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Univariate Random Variable
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Review probability model, random variable (r.v.), expectation, and moment generating function.

2.1 Probability Model and Random Variable

DEFINITION 2.1.1: Probability model

A probability model is used for a random experiment. It has three important components:
(I) Sample space
(I) Event

(IIT) Probability function

DEFINITION 2.1.2: Sample space

A sample space S is the collection of all possible outcomes of one single random experiment.

DEFINITION 2.1.3: Event
An event A, B, ... is a subset of S.

EXAMPLE 2.1.4

Toss a coin twice.

* S={(H,H),(H,T),(T,H),(T,T)}
* A: First toss is a head (H).
Clearly, A= {(H,H),(H,T)} C S, so A is an event.

DEFINITION 2.1.5: Probability function

A probability function P( - ) is a function of events and satisfies:
(I) For any event A, P(A) >0
an P(s) =1
(II1) Additivity property: If A;, Ay, A3, ... are pairwise mutually exclusive events; that is, A, N A; = ()



CHAPTER 2. UNIVARIATE RANDOM VARIABLE

for all ¢ # j, then

() - Src

i=1
EXAMPLE 2.1.6

Toss a coin twice, given one event A,

__ # of outcomes in A
- 4

P(A)

where 4 is the total number of outcomes in S. P( - ) satisfies the three properties, therefore P( - ) is a
probability function.

PROPOSITION 2.1.7: Additional Properties of the Probability Function

(D) P(P) = 0 where O = J7~, 0.

(2) Let A be the complementary event of A.
@ AUA=S
(i) ANA=0

P(A) + P(A) = 1
(3) If A, and A, are mutually exclusive, then
P(A; U 4y) =P(4,) +P(4).

(4) Generally,
P(4, UAy) =P(A;) +P(Ay) —P(4; N 4y)

Ay Ay

A UA, = B, U(4,NAy) UB,
(5) If A, C A,, then P(A,) < P(A,).
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A, = A UB,
Proof of Proposition 2.1.7
Proof of (1): Let A, =0, A, =0, A; =0, ..., then

P(0) = IP’(Q Al) - zn;]P’(Ai) - Z]P’((ZJ)

n
= =1

DEFINITION 2.1.8: Conditional probability
Suppose A and B are two events with P(B) > 0. The conditional probability of A given that B is

P(AN B)

P(4]B) = —p &

DEFINITION 2.1.9: Independent events
Suppose A and B are two events. A and B are independent events if and only if

P(AN B) = P(4) P(B)

Clearly, P(A | B) = P(A) if and only if A and B are independent since

P(A|B) = ) = HEE) b

EXAMPLE 2.1.10

Toss a coin twice.
e A: First toss is H

* B: Second toss is T P _
of outcomes in

P(4) = 4 T4

P(ANB) = i =TP(A)P(B)

and P(B)= %

Therefore, A and B are independent.
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DEFINITION 2.1.11: Random variable

A random variable (r.v.) X is a function from a sample space S to the real numbers R; that is,
X:S—>R
satisfies for any given z € R {X < z} is an event.

{(X<z}={weS:X(w)<z}CS

EXAMPLE 2.1.12

Toss a coin twice. Let X be the number of heads (H) in two tosses. Verify that X is a random variable.
Solution. Possible values of X: 0,1,2. Given z € R, {X < z}.

* <0 = {X<uz}=90

=0 = {X<2}={X=0}={(T,T)} CS

cr=1= {X<z}={X=1}={(H,T),(T,H)} CS

crx=2 = {X<z}={X=2}={(H,H)}CS
Thus, X is a random variable.

DEFINITION 2.1.13: Cumulative distribution function

The cumulative distribution function (c.d.f.) of a random variable X is defined by
F(z)=P(X <z) forallz €R

Note that the c.d.f. is defined for all R.

DEFINITION 2.1.14: Properties — Cumulative Distribution Function

(1) Fis a non-decreasing function; that is, if ; < z,, then F(z;) < F(z,).
By looking at:
e {(X <z} C{X <ay}ifzy <u,.
2) wlhrgo F(z)=1and xgmoo F(z) =0.
By looking at:
e {X <z} —> Sasz — .
e (X <z} —>0asz — —oo.
(3) F(x) is a right continuous function; that is, for any a € R,

lim F(z) = F(a)

z—at

a
Figure 2.1: Right Continuous
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a

Figure 2.2: Not Right Continuous

PROPOSITION 2.1.15: Additional Properties of Cumulative Distribution Function

(1) Pla< X <b)=P(X <b)—P(X <a)=F(b)— Fl(a)
2) P(X =z) =P@WJump at ) = tlirg{l+ F(t) — tlgg? F(t)= F(z) — tlira? F(t)

LECTURE 2 | 2020-09-09

2.2 Discrete Random Variables

DEFINITION