 𝑝𝑘)𝑛 𝑡 ∈ R

= [(𝑝𝑖 + 𝑝𝑗)𝑒𝑡 + (1 − 𝑝𝑖 − 𝑝𝑗)]
𝑛 𝑡 ∈ R

which is the moment generating function of a Binomial(𝑛, 𝑝𝑖 + 𝑝𝑗) random variable. By Theorem 2.5.10
we have 𝑇 ∼ Binomial(𝑛, 𝑝𝑖 + 𝑝𝑗) for 𝑖 ≠ 𝑗.
Proof of (4): By (2) we have E[𝑋𝑖] = 𝑛𝑝𝑖, V(𝑋𝑖) = 𝑛𝑝𝑖(1 − 𝑝𝑖), and V(𝑋𝑗) = 𝑛𝑝𝑗(1 − 𝑝𝑗). By (3) we
have 𝑋𝑖 + 𝑋𝑗 ∼ Binomial(𝑛, 𝑝𝑖 + 𝑝𝑗), so V(𝑋𝑖 + 𝑋𝑗) = 𝑛(𝑝𝑖 + 𝑝𝑗)(1 − 𝑝𝑖 − 𝑝𝑗). Thus,

Cov(𝑋𝑖 + 𝑋𝑗, 𝑋𝑖 + 𝑋𝑗) = V(𝑋𝑖) + V(𝑋𝑗) + 2Cov(𝑋𝑖, 𝑋𝑗)

⟹ 𝑛(𝑝𝑖 + 𝑝𝑗)(1 − 𝑝𝑖 − 𝑝𝑗) = 𝑛𝑝𝑖(1 − 𝑝𝑖) + 𝑛𝑝𝑗(1 − 𝑝𝑗) + 2Cov(𝑋𝑖, 𝑋𝑗)

Therefore, Cov(𝑋𝑖, 𝑋𝑗) = −𝑛𝑝𝑖𝑝𝑗.
Proof of (5): There are 𝑥𝑗 outcomes from the 𝑗th category. Therefore, there are (𝑛 − 𝑥𝑗) balls chosen
from the remaining (𝑘 − 1) boxes. We are not allowed to choose from the 𝑗th box, we are only allowed
to choose from the remaining (𝑘 − 1) boxes. Therefore, proportionally we get the success probability as
𝑝𝑖/(1 − 𝑝𝑗).

EXERCISE 3.9.4

Prove property (6) from Proposition 3.9.3.

3.10 Bivariate Normal Distribution
DEFINITION 3.10.1: Bivariate normal distribution

Suppose that 𝑋1 and 𝑋2 are continuous random variables with joint probability density function

𝑓(𝑥1, 𝑥2) = 1
2𝜋|𝛴|1/2 exp{−1

2
(𝒙 − 𝝁)⊤𝛴−1(𝒙 − 𝝁)} (𝑥1, 𝑥2) ∈ R2

Also,

𝒙 = (𝑥1
𝑥2

)
2×1

, 𝝁 = (𝜇1
𝜇2

)
2×1

, 𝛴 = ( 𝜎2
1 𝑝𝜎1𝜎2

𝑝𝜎1𝜎2 𝜎2
2

)
𝑘×𝑘

and 𝛴 is positive semi-definite. Also, |𝛴| is the determinant of 𝛴. Then, 𝑿 = (𝑋1, 𝑋2)⊤ follows a
bivariate normal distribution, and we write

𝑿 ∼ BVN(𝝁, 𝛴)
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REMARK 3.10.2: †

Alternatively, we could write

𝑓(𝑥1, 𝑥2)

= 1
2𝜋𝜎1𝜎2√1 − 𝜌2

exp{− 1
2(1 − 𝜌2)

[(𝑥1 − 𝜇1
𝜎1

)
2

+ (𝑥2 − 𝜇2
𝜎2

)
2

− 2𝜌(𝑥1 − 𝜇1)(𝑥2 − 𝜇2)
𝜎1𝜎2

]}

PROPOSITION 3.10.3: Properties — Bivariate Normal Distribution

(1) 𝑋1, 𝑋2 has joint moment generating function

𝑀(𝑡1, 𝑡2) = E[𝑒𝑡1𝑋1+𝑡2𝑋2 ] = exp{𝒕⊤𝝁 + 1
2

𝒕⊤𝛴𝒕} ∀𝒕 ∈ R2

(2) Marginally,
𝑀𝑋1

(𝑡1) = 𝑀(𝑡1, 0) = exp{𝑡1𝜇1 + 1
2

𝑡2
1𝜎2

1}

which is the m.g.f. of 𝒩(𝜇1, 𝜎2
1); that is, 𝑋1 ∼ 𝒩(𝜇1, 𝜎2

1). Also, E[𝑋1] = 𝜇1 and V(𝑋1) = 𝜎2
1.

𝑀𝑋2
(𝑡2) = 𝑀(0, 𝑡2) = exp{𝑡2𝜇2 + 1

2
𝑡2
2𝜎2

2}

which is the m.g.f. of 𝒩(𝜇2, 𝜎2
2); that is, 𝑋2 ∼ 𝒩(𝜇2, 𝜎2

2). Also, E[𝑋2] = 𝜇2 and V(𝑋2) = 𝜎2
2.

(3) Conditional distribution.

𝑋2 ∣ 𝑋1 = 𝑥1 ∼ 𝒩(𝜇2 + 𝜌𝜎2(𝑥1 − 𝜇1)
𝜎1

, 𝜎2
2(1 − 𝜌2))

𝑋1 ∣ 𝑋2 = 𝑥2 ∼ 𝒩(𝜇1 + 𝜌𝜎1(𝑥2 − 𝜇2)
𝜎2

, 𝜎2
1(1 − 𝜌2))

𝑓2(𝑥2 ∣ 𝑥1) = 𝑓(𝑥1, 𝑥2)
𝑓1(𝑥1)

𝑓1(𝑥1 ∣ 𝑥2) = 𝑓(𝑥1, 𝑥2)
𝑓2(𝑥2)

(4) Cov(𝑋1, 𝑋2) = 𝜌𝜎1𝜎2
(5) 𝜌 = 0 ⟺ 𝑋1 and 𝑋2 are independent.
(6) Linear transformations of bivariate normal are still normal.
(7) (𝑿 − 𝝁)⊤𝛴−1(𝑿 − 𝝁) ∼ 𝜒2(2)

Proof of Proposition 3.10.3

Proof of (4): We want to find E[𝑋1𝑋2] = E[E[𝑋1𝑋2 | 𝑋1]].
Step 1:

E[𝑋1𝑋2 | 𝑋1 = 𝑥1] = E[𝑥1𝑋2 | 𝑋1 = 𝑥1] = 𝑥1 E[𝑋2 | 𝑋1 = 𝑥1] = 𝑥1(𝜇2 + 𝜌𝜎2(𝑥1 − 𝜇1)
𝜎1

)

Step 2:

E[𝑋1𝑋2 | 𝑋1] = 𝑋1(𝜇2 + 𝜌𝜎2(𝑋1 − 𝜇1)
𝜎1

)
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E[𝑋1𝑋2] = E[𝑋1𝜇2 + 𝑋1𝜌𝜎2(𝑋1 − 𝜇1)
𝜎1

]

= 𝜇2 E[𝑋1] + 𝜌𝜎2
𝜎1

(E[𝑋2
1 ] − 𝜇1 E[𝑋1])

= 𝜇2𝜇1 + 𝜌𝜎2
𝜎1

(𝜇2
1 + 𝜎2

1 − 𝜇2
1)

= 𝜇1𝜇2 + 𝜌𝜎1𝜎2

Thus,
Cov(𝑋1, 𝑋2) = E[𝑋1𝑋2] − E[𝑋1]E[𝑋2] = 𝜌𝜎1𝜎2

Corr(𝑋1, 𝑋2) = Cov(𝑋1, 𝑋2)
√V(𝑋1)V(𝑋2)

= 𝜌

Proof of (5): We know if 𝑋1 and 𝑋2 are independent, then 𝜌 = 0. If 𝜌 = 0, e.g., 𝑋2 ∣ 𝑋1 = 𝑥1 ∼
𝒩(𝜇2, 𝜎2

1) and 𝑋1 ∣ 𝑋2 = 𝑥2 ∼ 𝒩(𝜇1, 𝜎2
1). In summary: If joint bivariate normal then uncorrelated =

independence.
Proof of (6): Let 𝒄 = (𝑐1, 𝑐2)⊤, then 𝒄⊤𝑋 = 𝑐1𝑋2 + 𝑐2𝑋2 ∼ 𝒩(𝑐1𝜇1 + 𝑐2𝜇2, 𝒄⊤𝛴𝒄). Furthermore, if
𝐴 ∈ R2×2, and 𝒃 = (𝑏1, 𝑏2)⊤, then

𝐴𝑋 + 𝒃 ∼ BVN(𝐴𝝁 + 𝒃, 𝐴𝛴𝐴⊤)

Two linear combinations of BVN is joint BVN.

REMARK 3.10.4

Remark of (7): Note 𝜒2(1) ≔ 𝑍2 where 𝑍 ∼ 𝒩(0, 1).

𝜒2(𝑛) =
𝑛

∑
𝑖=1

𝑍2
𝑖

where 𝑍1, … , 𝑍𝑛 are independent 𝒩(0, 1).
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Let (𝑋1, … , 𝑋𝑛) be continuous random variables. We want to find the distribution of 𝑌 = ℎ(𝑋1, … , 𝑋𝑛).

Three methods here:

(1) Cumulative Distribution Function Technique

(2) One-to-One Transformation

(3) Moment Generating Function Technique

• (1) and (3) are useful to find marginal distribution 𝑌 = ℎ(𝑋1, … , 𝑋𝑛).

• (3) is useful to find both univariate and multivariate functions. For example,

𝑌1 = ℎ1(𝑋1, … , 𝑋𝑛) and 𝑌2 = ℎ2(𝑋1, … , 𝑋𝑛)

If we want to find the joint distribution of more than one function, we can use this method.

4.1 Cumulative Distribution Function Technique
Tutorial 5: 𝑇 = E[𝑋 | 𝑌 ] = 3

4 𝑌.

𝑌 = ℎ(𝑋1, … , 𝑋𝑛)

Step 1: Find the c.d.f. of 𝑌 by definition.

𝐹𝑌(𝑦) = P(𝑌 ≤ 𝑦) = 1 − P(𝑌 > 𝑦)

Step 2: Find the p.d.f. of 𝑌 by
𝑓(𝑦) = 𝐹 ′

𝑌(𝑦)

EXAMPLE 4.1.1: Cumulative Distribution Function Technique

Suppose the joint p.d.f. of (𝑋, 𝑌 ) is 𝑓(𝑥, 𝑦) = 3𝑦 for 0 ≤ 𝑥 ≤ 𝑦 ≤ 1. Find the p.d.f. of 𝑇 = 𝑋𝑌 and p.d.f.
of 𝑆 = 𝑌 /𝑋.
Solution. 𝑇 = 𝑋𝑌. Support of 𝑇 is (0, 1).

• If 𝑡 ≥ 1, then 𝐹𝑇(𝑡) = P(𝑇 ≤ 𝑡) = 1.
• If 𝑡 ≤ 0, then 𝐹𝑇(𝑡) = 0.

48



CHAPTER 4. FUNCTION OF RANDOM VARIABLES 49

• If 0 < 𝑡 < 1, then

𝐹𝑇(𝑡) = P(𝑇 ≤ 𝑡)
= P(𝑋𝑌 ≤ 𝑡)
= 1 − P(𝑋𝑌 > 𝑡)

= 1 − (∫
1

√
𝑡

∫
𝑦

𝑡/𝑦
3𝑦 𝑑𝑥 𝑑𝑦)

= 1 − (2𝑡3/2 − 3𝑡 + 1)
= 3𝑡 − 2𝑡3/2

Therefore, the p.d.f. of 𝑇 for 0 < 𝑡 < 1 is

𝑓𝑇(𝑡) = 3 − 3
√

𝑡

𝑆 = 𝑌 /𝑋. Support of 𝑆 is (1, ∞).
• If 𝑠 < 1, then 𝐹𝑆(𝑠) = 0
• If 𝑠 ≥ 1, then

𝐹𝑆(𝑠) = P(𝑆 ≤ 𝑠)

= P( 𝑌
𝑋

≤ 𝑠)

= P(𝑌 ≤ 𝑠𝑋)

= ∫
1

0
∫

𝑦

𝑦/𝑠
3𝑦 𝑑𝑥 𝑑𝑦

= 1 − 1
𝑠

Therefore, the p.d.f. of 𝑆 for 𝑠 ≥ 1 is
𝑓𝑆(𝑠) = 1

𝑠2

EXAMPLE 4.1.2: Distribution of maximum and minimum

Suppose (𝑋1, … , 𝑋𝑛) iid∼ Uniform(0, 𝜃). Find the p.d.f. of the largest order statistic; that is,

𝑋(𝑛) = max
1≤𝑖≤𝑛

𝑋𝑖

and the smallest order statistic; that is,

𝑋(1) = min
1≤𝑖≤𝑛

𝑋𝑖

Solution. 𝐹𝑋(𝑛)
(𝑦) = P(𝑋(𝑛) ≤ 𝑦).

• If 𝑦 ≤ 0, then 𝐹𝑋(𝑛)
(𝑦) = 0.

• If 𝑦 ≥ 𝜃, then 𝐹𝑋(𝑛)
(𝑦) = 1.

• If 0 < 𝑦 < 𝜃, then

𝐹𝑋(𝑛)
(𝑦) = P(𝑋(𝑛) ≤ 𝑦)

= P(𝑋1 ≤ 𝑦, … , 𝑋𝑛 ≤ 𝑦)
= P(𝑋1 ≤ 𝑦) ⋯P(𝑋𝑛 ≤ 𝑦)

= (𝑦
𝜃

)
𝑛
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The p.d.f. of 𝑋(𝑛) for 0 < 𝑦 < 𝜃 is
𝑓𝑋(𝑛)

(𝑦) = 𝑛
𝜃𝑛 𝑦𝑛−1

For 𝑋(1) the support is [0, 𝜃]. If 0 < 𝑦 < 𝜃,

𝐹𝑋(1)
(𝑦) = P(𝑋(1) ≤ 𝑦)

= 1 − P(𝑋(1) > 𝑦)
= 1 − [P(𝑋1 > 𝑦) ⋯P(𝑋𝑛 > 𝑦)]

= 1 − (𝜃 − 𝑦
𝜃

)
𝑛

The p.d.f. of 𝑋(1) for 0 < 𝑦 < 𝜃 is

𝑓𝑋(1)
(𝑦) = 𝑛

𝜃
(1 − 𝑦

𝜃
)

𝑛−1

EXERCISE 4.1.3

If 𝑋1, … , 𝑋𝑛
iid∼ Exponential(1), find 𝑋(𝑛) and 𝑋(1).

Lecture 14 | 2020-10-25

4.2 One-to-One Transformations (Univariate)
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EXAMPLE 4.2.1: Cumulative Distribution Function Technique

If 𝑋 ∼ 𝒩(0, 1), find the p.d.f. of 𝑌 = 𝑋2.
Solution. Support of 𝑌 is [0, ∞). The c.d.f. of 𝑌 for 𝑦 > 0 is

𝐹𝑌(𝑦) = P(𝑌 ≤ 𝑦)
= P(𝑋2 ≤ 𝑦)
= P(−√𝑦 ≤ 𝑋 ≤ √𝑦)
= 𝐹𝑋(√𝑦) − 𝐹𝑋(−√𝑦)

The p.d.f. of 𝑌 is

𝑓𝑌(𝑦) = 𝐹 ′
𝑌(𝑦)

= 𝐹 ′
𝑋(√𝑦)( 1

2√𝑦
) − 𝐹 ′

𝑋(−√𝑦)(− 1
2√𝑦

)

= 1
2√𝑦

[𝑓𝑋(√𝑦) + 𝑓𝑋(−√𝑦)]

= 1
2√𝑦

[ 1√
2𝜋

exp{−
(√𝑦)2

2
} + 1√

2𝜋
exp{−

(−√𝑦)2

2
}]

= 1
2√𝑦

[ 2√
2𝜋

exp{−𝑦
2

}]

= 1√
2𝜋

𝑦−1/2exp{−𝑦
2

}

The p.d.f. of 𝑌 is also 𝜒2(1) or Gamma(𝛼 = 1/2, 𝛽 = 2).

EXAMPLE 4.2.2: Cumulative Distribution Function Technique

Suppose the p.d.f. of 𝑋 is 𝑓(𝑥) = 𝜃
𝑥𝜃+1 for 𝑥 ≥ 1 and 𝜃 > 0. Find the p.d.f. of 𝑌 = ln(𝑋).

Solution. Support of 𝑌 is [0, ∞). The c.d.f. of 𝑌 for 𝑦 > 0 is

𝐹𝑌(𝑦) = P(𝑌 ≤ 𝑦)
= P(ln(𝑋) ≤ 𝑦)
= P(𝑋 ≤ 𝑒𝑦)

= ∫
𝑒𝑦

1

𝜃
𝑥𝜃+1 𝑑𝑥

= 1 − 𝑒−𝑦𝜃

The p.d.f. of 𝑌 is

𝐹 ′
𝑌(𝑦) = 𝑓𝑌(𝑦) = {𝜃𝑒−𝑦𝜃 𝑦 > 0

0 otherwise

Special case: If ℎ(𝑥) is a one-to-one transformation on the support of 𝑋, then we have a formula to find p.d.f.
of 𝑌 = ℎ(𝑋).

THEOREM 4.2.3: One-to-One Univariate Transformations

If ℎ(𝑥) is one-to-one transformation on the support of 𝑋, then the probability density function of 𝑌 is given
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by

𝑔𝑌(𝑦) = 𝑓𝑋(𝑥)∣𝑑𝑥
𝑑𝑦

∣

REMARK 4.2.4

Replace 𝑥 in the right-hand side by function of 𝑦; that is, 𝑥 = ℎ−1(𝑦) (inverse of ℎ).

EXAMPLE 4.2.5: One-to-One Transformation (Univariate)

Suppose the p.d.f. of 𝑋 is 𝑓(𝑥) = 𝜃
𝑥𝜃+1 for 𝑥 ≥ 1 and 𝜃 > 0. Find the p.d.f. of 𝑌 = ln(𝑋).

Solution. Support of 𝑌 is [0, ∞). ℎ(𝑥) = ln(𝑥) is a one-to-one transformation. For 𝑦 > 0 we have

𝑔𝑌(𝑦) = 𝑓𝑋(𝑥)∣𝑑𝑥
𝑑𝑦

∣ 𝑦 = ln(𝑥) ⟹ 𝑥 = 𝑒𝑦

= 𝑓𝑋(𝑒𝑦)|𝑒𝑦|

= 𝜃
(𝑒𝑦)𝜃+1 (𝑒𝑦)

= 𝜃𝑒−𝜃𝑦

Note that
𝑑𝑥
𝑑𝑦

= 1
𝑑𝑦/𝑑𝑥

= 1
1/𝑥

= 𝑥. So we could’ve done

𝑔𝑌(𝑦) = 𝑓𝑋(𝑥)∣𝑑𝑥
𝑑𝑦

∣

= 𝑓𝑋(𝑒𝑦)|𝑥|

= 𝜃
(𝑒𝑦)𝜃+1 (𝑒𝑦)

= 𝜃𝑒−𝑦𝜃

EXAMPLE 4.2.6: One-to-One Transformation (Univariate)

Suppose 𝑋 ∼ 𝒩(0, 1) and the c.d.f. of 𝑋 is 𝛷(𝑥). Find the p.d.f. of 𝑌 = 𝛷(𝑋).
Solution. Support of 𝑌 is [0, 1]. The p.d.f. of 𝑌 for 0 ≤ 𝑦 ≤ 1 is

𝑔𝑌(𝑦) = 𝑓𝑋(𝑥)∣𝑑𝑥
𝑑𝑦

∣

= 𝑓𝑋(𝑥)∣ 1
𝑑𝑦/𝑑𝑥

∣ 𝑦 = 𝛷(𝑥) ⟹ 𝑑𝑦
𝑑𝑥

= 𝛷′(𝑥) = 𝑓𝑋(𝑥)

= 𝑓𝑋(𝑥)∣ 1
𝑓𝑋(𝑥)

∣

= 1

Thus, 𝑌 ∼ Uniform(0, 1).

EXAMPLE 4.2.7: One-to-One Transformation (Univariate)

Suppose 𝑋 ∼ Uniform(0, 1). Find the p.d.f. of 𝑌 = − ln(𝑋).
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Solution. Support of 𝑌 is [0, ∞). Note that 𝑦 = − ln(𝑥) ⟹ 𝑑𝑦/𝑑𝑥 = −1/𝑥. The p.d.f. of 𝑌 for 𝑦 > 0 is

𝑔𝑌(𝑦) = 𝑓𝑋(𝑥)∣𝑑𝑥
𝑑𝑦

∣

= 1∣ 1
𝑑𝑦/𝑑𝑥

∣

= 𝑥
= 𝑒−𝑦

where the last equality follows since 𝑦 = − ln(𝑥) ⟹ 𝑥 = 𝑒−𝑦 for 𝑦 > 0.

REMARK 4.2.8

The c.d.f. technique is always useful, but the one-to-one transformation is less useful, and you are more
likely to make a mistake. It is not recommended using the formula.

Lecture 15 | 2020-11-01

Find the p.d.f. of 𝑌 = ℎ(𝑋). Two possible ways:

• Method 1: CDF Technique

• Method 2: If ℎ(𝑥) is a one-to-one function, then

𝑔𝑌(𝑦) = 𝑓𝑋(𝑥)∣𝑑𝑥
𝑑𝑦

∣

4.3 One-to-One Transformations (Bivariate)
Given 𝑋 and 𝑌, the joint p.d.f. of (𝑋, 𝑌 ) is 𝑓(𝑥, 𝑦). We would like to find the joint p.d.f. of

𝑈 = ℎ1(𝑋, 𝑌 ) and 𝑉 = ℎ2(𝑋, 𝑌 )

One-to-one bivariate transformation

𝑢 = ℎ1(𝑥, 𝑦) and 𝑣 = ℎ2(𝑥, 𝑦)

The two functions are a one-to-one transformation if there exist another two unique functions such that

𝑥 = 𝑤1(𝑢, 𝑣) and 𝑦 = 𝑤2(𝑢, 𝑣)

for (𝑥, 𝑦) in support of (𝑋, 𝑌 ).

THEOREM 4.3.1: One-to-One Bivariate Transformations

The p.d.f. of 𝑈 = ℎ1(𝑋, 𝑌 ) and 𝑉 = ℎ2(𝑋, 𝑌 ) is given by

𝑔(𝑢, 𝑣) = 𝑓(𝑥, 𝑦)∣𝜕(𝑥, 𝑦)
𝜕(𝑢, 𝑣)

∣

where the Jacobian matrix is
𝜕(𝑥, 𝑦)
𝜕(𝑢, 𝑣)

= ∣
𝜕𝑥
𝜕𝑢

𝜕𝑥
𝜕𝑣

𝜕𝑦
𝜕𝑢

𝜕𝑦
𝜕𝑣

∣

Step 1: Find support of (𝑈, 𝑉 ) by making use of ℎ1, ℎ2, and support of (𝑋, 𝑌 ).
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Step 2: 𝑢 = ℎ1(𝑥, 𝑦) and 𝑣 = ℎ2(𝑥, 𝑦) implies 𝑥 = 𝑤1(𝑢, 𝑣) and 𝑦 = 𝑤2(𝑢, 𝑣), compute Jacobian:

𝜕(𝑥, 𝑦)
𝜕(𝑢, 𝑣)

= ∣𝜕𝑥/𝜕𝑢 𝜕𝑥/𝜕𝑣
𝜕𝑦/𝜕𝑢 𝜕𝑦/𝜕𝑣∣

Step 3:

𝑔(𝑢, 𝑣) = 𝑓(𝑥, 𝑦)∣𝜕(𝑥, 𝑦)
𝜕(𝑢, 𝑣)

∣

EXAMPLE 4.3.2: One-to-One Transformation (Bivariate)

Suppose 𝑋 ∼ 𝒩(0, 1) and 𝒩(0, 1) independent. Find the joint p.d.f. of 𝑈 = 𝑋 + 𝑌 and 𝑉 = 𝑋 − 𝑌.
Solution. Since 𝑋 and 𝑌 are independent, the joint p.d.f. of 𝑋 and 𝑌 is given by

𝑓(𝑥, 𝑦) = 𝑓𝑋(𝑥)𝑓𝑌(𝑦) = 1√
2𝜋

exp{−𝑥2

2
} 1√

2𝜋
exp{−𝑦2

2
} = 1

2𝜋
exp{−𝑥2 + 𝑦2

2
}

Step 1: 𝑢 = 𝑥 + 𝑦 and 𝑣 = 𝑥 − 𝑦 implies 𝑥 = (𝑢 + 𝑣)/2 and 𝑦 = (𝑢 − 𝑣)/2. Support of 𝑈 and 𝑉 is
(−∞, ∞).
Step 2: Jacobian is given by

𝜕(𝑥, 𝑦)
𝜕(𝑢, 𝑣)

= ∣𝜕𝑥/𝜕𝑢 𝜕𝑥/𝜕𝑣
𝜕𝑦/𝜕𝑢 𝜕𝑦/𝜕𝑣∣

= ∣1/2 1/2
1/2 −1/2∣

= (1
2

)(−1
2

) − (1
2

)(1
2

)

= −2
4

= −1
2

Step 3:

𝑔(𝑢, 𝑣) = 𝑓(𝑥, 𝑦)∣𝜕(𝑥, 𝑦)
𝜕(𝑢, 𝑣)

∣

= 1
2𝜋

exp{−𝑥2 + 𝑦2

2
}∣−1

2
∣

= 1
4𝜋

exp{−[(𝑢 + 𝑣)/2]2 + [(𝑢 − 𝑣)/2]2

2
}

= 1
4𝜋

exp{−𝑢2 + 𝑣2

4
}

EXAMPLE 4.3.3: One-to-One Transformation (Bivariate)

Suppose that 𝑋 and 𝑌 are continuous random variables with joint p.d.f. 𝑓(𝑥, 𝑦) = 𝑒−𝑥−𝑦 for 0 < 𝑥 < ∞
and 0 < 𝑦 < ∞. Find the joint p.d.f. of 𝑈 = 𝑋 + 𝑌 and 𝑉 = 𝑋. Find the marginal p.d.f. of 𝑈.
Solution. 𝑢 = 𝑥 + 𝑦 and 𝑣 = 𝑥 implies 𝑥 = 𝑣 and 𝑦 = 𝑢 − 𝑣. Therefore, 0 < 𝑣 < ∞ and 0 < 𝑢 − 𝑣 < ∞.
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In other words, the joint support of (𝑈, 𝑉 ) is 0 < 𝑣 < 𝑢 < ∞. Jacobian is

𝜕(𝑥, 𝑦)
𝜕(𝑢, 𝑣)

= ∣𝜕𝑥/𝜕𝑢 𝜕𝑥/𝜕𝑣
𝜕𝑦/𝜕𝑢 𝜕𝑦/𝜕𝑣∣

= ∣0 1
1 −1∣

= −1

Therefore, the joint p.d.f. of (𝑈, 𝑉 ) for 0 < 𝑣 < 𝑢 < ∞ is

𝑔(𝑢, 𝑣) = 𝑓(𝑥, 𝑦)∣𝜕(𝑥, 𝑦)
𝜕(𝑢, 𝑣)

∣

= 𝑒−𝑥−𝑦|−1|
= 𝑒−(𝑥+𝑦)

= 𝑒−𝑢

Support of 𝑈 is (0, ∞). The marginal p.d.f. of 𝑈 for 𝑢 > 0 is

𝑓1(𝑢) = ∫
∞

−∞
𝑔(𝑢, 𝑣) 𝑑𝑣 = ∫

𝑢

0
𝑒−𝑢 𝑑𝑣 = 𝑢𝑒−𝑢

Find the p.d.f. of 𝑈 = 𝑋 + 𝑌.
1. CDF Technique
2. Define 𝑉 = 𝑋 (or 𝑉 = 𝑌), find (𝑈, 𝑉 ) with the Theorem.

EXAMPLE 4.3.4: Support of One-to-One Transformation (Bivariate)

Suppose that the support of (𝑋, 𝑌 ) is 0 < 𝑥 < 𝑦 < 1. Find the support of (𝑈, 𝑉 ) where 𝑈 = 𝑋 and
𝑉 = 𝑋𝑌.
Solution. 𝑢 = 𝑥 and 𝑣 = 𝑥𝑦 implies 𝑥 = 𝑢 and 𝑦 = 𝑣/𝑢.

0 < 𝑢 < 𝑣
𝑢

< 1 ⟹ 0 < 𝑢2 < 𝑣 < 𝑢 < 1

(multiply by 𝑢)

EXAMPLE 4.3.5: Support of One-to-One Transformation (Bivariate)

Suppose the support of (𝑋, 𝑌 ) is 0 < 𝑥 < 1 and 0 < 𝑦 < 1. Find the support of (𝑈, 𝑉 ) where 𝑈 = 𝑋/𝑌
and 𝑉 = 𝑋𝑌.
Solution. 𝑢 = 𝑥/𝑦 and 𝑣 = 𝑥𝑦.

𝑢𝑣 = 𝑥2 ⟹ 𝑥 =
√

𝑢𝑣

𝑦 = 𝑣
𝑥

⟹ 𝑦 = 𝑣√
𝑢𝑣

= 𝑣1/2

𝑢1/2𝑣1/2 = √ 𝑣
𝑢

So,
0 <

√
𝑢𝑣 < 1 ⟹ 0 < 𝑢𝑣 < 1 ⟹ 0 < 𝑢 < 1

𝑣
(𝑣 > 0)

0 < √ 𝑣
𝑢

< 1 ⟹ 0 < 𝑣
𝑢

< 1 ⟹ 0 < 𝑣 < 𝑢 (𝑢 > 0)

Combining, we get 0 < 𝑣 < 𝑢 < 1/𝑣.
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Lecture 16 | 2020-11-01

4.4 Moment Generating Function Technique
Idea:

(1) Find the moment generating function of a random variable

(2) Use the uniqueness theorem of moment generating function to find the distribution of the random
variable and then the p.d.f. of a random variable.

THEOREM 4.4.1

Suppose 𝑋1, … , 𝑋𝑛 are independent, then 𝑇 = ∑𝑛
𝑖=1 𝑋𝑖 has moment generating function

𝑀𝑇(𝑡) = E[exp{𝑡
𝑛

∑
𝑖=1

𝑋𝑖}] = E[
𝑛

∏
𝑖=1

exp{𝑡𝑋𝑖}] =
𝑛

∏
𝑖=1

E[exp{𝑡𝑋𝑖}] =
𝑛

∏
𝑖=1

𝑀𝑋𝑖
(𝑡)

In particular, if 𝑋1, … , 𝑋𝑛 are independently and identically distributed, then they have the exact same
moment generating function 𝑀(𝑡); that is,

𝑀𝑇(𝑡) = [𝑀(𝑡)]𝑛

Next, we use the m.g.f. technique to find properties of normal, 𝜒2, 𝑡-distribution, and 𝐹-distributions.

LEMMA 4.4.2

If 𝑋 ∼ 𝒩(𝜇, 𝜎2), then
𝑎𝑋 + 𝑏 ∼ 𝒩(𝑎𝜇 + 𝑏, 𝑎2𝜎2)

Proof of Lemma 4.4.2

Recall that the m.g.f. of 𝑋 ∼ 𝒩(𝜇, 𝜎2) is

𝑀𝑋(𝑡) = exp{𝜇𝑡 + 𝜎2𝑡2

2
}

Therefore,

𝑀𝑎𝑋+𝑏(𝑡) = E[𝑒𝑡(𝑎𝑋+𝑏)]

= 𝑒𝑏𝑡 E[𝑒𝑡𝑎𝑋]
= 𝑒𝑏𝑡𝑀𝑋(𝑡𝑎)

= 𝑒𝑏𝑡exp{𝜇(𝑡𝑎) + 𝜎2(𝑎𝑡)2

2
}

= exp{(𝑎𝜇 + 𝑏)𝑡 + 𝑎2𝜎2𝑡2

2
}

which is the m.g.f. 𝒩(𝑎𝜇 + 𝑏, 𝑎2𝜎2).
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THEOREM 4.4.3

If 𝑋 ∼ 𝒩(𝜇, 𝜎2), then
𝑋 − 𝜇

𝜎
∼ 𝒩(0, 1)

THEOREM 4.4.4: Linear Combination of Independent Normal Random Variables

If 𝑋𝑖 ∼ 𝒩(𝜇𝑖, 𝜎2
𝑖 ), 𝑖 = 1, … , 𝑛 independently, then

𝑛
∑
𝑖=1

𝑎𝑖𝑋𝑖 ∼ 𝒩(
𝑛

∑
𝑖=1

𝑎𝑖𝜇𝑖,
𝑛

∑
𝑖=1

𝑎2
𝑖 𝜎2

𝑖 )

Proof of Theorem 4.4.4

By Lemma 4.4.2, we have 𝑎𝑖𝑋𝑖 ∼ 𝒩(𝑎𝑖𝜇𝑖, 𝑎2
𝑖 𝜎2

𝑖 ) for 𝑖 = 1, … , 𝑛 and the m.g.f.

𝑀𝑎𝑖𝑋𝑖
(𝑡) = exp{(𝑎𝑖𝜇𝑖)𝑡 + 𝑎2

𝑖 𝜎2
𝑖

2
𝑡2}

Therefore,

𝑀∑𝑛
𝑖=1 𝑎𝑖𝑋𝑖

(𝑡) = E[exp{𝑡
𝑛

∑
𝑖=1

𝑎𝑖𝑋𝑖}]

= E[
𝑛

∏
𝑖=1

𝑒(𝑎𝑖𝑋𝑖)𝑡]

=
𝑛

∏
𝑖=1

E[𝑒(𝑎𝑖𝑋𝑖)𝑡]

=
𝑛

∏
𝑖=1

𝑀𝑎𝑖𝑋𝑖
(𝑡)

=
𝑛

∏
𝑖=1

exp{(𝑎𝑖𝜇𝑖)𝑡 + 𝜎2
𝑖 𝑎2

𝑖
2

𝑡2}

= exp{(
𝑛

∑
𝑖=1

𝑎𝑖𝜇𝑖)𝑡 +
(∑𝑛

𝑖=1 𝑎2
𝑖 𝜎2

𝑖 )𝑡2

2
}

which is the m.g.f. of 𝒩( ∑𝑛
𝑖=1 𝑎𝑖𝜇𝑖, ∑𝑛

𝑖=1 𝑎2
𝑖 𝜎2

𝑖 ).

COROLLARY 4.4.5

If 𝑋1, … , 𝑋𝑛
iid∼ 𝒩(𝜇, 𝜎2), then

(1)
𝑛

∑
𝑖=1

𝑋𝑖 ∼ 𝒩(𝑛𝜇, 𝑛𝜎2)

(2) �̄�𝑛 = 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖 ∼ 𝒩(𝜇, 𝜎2

𝑛
)

Proof of Corollary 4.4.5

(1) Let 𝑎𝑖 = 1, 𝜇𝑖 = 𝜇, 𝜎2
𝑖 = 𝜎 in Theorem 4.4.4.

(2) Let 𝑎𝑖 = 1
𝑛 , 𝜇𝑖 = 𝜇, 𝜎2

𝑖 = 𝜎 in Theorem 4.4.4.
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DEFINITION 4.4.6: Chi-Squared Distribution

If 𝑍1, … , 𝑍𝑘 ∼ 𝒩(0, 1) are independent and 0 < 𝑘 ∈ Z, then

𝑄 =
𝑘

∑
𝑖=1

𝑍2
𝑖

follows a chi-squared distribution with 𝑘 degrees of freedom and write 𝑄 ∼ 𝜒2(𝑘).

If 𝑋 ∼ 𝒩(𝜇, 𝜎2), then

(𝑋 − 𝜇
𝜎

)
2

∼ 𝜒2(1)

If 𝑌𝑖 ∼ 𝜒2(𝑘𝑖) are independent, then
𝑛

∑
𝑖=1

𝑌𝑖 ∼ 𝜒2(
𝑛

∑
𝑖=1

𝑘𝑖)

The m.g.f. of 𝜒2(1) is (1 − 2𝑡)−1/2. Derive the m.g.f. 𝜒2(𝑛): (1 − 2𝑡)−𝑛/2.

𝜒2(𝑛) =
𝑛

∑
𝑖=1

𝑋2
𝑖 𝑋𝑖

iid∼ 𝒩(0, 1)

Let 𝑇 = ∑𝑛
𝑖=1 𝑌𝑖, then

𝑀𝑇(𝑡) =
𝑛

∏
𝑖=1

𝑀𝑌𝑖
(𝑡) =

𝑛
∏
𝑖=1

(1 − 2𝑡)−𝑘𝑖/2 = (1 − 2𝑡)− ∑𝑛
𝑖=1 𝑘𝑖/2

If 𝑋1, … , 𝑋𝑛
iid∼ 𝒩(𝜇, 𝜎2)

𝑛
∑
𝑖=1

(𝑋𝑖 − 𝜇
𝜎

)
2

=
∑𝑛

𝑖=1(𝑋𝑖 − 𝜇)2

𝜎2 ∼ 𝜒(𝑛)

DEFINITION 4.4.7: Student’s 𝑡-distribution

Let 𝑍 ∼ 𝒩(0, 1) and 𝑄 ∼ 𝜒2(𝜈) be independent, then

𝑇 = 𝑍
√𝑄/𝜈

follows a student’s t-distribution with 𝑘 degrees of freedom and write 𝑇 ∼ 𝑡(𝜈) where 𝜈 > 0.
Support of 𝑇: (−∞, ∞).

DEFINITION 4.4.8: 𝐹-distribution

If 𝑋 ∼ 𝜒2(𝑛) and 𝑌 ∼ 𝜒2(𝑚) are independent, then

𝑋/𝑛
𝑌 /𝑚

∼ 𝐹(𝑛, 𝑚)

follows a F-distribution.
Support of 𝐹(𝑛, 𝑚):

• If 𝑛 = 1: [0, ∞).
• If 𝑛 ≠ 1: (0, ∞).

If 𝑋 ∼ 𝜒2(𝑛) and 𝑌 ∼ 𝜒2(𝑚) are independent, then

𝑋 + 𝑌 ∼ 𝜒2(𝑛 + 𝑚)
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EXERCISE 4.4.9

Prove or disprove.
𝑋/𝑛

(𝑋 + 𝑌 )/(𝑛 + 𝑚)
∼ 𝐹(𝑛, 𝑛 + 𝑚)

Solution. False. Define 𝑍 = (𝑋 + 𝑌 )/(𝑚 + 𝑛)
𝑋/𝑛

, we have

𝑍 = 𝑛
𝑚 + 𝑛

(𝑋 + 𝑌
𝑋

) = 𝑛
𝑚 + 𝑛

+ 𝑛
𝑚 + 𝑛

( 𝑌
𝑋

) = 𝑛
𝑚 + 𝑛

+ 𝑌 /𝑚
𝑋/𝑛

( 𝑚
𝑚 + 𝑛

)

Assume 𝑛 > 2, then

E[𝑍] = 𝑛
𝑚 + 𝑛

+ E[𝑌 /𝑚
𝑋/𝑛

]( 𝑚
𝑚 + 𝑛

) = 𝑛
𝑚 + 𝑛

+ 𝑛
𝑛 − 2

( 𝑚
𝑚 + 𝑛

) ≠ 𝑛
𝑛 − 2

Thus, 𝑍 does not follow 𝐹(𝑚 + 𝑛, 𝑛), hence 1
𝑍

does not follow 𝐹(𝑛, 𝑛 + 𝑚).

LEMMA 4.4.10: Useful Identity

𝑛
∑
𝑖=1

(𝑋𝑖 − 𝜇)2 =
𝑛

∑
𝑖=1

(𝑋𝑖 − �̄�)2 + 𝑛(�̄� − 𝜇)2

Proof of Lemma 4.4.10

𝑛
∑
𝑖=1

(𝑋𝑖 − 𝜇)2 =
𝑛

∑
𝑖=1

(𝑋𝑖 − �̄� + �̄� − 𝜇)2

=
𝑛

∑
𝑖=1

(𝑋𝑖 − �̄�)2 + 2(�̄� − 𝜇)
𝑛

∑
𝑖=1

(𝑋𝑖 − �̄�) +
𝑛

∑
𝑖=1

(�̄� − 𝜇)2

=
𝑛

∑
𝑖=1

(𝑋𝑖 − �̄�)2 + 𝑛(�̄� − 𝜇)2

since
𝑛

∑
𝑖=1

(𝑋𝑖 − �̄�) =
𝑛

∑
𝑖=1

𝑋𝑖 −
𝑛

∑
𝑖=1

�̄�

=
𝑛

∑
𝑖=1

𝑋𝑖 − 𝑛�̄�

=
𝑛

∑
𝑖=1

𝑋𝑖 − 𝑛( 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖)

=
𝑛

∑
𝑖=1

𝑋𝑖 −
𝑛

∑
𝑖=1

𝑋𝑖

= 0
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THEOREM 4.4.11

If 𝑋𝑖 ∼ 𝒩(𝜇, 𝜎2), 𝑖 = 1, … , 𝑛 independently, then

∑𝑛
𝑖=1(𝑋𝑖 − �̄�)2

𝜎2 ∼ 𝜒2(𝑛 − 1)

Proof of Theorem 4.4.11

By Lemma 4.4.10 we have
𝑛

∑
𝑖=1

(𝑋𝑖 − 𝜇)2 =
𝑛

∑
𝑖=1

(𝑋𝑖 − �̄�)2 + 𝑛(�̄� − 𝜇)2

Dividing both sides by 𝜎2 gives

∑𝑛
𝑖=1(𝑋𝑖 − 𝜇)2

𝜎2⎵⎵⎵⎵⎵⎵
𝑌

=
∑𝑛

𝑖=1(𝑋𝑖 − �̄�)2

𝜎2⎵⎵⎵⎵⎵⎵⎵
𝑈

+ 𝑛(�̄� − 𝜇)2

𝜎2⎵⎵⎵⎵
𝑉

Note that
√

𝑛(�̄� − 𝜇)
𝜎

∼ 𝒩(0, 1), thus

𝑉 = 𝑛(�̄� − 𝜇)2

𝜎2 = [
√

𝑛(�̄� − 𝜇)
𝜎

]
2

∼ 𝜒2(1)

Previously, we derived 𝑌 =
∑𝑛

𝑖=1(𝑋𝑖 − 𝜇)2

𝜎2 ∼ 𝜒2(𝑛).
Since 𝑈 and 𝑉 are independent and 𝑌 = 𝑈 + 𝑉, then

𝑀𝑌(𝑡) = E[𝑒𝑡𝑌] = E[𝑒𝑡(𝑈+𝑉 )] = E[𝑒𝑡𝑈]E[𝑒𝑡𝑉] = 𝑀𝑈(𝑡)𝑀𝑉(𝑡)

Thus,
(1 − 2𝑡)−𝑛/2 = 𝑀𝑈(𝑡)(1 − 2𝑡)−1/2 𝑡 < 1

2

⟹ 𝑀𝑈(𝑡) = (1 − 2𝑡)−(𝑛−1)/2 𝑡 < 1
2

which is the m.g.f. of 𝜒2(𝑛 − 1).

Why �̄� is independent of ∑𝑛
𝑖=1(𝑋𝑖 − �̄�)2?

(�̄�⎵
0

, 𝑋1 − �̄�, … , 𝑋𝑛 − �̄�) ∼ MVN(⋅)

Verify that �̄� independent of (𝑋1 − �̄�, … , 𝑋𝑛 − �̄�) by calculating the correlation.

EXAMPLE 4.4.12: 𝑡-distribution

If 𝑋1, … , 𝑋𝑛
iid∼ 𝒩(𝜇, 𝜎2), then

�̄� − 𝜇
𝑆/

√
𝑛

∼ 𝑡(𝑛 − 1)

where
𝑆2 = 1

𝑛 − 1

𝑛
∑
𝑖=1

(𝑋𝑖 − �̄�)2

is defined as the sample variance (E[𝑆2] = 𝜎2).
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Solution.
�̄� − 𝜇
𝜎/

√
𝑛

∼ 𝒩(0, 1)

(𝑛 − 1)𝑆2

𝜎2 =
∑𝑛

𝑖=1(𝑋𝑖 − �̄�)2

𝜎2 ∼ 𝜒2(𝑛 − 1)

are independent, then
�̄� − 𝜇
𝜎/

√
𝑛

√(𝑛 − 1)𝑆2

𝜎2 /(𝑛 − 1)

= �̄� − 𝜇
𝑆/

√
𝑛

∼ 𝑡(𝑛 − 1)

EXAMPLE 4.4.13: 𝐹-distribution

If 𝑋1, … , 𝑋𝑛
iid∼ 𝒩(𝜇1, 𝜎2

1) and 𝑌1, … , 𝑌𝑚
iid∼ 𝒩(𝜇2, 𝜎2

2) are independent. Define

𝑆2
1 =

∑𝑛
𝑖=1(𝑋𝑖 − �̄�)2

𝑛 − 1
, �̄� = 1

𝑛

𝑛
∑
𝑖=1

𝑋𝑖

𝑆2
2 =

∑𝑚
𝑖=1(𝑌𝑖 − ̄𝑌 )2

𝑚 − 1
, ̄𝑌 = 1

𝑚

𝑚
∑
𝑖=1

𝑌𝑖

Then,
𝑆2

1/𝜎2
1

𝑆2
2/𝜎2

2
∼ 𝐹(𝑛 − 1, 𝑚 − 1)

Reasoning:

𝑆2
1

𝜎2
1

=

∑𝑛
𝑖=1(𝑋𝑖 − �̄�)2

𝜎2
1

𝑛 − 1
∼ 𝜒2(𝑛 − 1)

𝑛 − 1

𝑆2
2

𝜎2
2

∼ 𝜒2(𝑚 − 1)
𝑚 − 1

are independent, therefore,

𝑆2
1/𝜎2

1
𝑆2

2/𝜎2
2

∼ 𝜒2(𝑛 − 1)/(𝑛 − 1)
𝜒2(𝑚 − 1)/(𝑚 − 1)

= 𝐹(𝑛 − 1, 𝑚 − 1)
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Limiting/Asymptotic Distribution
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Motivation: We’re very interested in the distribution
√

𝑛(�̄�−𝜇), here 𝑋1, … , 𝑋𝑛
iid∼ with c.d.f. 𝐹 with E[𝑋𝑖] = 𝜇

and V(𝑋𝑖) = 𝜎2,

�̄� = 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖

In practice, we don’t know the distribution of 𝑋𝑖.

REMARK 5.0.1

(i) It is impossible to find the exact distribution of
√

𝑛(�̄� − 𝜇).
(ii) Main idea: are we able to find an approximate distribution for

√
𝑛(�̄� − 𝜇)? Concept of limit-

ing/asymptotic distribution is introduced for this purpose.

Let 𝐹𝑛(𝑥) be the c.d.f. of
√

𝑛(�̄� − 𝜇); that is, 𝐹𝑛(𝑥) = P(
√

𝑛(�̄� − 𝜇) ≤ 𝑥). Consider: lim
𝑛→∞

𝐹𝑛(𝑥) (pointwise
limit) and find that lim

𝑛→∞
𝐹𝑛(𝑥) = 𝐹(𝑥) where 𝐹(𝑥) is a known distribution, e.g., normal c.d.f. then we can use

𝐹(𝑥) to approximate 𝐹𝑛(𝑥) for a sufficiently large 𝑛.

To continue, we need some formal definition of this limit mathematically.

5.1 Convergence in Distribution

DEFINITION 5.1.1: Convergence in Distribution

Let 𝑋1, … , 𝑋𝑛 be a sequence of random variables such that 𝑋𝑛 has c.d.f. 𝐹𝑛(𝑥). Let 𝑋 be another
random variable with c.d.f. 𝐹(𝑥). If

lim
𝑛→∞

𝐹𝑛(𝑥) = 𝐹(𝑥)

for all 𝑥 at which 𝐹(𝑥) is continuous, then we say 𝑋𝑛 converges in distribution to 𝑋, and write
𝑋𝑛

d
→ 𝑋.

REMARK 5.1.2

(i) 𝐹(𝑥) is called the limiting distribution (or asymptotic distribution) of 𝑋𝑛.
(ii) It’s the c.d.f. to which 𝑋𝑛 converges to, not the random variables. This means, 𝐹𝑛(𝑥) ≈ 𝐹(𝑥) for

62



CHAPTER 5. LIMITING/ASYMPTOTIC DISTRIBUTION 63

𝑛 sufficiently large, however 𝑋𝑛 is not approximately, 𝑋.
(iii) lim

𝑛→∞
𝐹𝑛(𝑥) = 𝐹(𝑥) only for continuous points of 𝐹(𝑥), e.g.,

𝐹(𝑥) = {1 𝑥 ≥ 𝑎
0 𝑥 < 𝑎

which is the c.d.f. of constant 𝑋 = 𝑎; that is, P(𝑋 = 𝑎) = 1. It’s easy to tell that the c.d.f. of 𝑋 is
not continuous. 𝑋𝑛 → 𝑋 with c.d.f. 𝐹(𝑥) if lim

𝑛→∞
𝐹𝑛(𝑥) = 𝐹(𝑥) for 𝑥 ≠ 𝑎; that is,

lim
𝑛→∞

𝐹𝑛(𝑥) = {1 𝑥 > 𝑎
0 𝑥 < 𝑎

we don’t care what’s the limit of 𝐹𝑛(𝑥) as 𝑛 → ∞.
(iv) This definition holds for both discrete and continuous random variables.

THEOREM 5.1.3: 𝑒 Limit

Let 𝑏, 𝑐 ∈ R, lim
𝑛→∞

𝜓(𝑛) = 0.

lim
𝑛→∞

[1 + 𝑏
𝑛

+ 𝜓(𝑛)
𝑛

]
𝑐𝑛

= 𝑒𝑏𝑐

COROLLARY 5.1.4

Let 𝑏, 𝑐 ∈ R.

lim
𝑛→∞

[1 + 𝑏
𝑛

]
𝑐𝑛

= 𝑒𝑏𝑐

EXAMPLE 5.1.5

Suppose that 𝑋1, … , 𝑋𝑛
iid∼ Uniform(0, 1). Let 𝑋(1) = min(𝑋1, … , 𝑋𝑛) and 𝑋(𝑛) = max(𝑋1, … , 𝑋𝑛).

Find the limiting distribution of
(i) 𝑛𝑋(1) and 𝑛(1 − 𝑋(𝑛))
(ii) 𝑋(1) and 𝑋(𝑛)

Solution.
(i) 𝑛𝑋(1). Support is [0, 𝑛], so the c.d.f. of 𝑛𝑋(1) is:

• 𝑥 ≥ 𝑛, 𝐹𝑛(𝑥) = P(𝑛𝑋(1) ≤ 𝑥) = 1
• 𝑥 ≤ 0, 𝐹𝑛(𝑥) = P(𝑛𝑋(1) ≤ 𝑥) = 0
• 0 < 𝑥 < 𝑛,

𝐹𝑛(𝑥) = P(𝑛𝑋(1) ≤ 𝑥)

= P(𝑋(1) ≤ 𝑥
𝑛

)

= 1 − P(𝑋1 > 𝑥
𝑛

, … , 𝑋𝑛 > 𝑥
𝑛

)

= 1 − [P(𝑋1 > 𝑥
𝑛

)]
𝑛

= 1 − (1 − 𝑥
𝑛

)
𝑛
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Therefore,

P(𝑛𝑋(1) ≤ 𝑥) ≔ 𝐹𝑛(𝑥) =

⎧{{
⎨{{⎩

0 𝑥 ≤ 0

1 − (1 − 𝑥
𝑛

)
𝑛

0 < 𝑥 < 𝑛

1 𝑥 ≥ 𝑛

⟹ lim
𝑛→∞

𝐹𝑛(𝑥) = {0 𝑥 ≤ 0
1 − 𝑒−𝑥 𝑥 > 0

Aside: lim
𝑛→∞

(1 + 𝑥
𝑛

) = 𝑒𝑥 which is the c.d.f. of Exponential(1).

𝑛(1 − 𝑋(𝑛)). Support is [0, 𝑛], so the c.d.f. of 𝑛(1 − 𝑋(𝑛)) is
• 𝑥 ≥ 𝑛, 𝐹𝑛(𝑥) = P(𝑛(1 − 𝑋(𝑛)) ≤ 𝑥) = 1
• 𝑥 ≤ 0, 𝐹𝑛(𝑥) = P(𝑛(1 − 𝑋(𝑛)) ≤ 𝑥) = 0
• 0 < 𝑥 < 𝑛,

𝐹𝑛(𝑥) = P(𝑛(1 − 𝑋(𝑛)) ≤ 𝑥)

= P(1 − 𝑋(𝑛) ≤ 𝑥
𝑛

)

= 1 − P(𝑋(𝑛) < 1 − 𝑥
𝑛

)

= 1 − P(𝑋1 < 1 − 𝑥
𝑛

, … , 𝑋𝑛 < 1 − 𝑥
𝑛

)

= 1 − [P(𝑋1 < 1 − 𝑥
𝑛

)]
𝑛

= 1 − (1 − 𝑥
𝑛

)
𝑛

Therefore,

𝐹𝑛(𝑥) =

⎧{{
⎨{{⎩

0 𝑥 ≤ 0

1 − (1 − 𝑥
𝑛

)
𝑛

0 < 𝑥 < 𝑛

1 𝑥 ≥ 𝑛

⟹ lim
𝑛→∞

𝐹𝑛(𝑥) = {0 𝑥 ≤ 0
1 − 𝑒−𝑥 𝑥 > 0

which is the c.d.f. of Exponential(1).
(ii) 𝑋(1). Support (0, 1).

𝐹𝑛(𝑥) = P(𝑋(1) ≤ 𝑥) =
⎧{
⎨{⎩

0 𝑥 ≤ 0
1 − (1 − 𝑥)𝑛 0 < 𝑥 < 1
1 𝑥 ≥ 1

⟹ lim
𝑛→∞

𝐹𝑛(𝑥) =
⎧{
⎨{⎩

0 𝑥 ≤ 0
1 0 < 𝑥 < 1
1 𝑥 ≥ 1

= {0 𝑥 ≤ 0
1 𝑥 > 0

Question: What is 𝐹(𝑥)?

𝐹(𝑥) = {0 𝑥 < 0
1 𝑥 ≥ 0
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will make 𝐹(𝑥) right-continuous. 𝐹(𝑥) is not continuous at 𝑥 = 0. Here, we don’t require that
𝐹𝑛(𝑥) converges to 𝐹(𝑥) at 𝑥 = 0. 𝐹(𝑥) is actually the c.d.f. of 𝑋 which satisfies P(𝑋 = 0) = 1.

lim
𝑛→∞

𝐹𝑛(𝑥) =
⎧{
⎨{⎩

0 𝑥 ≤ 0
0 0 < 𝑥 < 1
1 𝑥 ≥ 1

= {0 𝑥 < 1
1 𝑥 ≥ 1

which is right-continuous.
Therefore, lim

𝑛→∞
𝐹𝑛(𝑥) = 𝐹(𝑥) is the limiting distribution in this case only.

Lecture 18 | 2020-11-08

5.2 Convergence in Probability

DEFINITION 5.2.1: Converges in Probability

Let 𝑋1, … , 𝑋𝑛 be a sequence of random variables such that 𝑋𝑛 has c.d.f. 𝐹𝑛(𝑥). Let 𝑋 be a random
variable with c.d.f. 𝐹(𝑥). If for any 𝜀 > 0,

lim
𝑛→∞

P(|𝑋𝑛 − 𝑋| ≥ 𝜀) = 0

or
lim

𝑛→∞
P(|𝑋𝑛 − 𝑋| < 𝜀) = 1

then we say 𝑋𝑛 converges in probability to 𝑋, and write 𝑋𝑛
P

→ 𝑋.

REMARK 5.2.2

(i) Here it’s the convergence or limit for a probability, therefore it’s called convergence in probability.

(ii) “Meaning” of 𝑋𝑛
P

→ 𝑋. As 𝑛 → ∞, 𝑋𝑛 cannot be “𝜀” away from 𝑋. That is, 𝑋𝑛 becomes very
close to 𝑋 as 𝑛 → ∞. Because of that, we expect that 𝐹𝑛(𝑥) becomes very close to 𝐹(𝑥).

THEOREM 5.2.3: Convergence in Probability Implies Convergence in Distribution

If 𝑋𝑛
P

→ 𝑋, then 𝑋𝑛
d

→ 𝑋.

REMARK 5.2.4

Probability convergence is stronger than distribution convergence. The converse is not always true.

We consider a special case.

DEFINITION 5.2.5: Convergence in Probability to a Constant

Let 𝑋1, … , 𝑋𝑛 be a sequence of random variables, and 𝑏 be a constant. If lim
𝑛→∞

P(|𝑋𝑛 − 𝑏| ≥ 𝜀) = 0 for

any 𝜀 > 0. We say 𝑋𝑛 converges in probability to 𝑏, and write 𝑋𝑛
P

→ 𝑏.
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THEOREM 5.2.6

Let 𝑋1, … , 𝑋𝑛 be a sequence of random variables such that 𝑋𝑛 has c.d.f. 𝐹𝑛(𝑥). If

lim
𝑛→∞

𝐹𝑛(𝑥) = {0 𝑥 < 𝑏
1 𝑥 > 𝑏

or limiting distribution of 𝑋𝑛 is

𝐹(𝑥) = {0 𝑥 < 𝑏
1 𝑥 ≥ 𝑏

(c.d.f. of 𝑋, which satisfies P(𝑋 = 𝑏) = 1), then 𝑋𝑛
P

→ 𝑏 and write 𝑋𝑛
d

→ 𝑏.
In other words, 𝑋𝑛

d
→ 𝑏 implies 𝑋𝑛

P
→ 𝑏. Therefore,

𝑋𝑛
d

→ 𝑏 ⟺ 𝑋𝑛
P

→ 𝑏

Proof of Theorem 5.2.6

For any 𝜀 > 0, P(|𝑋𝑛 − 𝑏| ≥ 𝜀) → 0 as 𝑛 → ∞.
(i) Lower bound: P(|𝑋𝑛 − 𝑏| ≥ 𝜀) ≥ 0
(ii) Upper bound:

P(|𝑋𝑛 − 𝑏| ≥ 𝜀) = P((𝑋𝑛 ≥ 𝑏 + 𝜀) ∪ (𝑋𝑛 ≤ 𝑏 − 𝜀))
= 1 − P(𝑋𝑛 < 𝑏 + 𝜀) + P(𝑋𝑛 ≤ 𝑏 − 𝜀)⎵⎵⎵⎵⎵⎵

𝐹𝑛(𝑏−𝜀)

≤ 1 − P(𝑋𝑛 ≤ 𝑏 + 𝜀
2

) + 𝐹𝑛(𝑏 − 𝜀)

= 1 − 𝐹𝑛(𝑏 + 𝜀
2

) + 𝐹𝑛(𝑏 − 𝜀)

as 𝑛 → ∞, 𝐹𝑛(𝑏 + 𝜀
2

) ≥ 1 and lim
𝑛→∞

𝐹𝑛(𝑏 − 𝜀) = 0, so the upper bound will be 1 − 1 + 0 = 0, and

hence
0 ≤ lim

𝑛→∞
P(|𝑋𝑛 − 𝑏| ≥ 𝜀) ≤ 0

and hence
𝑋𝑛

d
→ 𝑏 ⟺ 𝑋𝑛

P
→ 𝑏

EXAMPLE 5.2.7

𝑋1, … , 𝑋𝑛
iid∼ Uniform(0, 1). In Example 5.1.5, we showed that

lim
𝑛→∞

P(𝑋(1) ≤ 𝑥) = {0 𝑥 < 0
1 𝑥 > 0

⟹ 𝑋(1)
d

→ 0 ⟹ 𝑋(1)
P

→ 0

lim
𝑛→∞

P(𝑋(𝑛) ≤ 𝑥) = {0 𝑥 < 1
1 𝑥 > 1

⟹ 𝑋(𝑛)
d

→ 1 ⟹ 𝑋(𝑛)
P

→ 1
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EXAMPLE 5.2.8

𝑋1, … , 𝑋𝑛 are i.i.d with p.d.f. 𝑓(𝑥) = 𝑒−(𝑥−𝜃), 𝑥 > 𝜃. Show that 𝑋(1)
P

→ 𝜃.

Solution 1. Only need to show that 𝑋(1)
d

→ 𝜃; that is,

lim
𝑛→∞

P(𝑋(1) ≤ 𝑥) = {0 𝑥 < 𝜃
1 𝑥 > 𝜃

or limiting distribution of 𝑋(1) is

𝐹(𝑥) = {0 𝑥 < 𝜃
1 𝑥 ≥ 𝜃

Support 𝑋(1) is (𝜃, ∞). P(𝑋(1) ≤ 𝑥) = 𝐹𝑛(𝑥).
• 𝑥 ≤ 𝜃, 𝐹𝑛(𝑥) = 0
• 𝑥 > 𝜃,

P(𝑋(1) ≤ 𝑥) = 1 − [P(𝑋1 > 𝑥)]𝑛

= 1 − 𝑒−𝑛(𝑥−𝜃)

since P(𝑋1 > 𝑥) = ∫
∞

𝑥
𝑒−(𝑡−𝜃) 𝑑𝑡 = 𝑒−(𝑥−𝜃). Therefore,

𝐹𝑛(𝑥) = {0 𝑥 ≤ 𝜃
1 − 𝑒−𝑛(𝑥−𝜃) 𝑥 > 𝜃

⟹ lim
𝑛→∞

𝐹𝑛(𝑥) = {0 𝑥 < 𝜃
1 𝑥 > 𝜃

So, 𝑋(1)
d

→ 𝜃 ⟹ 𝑋(1)
P

→ 𝜃.
Solution 2. By definition, for any 𝜀 > 0,

• Lower bound: P(|𝑋(1) − 𝜃| ≥ 𝜀) ≥ 0
• Upper bound:

P(|𝑋(1) − 𝜃| ≥ 𝜀) = P((𝑋(1) ≥ 𝜃 + 𝜀) ∪ (𝑋(1) ≤ 𝜃 − 𝜀))
= P(𝑋(1) ≥ 𝜃 + 𝜀) + P(𝑋(1) ≤ 𝜃 − 𝜀)
= [P(𝑋1 > 𝜃 + 𝜀)]𝑛

= 𝑒−𝑛(𝜃+𝜀−𝜃)

= 𝑒−𝑛𝜀 → 0 as 𝑛 → ∞

Therefore, P(|𝑋(1) − 𝜃| ≥ 𝜀) = 0 as 𝑛 → ∞ which implies 𝑋(1)
P

→ 𝜃 by definition.

Brief Summary:

• Convergence in distribution.

• Convergence in probability.

• Special case. Convergence in probability to a constant if and only if convergence to distribution.

• 𝑋(1) = min1≤𝑖≤𝑛 𝑋𝑖 and 𝑋(𝑛) = max1≤𝑖≤𝑛 𝑋𝑖.

Next, our main job is to study convergence in distribution and probability �̄�𝑛 = 1
𝑛 ∑𝑛

𝑖=1 𝑋𝑖.

Sequence of results:

• Convergence in probability of �̄�𝑛, WLLN.



CHAPTER 5. LIMITING/ASYMPTOTIC DISTRIBUTION 68

• Convergence in distribution of
√

𝑛(�̄�𝑛 − 𝜇). CLT.

• Combine them together: Slutsky’s Theorem, Delta Method.

THEOREM 5.2.9: Markov’s Inequality

Suppose that 𝑋 is a random variable. For any 𝑘 > 0, 𝑐 > 0, we have

P(|𝑋| ≥ 𝑐) ≤
E[|𝑋|𝑘]

𝑐𝑘

Markov’s Inequality relates probability to moments.

In most situations, we take 𝑘 = 2; that is, we consider

P(|𝑋| ≥ 𝑐) ≤ E[𝑋2]
𝑐2

EXAMPLE 5.2.10: Weak Law of Large Numbers

Suppose 𝑋1, … , 𝑋𝑛 are i.i.d. random variables with E[𝑋𝑖] = 𝜇 and V(𝑋𝑖) = 𝜎2 < ∞, then

�̄�𝑛 = 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖
P

→ 𝜇

Solution. By definition, we only need to show that for any 𝜀 > 0,

lim
𝑛→∞

P(∣�̄�𝑛 − 𝜇∣ ≥ 𝜀) = 0

Lower bound: P(∣�̄�𝑛 − 𝜇∣ ≥ 𝜀) ≥ 0.
Upper bound:

P(∣�̄�𝑛 − 𝜇∣ ≥ 𝜀) ≤ E[(�̄�𝑛 − 𝜇)2]
𝜀2

Aside: E[�̄�𝑛] = 𝜇, V(𝑋𝑛) = 𝜎2

𝑛 , so

E[(�̄�𝑛 − 𝜇)2]
𝜀2 = V(�̄�𝑛)

𝜀2 = 𝜎2

𝑛𝜀2 → 0 as 𝑛 → ∞

By Squeeze Theorem, P(∣�̄�𝑛 − 𝜇∣ ≥ 𝜀) = 0.

EXERCISE 5.2.11: Markov’s Inequality

If 𝑋1, … , 𝑋𝑛 are independent. E[𝑋𝑖] = 𝜇 and V(𝑋𝑖) = 𝜎2
𝑖 for 𝑖 = 1, … , 𝑛. max1≤𝑖≤𝑛 𝜎2

𝑖 ≤ 𝑐. Show that

�̄�𝑛
P

→ 𝜇

EXAMPLE 5.2.12

If 𝑋1, … , 𝑋𝑛
iid∼ 𝜒2(1), then �̄�𝑛

P
→ 1.

Solution. E[𝑋1] = ⋯ = E[𝑋𝑛] = 1.
From term test 1, 𝜒2(1) m.g.f. is (1 − 2𝑡)−1/2 which is Gamma(𝛼 = 1/2, 𝛽 = 2), so V(𝜒2(1)) = 𝛼𝛽2 =
(1/2)(2)2 = 2. By WLLN, �̄�𝑛

P
→ 𝜇 = 1.
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EXAMPLE 5.2.13

If 𝑌𝑛 ∼ 𝜒2(𝑛), then 𝑌𝑛
𝑛

P
→ 1.

Solution. We can write 𝑌𝑛 = ∑𝑛
𝑖=1 𝑋𝑖 where 𝑋𝑖

iid∼ 𝜒2(1), then

𝑌𝑛
𝑛

= 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖 = �̄�𝑛
P

→ 1

EXAMPLE 5.2.14

If 𝑋1, … , 𝑋𝑛
iid∼ Poisson(𝜇), then �̄�𝑛

P
→ 𝜇.

Solution. E[𝑋𝑖] = 𝜇 < ∞ and V(𝑋𝑖) = 𝜇 < ∞, so by WLLN, �̄�𝑛
P

→ 𝜇.

EXERCISE 5.2.15

If 𝑌𝑛 ∼ Poisson(𝑛), then
𝑌𝑛
𝑛

P
→ 1

Solution. 𝑌𝑛 = ∑𝑛
𝑖=1 𝑋𝑖 where 𝑋𝑖

iid∼ Poisson(1), so by WLLN,

𝑌𝑛
𝑛

= 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖 = �̄�𝑛
P

→ 1
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5.3 Some Useful Limit Theorems
In this section, we’ll discuss some theorems regarding convergence in distribution of �̄�𝑛 or function of
�̄�𝑛.

THEOREM 5.3.1: Central Limit Theorem (CLT)

Let 𝑋1, … , 𝑋𝑛 be i.i.d. random variables with E[𝑋𝑖] = 𝜇 and V(𝑋𝑖) = 𝜎2 < ∞. Let �̄�𝑛 = 1
𝑛 ∑𝑛

𝑖=1 𝑋𝑖.
Then, the limiting distribution of √

𝑛(�̄�𝑛 − 𝜇)
𝜎

is the c.d.f. of 𝒩(0, 1). √
𝑛(�̄�𝑛 − 𝜇)

𝜎
d

→ 𝒩(0, 1)

The proof is not hard, we use a standard method, but we need to put several pieces together. We need the
following theorem.

THEOREM 5.3.2

Let 𝑋1, … , 𝑋𝑛 be a sequence of random variables such that 𝑋𝑛 has m.g.f. 𝑀𝑛(𝑡). Let 𝑋 be another random
variable with m.g.f. 𝑀(𝑡). If there exists some ℎ > 0, such that

lim
𝑛→∞

𝑀𝑛(𝑡) = 𝑀(𝑡)



CHAPTER 5. LIMITING/ASYMPTOTIC DISTRIBUTION 70

for all 𝑡 ∈ (−ℎ, ℎ), then
𝑋𝑛

d
→ 𝑋

Therefore, our next steps:

(1) Find the m.g.f. of
√

𝑛(�̄�𝑛 − 𝜇)
𝜎

, denoted by 𝑀𝑛(𝑡).

Find the m.g.f. of 𝒩(0, 1), denoted by 𝑀(𝑡) = exp{𝑡2

2
}.

(2) We try to show that for 𝑡 ∈ (−ℎ, ℎ) where ℎ > 0 that

lim
𝑛→∞

𝑀𝑛(𝑡) = exp{𝑡2

2
}

Step 1: Find m.g.f. of
√

𝑛(�̄�𝑛 − 𝜇)
𝜎

.

√
𝑛(�̄�𝑛 − 𝜇)

𝜎
=

√
𝑛

1
𝑛 ∑𝑛

𝑖=1(𝑋𝑖 − 𝜇)
𝜎

= 1√
𝑛

∑𝑛
𝑖=1(𝑋𝑖 − 𝜇)

𝜎

Let 𝑌𝑖 = 𝑋𝑖 − 𝜇
𝜎

, then 𝑌1, … , 𝑌𝑛 are i.i.d. with E[𝑌𝑖] = 0 and V(𝑌𝑖) = 1. Then,

𝑀𝑛(𝑡) = E[exp{
√

𝑛(�̄�𝑛 − 𝜇)
𝜎

}]

= E[exp{ 𝑡√
𝑛

𝑛
∑
𝑖=1

𝑌𝑖}]

= E[
𝑛

∏
𝑖=1

exp{ 𝑡√
𝑛

𝑌𝑖}]

=
𝑛

∏
𝑖=1

E[exp{ 𝑡√
𝑛

𝑌𝑖}]

Suppose 𝑌𝑖 has m.g.f. 𝑀𝑌(𝑡), then

• 𝑀𝑌(0) = 1

• 𝑀 ′
𝑌(0) = 0

• 𝑀 ′′
𝑌 (0) = E[𝑌 2] = V(𝑌 ) + (E[𝑌 ])2 = 1

𝑀𝑛(𝑡) = [𝑀𝑌( 𝑡√
𝑛

)]
𝑛

since E[exp{ 𝑡√
𝑛

𝑌𝑖}] = 𝑀𝑌( 𝑡√
𝑛

).

Step 2: We want to show that

lim
𝑛→∞

[𝑀𝑌( 𝑡√
𝑛

)]
𝑛

= exp{𝑡2

2
}

𝑀𝑌( 𝑡√
𝑛

) = 𝑀𝑌(0) + 𝑀 ′
𝑌(0)( 𝑡√

𝑛
) + 𝑀 ′′

𝑌 (0)
2!

( 𝑡√
𝑛

)
2

+ 𝑜[( 𝑡√
𝑛

)
2

]

= 1 + 𝑡2

2𝑛
+ 𝑜(𝑡2

𝑛
)
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Then,

lim
𝑛→∞

[1 + 𝑡2

2𝑛
+ 𝑜(𝑡2

𝑛
)]

𝑛

= lim
𝑛→∞

(1 + 𝑡2

2𝑛
)

𝑛

= exp{𝑡2

2
}

EXAMPLE 5.3.3

Suppose that 𝑋1, … , 𝑋𝑛
iid∼ 𝜒2(1) and 𝑌𝑛 = ∑𝑛

𝑖=1 𝑋𝑖. Show that

𝑌𝑛 − 𝑛√
2𝑛

d
→ 𝒩(0, 1)

Solution. E[𝑋𝑖] = 1 = 𝜇 and V(𝑋𝑖) = 2 = 𝜎2 < ∞. CLT tells us
√

𝑛(�̄�𝑛 − 𝜇)
𝜎

=
√

𝑛(�̄�𝑛 − 1)√
2

d
→ 𝑍 ∼ 𝒩(0, 1)

𝑌𝑛 − 𝑛√
2𝑛

=
∑𝑛

𝑖=1 𝑋𝑖 − 𝑛
√

2𝑛
= 𝑛(�̄�𝑛 − 1)√

2𝑛
=

√
𝑛(�̄�𝑛 − 1)√

2
d

→ 𝑍 ∼ 𝒩(0, 1)

Suppose that 𝑌𝑛 ∼ 𝜒2(𝑛), we might ask you to prove

𝑌𝑛 − 𝑛√
2𝑛

d
→ 𝑍 ∼ 𝒩(0, 1)

and you might have to figure out 𝑌𝑛 = ∑𝑛
𝑖=1 𝑋𝑖 where 𝑋1, … , 𝑋𝑛

iid∼ 𝜒2(1).

EXAMPLE 5.3.4

𝑋1, … , 𝑋𝑛
iid∼ Poisson(𝜇). Let 𝑌𝑛 = ∑𝑛

𝑖=1 𝑋𝑖. Find the limiting distribution of
𝑌𝑛 − 𝑛𝜇

√𝑛𝜇
.

Solution. CLT tells us that √
𝑛(�̄�𝑛 − 𝜇)

√𝜇
d

→ 𝑍 ∼ 𝒩(0, 1)

Now,
𝑌𝑛 − 𝑛𝜇

√𝑛𝜇
=

∑𝑛
𝑖=1 𝑋𝑖 − 𝑛𝜇

√𝑛𝜇
= 𝑛(�̄�𝑛 − 𝜇)

√𝑛𝜇
=

√
𝑛(�̄�𝑛 − 𝜇)

√𝜇
d

→ 𝑍 ∼ 𝒩(0, 1)

Alternatively: If 𝑌𝑛 ∼ Poisson(𝑛𝜇), what is the limiting distribution of
𝑌𝑛 − 𝑛𝜇

√𝑛𝜇
?

THEOREM 5.3.5: Continuous Mapping Theorem

Suppose that 𝑔(⋅) is a continuous function.
(1) If 𝑋𝑛

P
→ 𝑎, then 𝑔(𝑋𝑛)

P
→ 𝑔(𝑎).

(2) If 𝑋𝑛
d

→ 𝑋, then 𝑔(𝑋𝑛)
d

→ 𝑔(𝑋).

THEOREM 5.3.6: Slutsky’s Theorem

If 𝑋𝑛
d

→ 𝑋, and 𝑌𝑛
P

→ 𝑏, then
(a) 𝑋𝑛 + 𝑌𝑛

d
→ 𝑋 + 𝑏. If we replace 𝑏 by 𝑌 it is still true.

(b) 𝑋𝑛𝑌𝑛
d

→ 𝑏𝑋.
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(c)
𝑋𝑛
𝑌𝑛

d
→ 𝑋

𝑏
for 𝑏 ≠ 0.

EXERCISE 5.3.7

Find a counter-example to the following statement. If 𝑋𝑛
d

→ 𝑋 and 𝑌𝑛
d

→ 𝑌, then

𝑋𝑛 + 𝑌𝑛
d

→ 𝑋 + 𝑌

EXAMPLE 5.3.8

(i) If 𝑋𝑛 ≥ 0, 𝑎 ≥ 0, then √𝑋𝑛
P

→
√

𝑎.
(ii) If 𝑋𝑛

P
→ 𝑎, then 𝑋2

𝑛
P

→ 𝑎2.
(iii) If 𝑋𝑛

d
→ 𝑋 ∼ 𝒩(0, 1), then

• 2𝑋𝑛
d

→ 2𝑋 ∼ 𝒩(0, 4).
• 2𝑋𝑛 + 1

d
→ 2𝑋 + 1 ∼ 𝒩(1, 4).

• 𝑋2
𝑛

d
→ 𝑋2 ∼ 𝜒2(1).

(iv) If 𝑋𝑛
d

→ 𝑋 ∼ 𝒩(0, 1) and 𝑌𝑛
P

→ 𝑏 for 𝑏 ≠ 0, then
• 𝑋𝑛 + 𝑌𝑛

d
→ 𝑋 + 𝑏 ∼ 𝒩(𝑏, 1).

• 𝑋𝑛𝑌𝑛
d

→ 𝑏𝑋 ∼ 𝒩(0, 𝑏2).

•
𝑋𝑛
𝑌 𝑛

d
→ 𝑋

𝑏
∼ 𝒩(0, 1

𝑏2 ).

EXAMPLE 5.3.9

Suppose that 𝑋1, … , 𝑋𝑛
iid∼ Poisson(𝜇). Find the limiting distribution of

𝑍𝑛 =
√

𝑛(�̄�𝑛 − 𝜇)

√�̄�𝑛

𝑈𝑛 =
√

𝑛(�̄�𝑛 − 𝜇)

Solution. For 𝑍𝑛, √
𝑛(�̄�𝑛 − 𝜇)

√𝜇
d

→ 𝑍 ∼ 𝒩(0, 1)

𝑍𝑛 =
√

𝑛(�̄�𝑛 − 𝜇)

√�̄�𝑛

=
√

𝑛(�̄�𝑛 − 𝜇)
√𝜇

⋅
√𝜇

√�̄�𝑛

By continuous mapping theorem,
√𝜇

√�̄�𝑛

P
→

√𝜇
√𝜇

= 1 since �̄�𝑛
P

→ 𝜇 by WLLN

For 𝑈𝑛, by Slutsky’s theorem, 𝑍𝑛
d

→ 𝑍 ∼ 𝒩(0, 1).

𝑈𝑛 =
√

𝑛(�̄�𝑛 − 𝜇) =
√

𝑛(�̄�𝑛 − 𝜇)
√𝜇

√𝜇
d

→ √𝜇𝑍 ∼ 𝒩(0, 𝜇) by continuous mapping theorem
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EXAMPLE 5.3.10

𝑋1, … , 𝑋𝑛
iid∼ Uniform(0, 1) and 𝑈𝑛 = max1≤𝑖≤𝑛 𝑋𝑖. In the first two examples of this chapter, we’ve

shown that
𝑈𝑛 = 𝑋(𝑛)

P
→ 1

𝑈𝑛
d

→ 1

and
𝑛(1 − 𝑋(𝑛)) = 𝑛(1 − 𝑈𝑛)

d
→ 𝑋 ∼ Exponential(1)

Then,
(i) 𝑒𝑈𝑛

(ii) sin(1 − 𝑈𝑛)
(iii) 𝑒−𝑛(1−𝑈𝑛)

(iv) (𝑈𝑛 + 1)2[𝑛(1 − 𝑈𝑛)]
Solution.
(i) 𝑒𝑈𝑛 Take 𝑔(𝑥) = 𝑒𝑥. Continuous mapping theorem:

𝑈𝑛
P

→ 1 ⟹ 𝑒𝑈𝑛
P

→ 𝑒1

(ii) sin(1 − 𝑈𝑛). Take 𝑔(𝑥) = sin(1 − 𝑥).

sin(1 − 𝑈𝑛)
P

→ sin(1 − 1) = 0

(iii) 𝑒−𝑛(1−𝑈𝑛).
𝑛(1 − 𝑈𝑛)

d
→ 𝑋 ∼ Exponential(1)

Continuous mapping theorem. Take 𝑔(𝑥) = 𝑒−𝑥,

𝑒−𝑛(1−𝑈𝑛) d
→ 𝑒−𝑋 𝑋 ∼ Exponential(1)

How to find c.d.f. of 𝑒−𝑋? Let 𝑌 = 𝑒−𝑋. Support of 𝑌 is (0, 1). For any 0 < 𝑦 < 1,

𝐹𝑦(𝑦) = P(𝑒−𝑋 ≤ 𝑦)
= P(−𝑋 ≤ ln(𝑦))
= P(𝑋 ≥ − ln(𝑦))

= ∫
∞

− ln(𝑦)
𝑒−𝑥 𝑑𝑥

= 𝑦

Therefore,
𝑒−𝑛(1−𝑈𝑛) d

→ 𝑌 ∼ Uniform(0, 1)

(iv) (𝑈𝑛 + 1)2[𝑛(1 − 𝑈𝑛)]. Since 𝑈𝑛
P

→ 1, Take 𝑔(𝑥) = (1 + 𝑥)2. Continuous mapping theorem:

(𝑈𝑛 + 1)2 P
→ (1 + 1)2 = 4

𝑛(1 − 𝑈𝑛)
d

→ 𝑋 ∼ Exponential(1)

Slutsky’s Theorem:
(𝑈𝑛 + 1)2[𝑛(1 − 𝑈𝑛)]

d
→ 4𝑋
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Let 𝑌 = 4𝑋. Support of 𝑌 is (0, ∞). For 0 < 𝑦 < ∞,

P(𝑌 ≤ 𝑦) = P(4𝑋 ≤ 𝑦)

= P(𝑋 ≤ 𝑦
4

)

= ∫
𝑦/4

0
𝑒−𝑥 𝑑𝑥

= 1 − 𝑒−𝑦/4

Hence, the p.d.f. of 𝑌 is
𝑓𝑌(𝑦) = 1

4
𝑒−𝑦/4 (𝑦 > 0)

𝑌 ∼ Exponential(4).

THEOREM 5.3.11: Delta Method

Let 𝑋1, … , 𝑋𝑛 be a sequence of random variables such that

√
𝑛(𝑋𝑛 − 𝜃)

d
→ 𝑋 ∼ 𝒩(0, 𝜎2)

and 𝑔(𝑥) is differentiable at 𝑥 = 𝜃 and 𝑔′(𝜃) ≠ 0. Then,

√
𝑛[𝑔(𝑋𝑛) − 𝑔(𝜃)]

d
→ 𝑊 ∼ 𝒩(0, [𝑔′(𝜃)]2𝜎2)

Background:
√

𝑛(𝑋𝑛 − 𝜃)
√

𝑛(𝑋𝑛 − 𝜃)
d

→ 𝑋 ∼ 𝒩(0, 𝜎2). This implies that

√
𝑛(𝑋𝑛 − 𝜃) d≈ 𝒩(0, 𝜎2)

equivalently,

𝑋𝑛
d≈ 𝒩(𝜃, 𝜎2

𝑛
)

Question: What’s the approximate distribution of 𝑔(𝑋𝑛)? Delta method tells us that
√

𝑛[𝑔(𝑋𝑛) − 𝑔(𝜃)] ≈ 𝒩(0, [𝑔′(𝜃)]2𝜎2)

⟹ 𝑔(𝑋𝑛) d≈ 𝒩(𝑔(𝜃), [𝑔′(𝜃)]𝜎2

𝑛
)

Not rigorous derivation. By 1st order Taylor expansion:

𝑓(𝑥) ≈ 𝑓(𝑥0) + 𝑓 ′(𝑥0)(𝑥 − 𝑥0) (𝑥 ≈ 𝑥0)

𝑔(𝑋𝑛) ≈ 𝑔(𝜃) + 𝑔′(𝜃)(𝑋𝑛 − 𝜃) ⟹
√

𝑛[𝑔(𝑋𝑛) − 𝑔(𝜃)] ≈
√

𝑛(𝑋𝑛 − 𝜃)⎵⎵⎵⎵⎵
𝒩(0,𝜎2)

𝑔′(𝜃)

By continuous mapping theorem,

√
𝑛(𝑋𝑛 − 𝜃)𝑔′(𝜃)

d
→ 𝑔′(𝜃)𝑋 ∼ 𝒩(0, [𝑔′(𝜃)]2𝜎2)

Not rigorous since we only considered the 1st Taylor expansion, “why can we drop other terms?”
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EXAMPLE 5.3.12

𝑋1, … , 𝑋𝑛
iid∼ Poisson(𝜇). Find limiting distribution of

𝑍𝑛 =
√

𝑛(√�̄�𝑛 − √𝜇)

Recall in Example 5.3.9:
√

𝑛(�̄�𝑛 − 𝜇)
d

→ 𝒩(0, 𝜇)

since E[𝑋𝑖] = 𝜇, V(𝑋𝑖) = 𝜇. Take 𝑔(𝑥) =
√

𝑥, 𝑔′(𝑥) = 1
2 𝑥−1/2.

𝑍𝑛 =
√

𝑛(√�̄�𝑛 − √𝜇)
d

→ 𝒩(0, [𝑔′(𝜇)]𝜎2) = 𝒩(0, 1
4

𝜇−1𝜇 = 1
4

) = 𝒩(0, 1
4

)

EXAMPLE 5.3.13

𝑋1, … , 𝑋𝑛
iid∼ Exponential(𝜃). Find the limiting distribution of

1. �̄�𝑛

2. 𝑍𝑛 =
√

𝑛(�̄�𝑛 − 𝜃)
�̄�𝑛

3. 𝑈𝑛 =
√

𝑛(�̄�𝑛 − 𝜃)
4. 𝑉𝑛 =

√
𝑛(ln(�̄�𝑛) − ln(𝜃))

Solution.
1. �̄�𝑛. By WLLN, E[𝑋𝑖] = 𝜃, V(𝑋𝑖) = 𝜃2 (also available on cheat sheet), so �̄�𝑛

P
→ 𝜃.

2. 𝑍𝑛 =
√

𝑛(�̄�𝑛 − 𝜃)
�̄�𝑛

.
√

𝑛(�̄�𝑛 − 𝜃)
𝜃

d
→ 𝒩(0, 1) CLT

𝑍𝑛 =
√

𝑛(�̄�𝑛 − 𝜃)
�̄�𝑛

=
√

𝑛(�̄�𝑛 − 𝜃)
𝜃

𝜃
�̄�𝑛

by continuous mapping theorem, take 𝑔(𝑥) = 𝜃
𝑥 ,

𝜃
�̄�𝑛

P
→ 1

By Slutsky’s Theorem,
𝑍𝑛

d
→ 𝑍 ∼ 𝒩(0, 1)(1)

3. 𝑈𝑛 =
√

𝑛(�̄�𝑛 − 𝜃).

𝑈𝑛 =
√

𝑛(�̄�𝑛 − 𝜃)
𝜃

(𝜃)
d

→ 𝑍 ∼ 𝒩(0, 1)

𝑔(𝑥) = 𝜃𝑥, continuous mapping theorem

𝑈𝑛
d

→ 𝜃𝑍 ∼ 𝒩(0, 𝜃2)

4. 𝑉𝑛 =
√

𝑛(ln(�̄�𝑛) − ln(𝜃)). 𝑔(𝑥) = ln(𝑥). 𝑔′(𝑥) = 1/𝑥. By Delta Method,

√
𝑛(�̄�𝑛 − 𝜃)

d
→ 𝒩(0, 𝜎2)

Delta method,
√

𝑛(ln(�̄�𝑛) ln(𝜃))
d

→ 𝒩(0, [𝑔′(𝜎)]2𝜃2) = 𝒩(0, 1)
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Point Estimation
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6.1 Introduction
Background: Suppose 𝑋1, … , 𝑋𝑛 are i.i.d. random variables from 𝑓(𝑥; 𝜃). Here, 𝜃 is unknown, but fixed. It
can be a scalar or a vector since

𝜽 = ⎛⎜
⎝

𝜃1
⋮

𝜃𝑘

⎞⎟
⎠

Clearly, if 𝑘 = 1, 𝜃 is a scalar, and if 𝑘 > 1, 𝜃 is a vector.

Purpose: Given 𝑋1, … , 𝑋𝑛 we’d like to estimate 𝜃.

EXAMPLE 6.1.1

• If 𝑋1, … , 𝑋𝑛 ∼ 𝒩(𝜇, 1), then 𝜃 = 𝜇 is a scalar.

• If 𝑋1, … , 𝑋𝑛 ∼ 𝒩(𝜇, 𝜎2), then 𝜃 = ( 𝜇
𝜎2) is a vector.

Notation:

• 𝛩: parameter space, it contains all possible values of 𝜃.

EXAMPLE 6.1.2

– If 𝑋1, … , 𝑋𝑛 ∼ 𝒩(𝜇, 1), then

𝛩 = {𝜇 ∶ −∞ < 𝜇 < ∞}

– If 𝑋1, … , 𝑋𝑛 ∼ 𝒩(𝜇, 𝜎2), then

𝛩 = {(𝜇, 𝜎2) ∶ −∞ < 𝜇 < ∞, 𝜎2 > 0}

• Data: (𝑋1, … , 𝑋𝑛) data are random variables.

• Observed data/observations: (𝑥1, … , 𝑥𝑛), they’re observed values of (𝑋1, … , 𝑋𝑛). Note that 𝑥1, … , 𝑥𝑛
are not random variables.

• Statistic: function of data, does not depend on any unknown parameter. Denoted by 𝑇 = 𝑇 (𝑋1, … , 𝑋𝑛).

76
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EXAMPLE 6.1.3

– If 𝑋1, … , 𝑋𝑛
iid∼ 𝒩(𝜇, 1), then

�̄�𝑛 = 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖

is a statistic.
–

√
𝑛(�̄�𝑛 − 𝜇) is not a statistic, since it depends on 𝜃 = 𝜇.

• Estimator & estimate

1. If a statistic 𝑇 = 𝑇 (𝑋1, … , 𝑋𝑛) is used to estimate 𝜃, then 𝑇 = 𝑇 (𝑋1, … , 𝑋𝑛) is an estimator (which
must be a statistic, and also a random variable) of 𝜃.

2. The observed value of 𝑇, denote it by 𝑡 = 𝑇 (𝑥1, … , 𝑥𝑛) is called an estimate (which is an observed
value, therefore not a random variable) of 𝜃.

EXAMPLE 6.1.4

𝑋1, … , 𝑋𝑛
iid∼ 𝒩(𝜇, 1) with observed data is (𝑥1, … , 𝑥𝑛).

– �̄�𝑛 = 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖 is an estimator.

– ̄𝑥𝑛 = 1
𝑛

𝑛
∑
𝑖=1

𝑥𝑖 is an estimate.

REMARK 6.1.5

We prefer using
• ̂𝜃 = ̂𝜃(𝑋1, … , 𝑋𝑛) to denote an estimator of 𝜃.
• (Slight abuse of notation) ̂𝜃 = ̂𝜃(𝑥1, … , 𝑥𝑛) to denote an estimate of 𝜃. That is: ̂𝜃 is used for both

estimator and estimate.
– If ̂𝜃 is a random variable, then ̂𝜃 = ̂𝜃(𝑋1, … , 𝑋𝑛) is regarded as an estimator.
– If ̂𝜃 is an observed value, then ̂𝜃 = ̂𝜃(𝑥1, … , 𝑥𝑛) is regarded as an estimate.

6.2 Method of Moments
Problem setup: Suppose 𝑋1, … , 𝑋𝑛 are i.i.d. with p.f. 𝑓(𝑥; 𝜃) or p.d.f. 𝑓(𝑥; 𝜃). We need to estimate 𝜽 =
(𝜃1, … , 𝜃𝑘)⊤.

Method: Method of moments estimator (MM estimator).

1. Population moment. Let 𝜇𝑗 = E[𝑋𝑗
𝑖 ] = E[𝑋𝑗] for 𝑗 = 1, … , 𝑘.

• 𝜇𝑗 is called 𝑗th population moment.

• 𝜇𝑗 is a function of 𝜽, and we write it as 𝜇𝑗(𝜽).

2. Sample moments. Let ̂𝜇𝑗 = ∑𝑛
𝑖=1 𝑋𝑗

𝑖 for 𝑗 = 1, … , 𝑘.

• ̂𝜇𝑗: 𝑗th sample moment.

• E[ ̂𝜇𝑗] = 1
𝑛 ∑𝑛

𝑖=1 E[𝑋𝑗
𝑖 ] = 𝜇𝑗.

3. Idea of method of moments. Choose estimators ̂𝜽 such that 𝜇𝑗( ̂𝜽) = ̂𝜇𝑗 = 1
𝑛 ∑𝑛

𝑖=1 𝑋𝑗
𝑖 for 𝑗 = 1, … , 𝑘.

There are 𝑘 unknown parameters and 𝑘 equations.

The estimator ̂𝜽 is called the method of moment estimator of 𝜽.
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EXAMPLE 6.2.1

𝑋1, … , 𝑋𝑛
iid∼ Poisson(𝜃)

• First population moment is E[𝑋1] = 𝜇1 = 𝜃 → 𝜇1(𝜃) = 𝜃
• First sample moment is ̂𝜇1 = 1

𝑛 ∑𝑛
𝑖=1 𝑋𝑖

• MM estimator satisfies 𝜇1( ̂𝜃) = ̂𝜇1 and ̂𝜃 = ̂𝜇1 = 1
𝑛 𝑋𝑖 which is MM estimator of 𝜃.

Lecture 22 | 2020-11-22

EXAMPLE 6.2.2

𝑋1, … , 𝑋𝑛 are i.i.d.
1. Exponential(𝜃)
2. Uniform(0, 𝜃)
3. 𝑓(𝑥; 𝜃) = 𝜃𝑥𝜃−1 with 0 < 𝑥 < 1 and 𝜃 > 0

Solution.
1. Exponential(𝜃). 𝜇1 = E[𝑋1] = 𝜃. 𝜇1(𝜃) = 𝜃

̂𝜇1 = 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖

𝜇1( ̂𝜃) = ̂𝜇1. Since 𝜇1 is the identity map,

̂𝜃 = ̂𝜇1 = 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖

2. Uniform(0, 𝜃).

𝜇1 = E[𝑋1] = ∫
𝜃

0
𝑥(1

𝜃
) 𝑑𝑥 = 𝜃/2

𝜇1(𝜃) = 𝜃
2

̂𝜇1 = 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖

𝜇1( ̂𝜃) =
̂𝜃

2
= ̂𝜇1

Therefore,
̂𝜃MM = 2 ̂𝜇1 = 2

𝑛

𝑛
∑
𝑖=1

𝑋𝑖

3. 𝑓(𝑥; 𝜃) = 𝜃𝑥𝜃−1 with 0 < 𝑥 < 1 and 𝜃 > 0

𝜇1 = E[𝑋1] = ∫
1

0
𝑥𝜃𝑥𝜃−1 𝑑𝑥 = 𝜃

1 + 𝜃

𝜇1(𝜃) = 𝜃
1 + 𝜃

̂𝜇1 = 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖

𝜇1( ̂𝜃) =
̂𝜃

1 + ̂𝜃
= ̂𝜇1

Therefore,
̂𝜃MM = ̂𝜇1

1 − ̂𝜇1
= �̄�

1 − �̄�
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4. 𝑋1, … , 𝑋𝑛
iid∼ 𝒩(𝜇, 𝜎2).

𝜃 = ( 𝜇
𝜎2)

𝜇1 = E[𝑋1] = 𝜇
𝜇2 = E[𝑋2

1 ] = V(𝑋) + [E[𝑋1]]2 = 𝜇2 + 𝜎2

𝜇1(𝜇, 𝜎2) = 𝜇
𝜇2(𝜇, 𝜎2) = 𝜇2 + 𝜎2

̂𝜇1 = 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖

̂𝜇2 = 1
𝑛

𝑛
∑
𝑖=1

𝑋2
𝑖

𝜇1( ̂𝜇, �̂�2) = ̂𝜇 = ̂𝜇1 = �̄�

𝜇2( ̂𝜇, �̂�2) = ( ̂𝜇)2 + �̂�2 = ̂𝜇2

Therefore,

̂𝜇MM = �̄�𝑛

�̂�2
MM = ̂𝜇2 − (�̄�𝑛)2

= 1
𝑛

𝑛
∑
𝑖=1

𝑋2
𝑖 − �̄�𝑛

= 1
𝑛

𝑛
∑
𝑖=1

(𝑋𝑖 − �̄�𝑛)2

6.3 Maximum Likelihood Method
This section: introduce the most commonly used method for estimating unknown parameter 𝜃 referred to as
maximum likelihood method.

• Likelihood function

1. Suppose 𝑋1, … , 𝑋𝑛 are i.i.d. from 𝑓(𝑥; 𝜃)

2. Given (𝑥1, … , 𝑥𝑛), the observed value of (𝑋1, … , 𝑋𝑛). We calculate the joint p.f. of (𝑋1, … , 𝑋𝑛) at
observed data (𝑥1, … , 𝑥𝑛) or joint p.d.f. of (𝑋1, … , 𝑋𝑛) at observed data (𝑥1, … , 𝑥𝑛).

Discrete random variables joint p.d.f. of (𝑋1, … , 𝑋𝑛) at (𝑥1, … , 𝑥𝑛):

P(𝑋1 = 𝑥1, … , 𝑋𝑛 = 𝑥𝑛) =
𝑛

∏
𝑖=1

P(𝑋𝑖 = 𝑥𝑖) =
𝑛

∏
𝑖=1

𝑓(𝑥𝑖; 𝜃)

Continuous random variables joint p.d.f. of (𝑋1, … , 𝑋𝑛) at (𝑥1, … , 𝑥𝑛):

𝑓𝑋1,…,𝑋𝑛
(𝑥1, … , 𝑥𝑛) =

𝑛
∏
𝑖=1

𝑓(𝑥𝑖; 𝜃)
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3. We use 𝐿(𝜃; 𝑥1, … , 𝑥𝑛) or simply 𝐿(𝜃) to denote it. That is to say,

𝐿(𝜃; 𝑥1, … , 𝑥𝑛) = {
P(𝑋1 = 𝑥1, … , 𝑋𝑛 = 𝑥𝑛) discrete
𝑓𝑋1,…,𝑋𝑛

(𝑥1, … , 𝑥𝑛) continuous
=

𝑛
∏
𝑖=1

𝑓(𝑥𝑖; 𝜃)

Here, 𝐿(𝜃; 𝑥1, … , 𝑥𝑛) is called the likelihood function of 𝜃.

Comments:

1. Likelihood function measures how likely we get the observed data for a given 𝜃.

2. Smaller 𝐿(𝜃) means 𝜃 is less likely to generate the observed data.

3. Larger 𝐿(𝜃) means 𝜃 is more likely to generate the observed data.

Idea of Maximum Likelihood Method
Choose 𝜃 to maximize 𝐿(𝜃) or choose 𝜃 such that it most likely generates the observed data.

Maximum likelihood estimator/estimate (MLE)

1. ML estimate maximizes 𝐿(𝜃), and we use ̂𝜃 = ̂𝜃(𝑥1, … , 𝑥𝑛) to denote it.

̂𝜃 = ̂𝜃(𝑥1, … , 𝑥𝑛) = argmax
𝜃∈𝛩

𝐿(𝜃)

2. ML estimator: ̂𝜃 = ̂𝜃(𝑋1, … , 𝑋𝑛)

3. Log-likelihood function: log of likelihood function:

ℓ(𝜃) = ln[𝐿(𝜃)]

Then: an immediate result is:

̂𝜃 = ̂𝜃(𝑥1, … , 𝑥𝑛) = argmax
𝜃∈𝛩

ℓ(𝜃) argmax
𝜃∈𝛩

𝐿(𝜃)

4. Invariance principal of ML estimator 𝜏(𝜃) is a function of 𝜃. 𝜏( ̂𝜃) is the ML estimator of 𝜏(𝜃) if ̂𝜃 is the
ML estimator of 𝜃.

EXAMPLE 6.3.1

𝑋1, … , 𝑋𝑛
iid∼ Poisson(𝜃). Find ML estimator of 𝜃.

Solution.
𝑓(𝑥; 𝜃) = 𝜃𝑥

𝑥!
𝑒−𝜃

𝐿(𝜃) =
𝑛

∏
𝑖=1

𝑓(𝑥𝑖; 𝜃) =
𝑛

∏
𝑖=1

𝜃𝑥𝑖

𝑥𝑖!
𝑒−𝜃 = 𝜃∑𝑛

𝑖=1 𝑥𝑖

∏𝑛
𝑖=1(𝑥𝑖!)

𝑒−𝑛𝜃

ℓ(𝜃) = (
𝑛

∑
𝑖=1

𝑥𝑖) ln(𝜃) − 𝑛𝜃 −
𝑛

∑
𝑖=1

ln(𝑥𝑖!)

𝑑ℓ(𝜃)
𝑑𝜃

=
∑𝑛

𝑖=1 𝑥𝑖

𝜃
− 𝑛

ML estimator of 𝜃 satisfies

[ 𝑑ℓ
𝑑𝜃

]
𝜃= ̂𝜃

= 0 ⟹
∑𝑛

𝑖=1 𝑥𝑖

̂𝜃
− 𝑛 = 0 ⟹ ̂𝜃 =

∑𝑛
𝑖=1 𝑥𝑖

𝑛
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ML estimator of 𝜃 is
̂𝜃 =

∑𝑛
𝑖=1 𝑋𝑖

𝑛
(same as the MM estimator)

REMARK 6.3.2

• ML estimator of 𝜃2 is ( ̂𝜃)2

• ML estimator of 𝑒−𝜃 is 𝑒− ̂𝜃

EXAMPLE 6.3.3

𝑋1, … , 𝑋𝑛 are i.i.d. from 𝑓(𝑥; 𝜃) = 𝜃𝑥𝜃−1 with 0 < 𝑥 < 1, 𝜃 > 0. Find ML estimator of 𝜃.
Solution.

𝐿(𝜃) =
𝑛

∏
𝑖=1

𝑓(𝑥𝑖; 𝜃) =
𝑛

∏
𝑖=1

𝜃𝑥𝜃−1
𝑖 = 𝜃𝑛(

𝑛
∏
𝑖=1

𝑥𝑖)
𝜃−1

ℓ(𝜃) = 𝑛 ln(𝜃) + (𝜃 − 1)
𝑛

∑
𝑖=1

ln(𝑥𝑖)

𝑑ℓ(𝜃)
𝑑𝜃

= 𝑛
𝜃

+
𝑛

∑
𝑖=1

ln(𝑥𝑖)

ML estimate ̂𝜃 satisfies

[ 𝑑ℓ
𝑑𝜃

]
𝜃= ̂𝜃

= 0 ⟹ 𝑛
̂𝜃
+

𝑛
∑
𝑖=1

ln(𝑥𝑖) = 0 ⟹ ̂𝜃 = − 𝑛
∑𝑛

𝑖=1 ln(𝑥𝑖)

ML estimator:
̂𝜃 = − 𝑛

∑𝑛
𝑖=1 ln(𝑋𝑖)

(is different from MM estimator)

Lecture 23 | 2020-11-29

EXAMPLE 6.3.4

Suppose 𝑋1, … , 𝑋𝑛
iid∼ 𝒩(𝜇, 𝜎2). Find ML estimator of 𝜃.

Solution.
𝐿(𝜇, 𝜎2) =

𝑛
∏
𝑖=1

𝑓(𝑥𝑖; 𝜇, 𝜎2)

ℓ(𝜇, 𝜎2) =
𝑛

∑
𝑖=1

ln[𝑓(𝑥𝑖; 𝜇, 𝜎2)]

=
𝑛

∑
𝑖=1

ln[ 1√
2𝜋𝜎2

exp{−(𝑥𝑖 − 𝜇)2

2𝜎2 }]

=
𝑛

∑
𝑖=1

[−(𝑥𝑖 − 𝜇)2

2𝜎2 − 1
2
ln(2𝜋𝜎2)]

𝜕ℓ
𝜕𝜇

=
∑𝑛

𝑖=1(𝜇 − 𝑥𝑖)
𝜎2

𝜕ℓ
𝜕𝜎2 =

∑𝑛
𝑖=1(𝑥𝑖 − 𝜇)2

2𝜎4 − (𝑛
2

)( 1
𝜎2 )



CHAPTER 6. POINT ESTIMATION 82

ML estimate satisfies

∑𝑛
𝑖=1(𝑋𝑖 − ̂𝜇)2

�̂�2 = 0

∑𝑛
𝑖=1(𝑋𝑖 − ̂𝜇)

2(�̂�2)2 − (𝑛
2

)( 1
𝜎2 ) = 0

̂𝜇 = 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖

�̂�2 = 1
𝑛

𝑛
∑
𝑖=1

(𝑋𝑖 − ̂𝜇)2

ML estimator of (𝜇, 𝜎2) is

̂𝜇 = 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖 = �̄�𝑛

�̂� = 1
𝑛

𝑛
∑
𝑖=1

(𝑋𝑖 − �̄�𝑛)2

which is the same as MM estimator.

EXAMPLE 6.3.5

𝑓(𝑥, 𝜃) =
⎧{
⎨{⎩

1
𝜃

0 ≤ 𝑥 ≤ 𝜃

0 otherwise

Note that the support of 𝑋 depends on 𝜃. Find ML estimator of 𝜃.
Solution.

𝐿(𝜃) =
𝑛

∏
𝑖=1

𝑓(𝑥𝑖; 𝜃) =
⎧{
⎨{⎩

(1
𝜃

)
𝑛

0 ≤ 𝑥1, … , 𝑥𝑛 ≤ 𝜃

0 otherwise
=

⎧{
⎨{⎩

1
𝜃𝑛 0 ≤ 𝑥(1), 𝑥(𝑛) ≤ 𝜃

0 otherwise

• 𝜃 < 𝑥(𝑛), 𝐿(𝜃) = 0
• 𝜃 ≥ 𝑥(𝑛), 𝐿(𝜃) is a strictly monotone decreasing function of 𝜃.

This implies that the ML estimate of 𝜃 is

𝑥(𝑛) = max(𝑥1, … , 𝑥𝑛)

ML estimator of 𝜃 is
̂𝜃 = max

1≤𝑖≤𝑛
𝑋𝑖 = 𝑋(𝑛)

is different from the MM estimator ̂𝜃MM = 2�̄�𝑛.
Which estimator is better? ̂𝜃MM or ̂𝜃ML? STAT 450 covers this.

• Biased or unbiased estimator. Let ̂𝜃 denote one estimator of 𝜃. If E[ ̂𝜃] = 𝜃, then ̂𝜃 is an unbiased
estimator of 𝜃. Otherwise, ̂𝜃 is a biased estimator of 𝜃.

6.4 Properties of ML Estimator
In this section:
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1. We only consider the case that the support of 𝑋1, … , 𝑋𝑛 does not depend on 𝜃.

2. We talk about random variables, only concerned about ML estimator.

3. We only consider 𝜃 is 1-dimensional or 𝜃 is a scalar.

We define some notation first.

DEFINITION 6.4.1: Score Function

The score function is defined as

𝑆(𝜃) = 𝑆(𝜃; 𝒙) = 𝑑
𝑑𝜃

ℓ(𝜃) = 𝑑
𝑑𝜃

ln[𝐿(𝜃)]

where 𝒙 are the observed data. When the support of 𝑋1, … , 𝑋𝑛 does not depend on 𝜃, then 𝑆( ̂𝜃) = 0.

DEFINITION 6.4.2: Information Function

The information function is defined as

𝐼(𝜃) = 𝐼(𝜃; 𝒙) = − 𝑑2

𝑑𝜃2 ℓ(𝜃) = − 𝑑2

𝑑𝜃2 ln[𝐿(𝜃)]

where 𝒙 are the observed data. 𝐼( ̂𝜃) is called the observed information.

DEFINITION 6.4.3: Fisher Information/Expected Information

The fisher information (expected information) is defined as

𝐽(𝜃) = E[𝐼(𝜃; 𝑿)] = −E[ 𝑑2

𝑑𝜃2 ℓ(𝜃; 𝑿)]

where 𝑿 is the potential data.
In particular, when 𝑿 = (𝑋1, … , 𝑋𝑛) is i.i.d. from 𝑓(𝑥, 𝜃), then

ℓ(𝜃; 𝒙) =
𝑛

∑
𝑖=1

ln[𝑓(𝑥𝑖; 𝜃)]

𝐼(𝜃; 𝑿) = − 𝑑2

𝑑𝜃2

𝑛
∑
𝑖=1

ln[𝑓(𝑋𝑖; 𝜃)] = −
𝑛

∑
𝑖=1

𝑑2

𝑑𝜃2 ln[𝑓(𝑋𝑖; 𝜃)]

Therefore,

𝐽(𝜃) = E[−
𝑛

∑
𝑖=1

𝑑2

𝑑𝜃2 ln[𝑓(𝑋𝑖; 𝜃)]] = −E[ 𝑑2

𝑑𝜃2 ln[𝑓(𝑋1; 𝜃)]]

DEFINITION 6.4.4: Fisher Information of One Observation

The fisher information of one observation is

𝐽1(𝜃) = −𝑛E[ 𝑑2

𝑑𝜃2 ln[𝑓(𝑋1; 𝜃)]]

The fisher information in 𝒏 observations is

𝐽(𝜃) = 𝑛𝐽1(𝜃)
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EXAMPLE 6.4.5

Suppose 𝑋1, … , 𝑋𝑛
iid∼ Poisson(𝜃).

𝐿(𝜃; 𝒙) =
𝑛

∏
𝑖=1

𝑓(𝑥𝑖; 𝜃)

ℓ(𝜃; 𝒙) =
𝑛

∑
𝑖=1

ln[𝑓(𝑥𝑖; 𝜃)] =
𝑛

∑
𝑖=1

ln[𝜃𝑥𝑖𝑒−𝜃

𝑥!
] = (

𝑛
∑
𝑖=1

𝑥𝑖) ln(𝜃) − 𝑛 ln(𝜃) −
𝑛

∑
𝑖=1

ln(𝑥𝑖!)

Score function:

𝑆(𝜃; 𝒙) = 𝜕
𝜕𝜃

ℓ(𝜃; 𝒙) =
∑𝑛

𝑖=1 𝑥𝑖

𝜃
− 𝑛

Observed information function:

𝐼(𝜃; 𝒙) = −𝜕𝑆
𝜕𝜃

𝑆(𝜃; 𝒙) =
∑𝑛

𝑖=1 𝑥𝑖

𝜃2

Fisher information:

𝐽(𝜃) = E[𝐼(𝜃; 𝑿)] = E[
∑𝑛

𝑖=1 𝑋𝑖

𝜃2 ] = 𝑛E[𝑋1]
𝜃2 = 𝑛𝜃

𝜃2 = 𝑛
𝜃

Recall that: ̂𝜃ML =
∑𝑛

𝑖=1 𝑋𝑖

𝑛
⟹ V( ̂𝜃ML) = V(𝑋𝑖)

𝑛
= 𝜃

𝑛
Is there any relationship between 𝐽(𝜃) and V( ̂𝜃ML)?

THEOREM 6.4.6: Cramér–Rao Bound

The variance of any unbiased estimator ̂𝜃 of 𝜃 is bounded by the reciprocal of the Fisher information 𝐽(𝜃):

V(𝜃) ≥ 1
𝐽(𝜃)

COROLLARY 6.4.7

If 𝑇 is an unbiased estimator of 𝑔(𝜃), then

V(𝑇 ) ≥ [𝑔′(𝜃)]2

𝐽(𝜃)

THEOREM 6.4.8

ML estimator satisfies (when support of 𝑋1, … , 𝑋𝑛 does not depend on 𝜃)
(1) ̂𝜃

P
→ 𝜃 as 𝑛 → ∞.

(2)
√

𝑛( ̂𝜃 − 𝜃)
d

→ 𝒩(0, 1
𝐽1(𝜃)

)

(3) By delta-method,
√

𝑛(𝑔( ̂𝜃) − 𝑔(𝜃))
d

→ 𝒩(0, [𝑔′(𝜃)]2

𝐽1(𝜃)
)
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REMARK 6.4.9

(1) Tells us that ̂𝜃 is close to 𝜃 as 𝑛 → ∞.

(2) Tells us that
√

𝑛( ̂𝜃 − 𝜃) ≈ 𝒩(0, 1
𝐽1(𝜃)

) ⟹ ̂𝜃 ≈ 𝒩(𝜃, 1
𝑛𝐽1(𝜃)

) = 𝒩(𝜃, 1
𝐽(𝜃)

)

V( ̂𝜃) ≈ 1
𝐽(𝜃)

which is the CR lower-bound. E[ ̂𝜃] ≈ 𝜃.
• ̂𝜃 is asymptotically unbiased.
• ̂𝜃 is asymptotically efficient.

(3) Tells us that 𝑔( ̂𝜃) ≈ 𝒩(𝑔(𝜃), [𝑔′(𝜃)]2

𝐽(𝜃)
).

• 𝑔( ̂𝜃) is asymptotically unbiased.

• V(𝑔( ̂𝜃)) ≈ [𝑔′(𝜃)]2

𝐽(𝜃)
which is the CR lower-bound.

Conclusion: ML estimator is asymptotically optimal.

Lecture 24 | 2020-11-29

EXAMPLE 6.4.10

𝑋1, … , 𝑋𝑛
iid∼ Poisson(𝜃).

(i) Find ML estimator of 𝜃, ̂𝜃.
(ii) Find ML estimator of P(𝑋1 = 0) ≔ 𝑔(𝜃).
(iii) Find limiting distribution of √

𝑛( ̂𝜃 − 𝜃)

(iv) Find limiting distribution of √
𝑛(𝑔( ̂𝜃) − 𝑔(𝜃))

(v) Is ̂𝜃 (or 𝑔( ̂𝜃)) unbiased?
Solution.
(i) ̂𝜃 = 1

𝑛

𝑛
∑
𝑖=1

𝑋𝑖 = �̄�𝑛

(ii) P(𝑋1 = 0) = 𝑒−𝜃 ≔ 𝑔(𝜃), therefore, ML estimator of 𝑔(𝜃) is 𝑔( ̂𝜃) = 𝑒−�̄�𝑛 by the invariance
property.

(iii)
√

𝑛( ̂𝜃 − 𝜃) = √�̄�𝑛 − 𝜃.
• Method 1 (ML estimator): First, note that the support does not depend on 𝜃. If it does, then

see Method 2.
√

𝑛( ̂𝜃 − 𝜃)
d

→ 𝒩(0, 1
𝐽1(𝜃)

)

Since we’ve shown 𝐽(𝜃) = 𝑛
𝜃 , find

𝐽1(𝜃) = 𝐽(𝜃)
𝑛

= 1
𝜃

Therefore,
√

𝑛( ̂𝜃 − 𝜃)
d

→ 𝒩(0, 𝜃)
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• Method 2 (CLT): 𝑋1, … , 𝑋𝑛
iid∼ Poisson(𝜃) so E[𝑋𝑖] = 𝜃 and V(𝑋𝑖) = 𝜃.

⟹
√

𝑛(�̄�𝑛 − 𝜃)√
𝜃

d
→ 𝑍 ∼ 𝒩(0, 1)

Continuous mapping theorem,

√
𝜃

√
𝑛(�̄�𝑛 − 𝜃)√

𝜃
d

→
√

𝜃𝑍 ∼ 𝒩(0, 𝜃)

(iv) √
𝑛(𝑔( ̂𝜃) − 𝑔(𝜃))

• Method 1 (ML estimator of 𝑔(𝜃)): First, note that the support does not depend on 𝜃. If it
does, then see Method 2.

√
𝑛(𝑒−�̄�𝑛 − 𝑒𝜃)

d
→ 𝒩(0, [𝑔′(𝜃)]2

𝐽1(𝜃)
)

Here, 𝑔(𝑥) = 𝑒−𝑥.
[𝑔′(𝜃)]2

𝐽1(𝜃)
= 𝑒−2𝜃𝜃

So,
√

𝑛(𝑒−�̄�𝑛 − 𝑒𝜃)
d

→ 𝒩(0, 𝑒−2𝜃𝜃)
• By using delta method

√
𝑛(�̄�𝑛 − 𝜃)

d
→ 𝒩(0, 𝜃)

Take 𝑔(𝑥) = 𝑒−𝑥. Therefore,
√

𝑛(𝑔(�̄�𝑛) − 𝑔(𝜃))
d

→ 𝒩(0, [𝑔′(𝜃)]2𝜃)

(v) Approximate mean of ̂𝜃 is 𝜃. Approximate mean of 𝑒− ̂𝜃 is 𝑒−𝜃. However, we want the exact
expectation.

• Part 1

E[𝑒−�̄�𝑛 ] = E[exp{− 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖}]

𝑋1, … , 𝑋𝑛
iid∼ Poisson(𝜃) ⟹ ∑𝑛

𝑖=1 𝑋𝑖 ∼ Poisson(𝑛𝜃)

E[𝑒−𝑇 /𝑛] = 𝑀𝑇(− 1
𝑛

) = exp{𝑛𝜃(𝑒−1/𝑛 − 1)}

Therefore,
E[𝑔( ̂𝜃)] ≠ 𝑒−𝜃

lim
𝑛→∞

𝑒𝜃[𝑛𝑒−1/𝑛−1]

Consider
𝑒𝑥 = 1 + 𝑥 + 𝑥2 + 𝑜(𝑥2)

𝑒−1/𝑛 = 1 − 1
𝑛

+ 1
𝑛2 + 𝑜( 1

𝑛2 )

Therefore,

𝑛(𝑒−1/𝑛 − 1) = −1 + 1
𝑛

+ 𝑜( 1
𝑛

)

Asymptotic mean of ̂𝜃 is 𝜃 since
lim

𝑛→∞
E[ ̂𝜃] = 𝜃
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• Part 2
E[ ̂𝜃] = 𝜃

E[𝜃] = E[�̄�𝑛] = E[ 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖] = E[𝑋1] = 𝜃

̂𝜃 is an unbiased estimator of 𝜃.
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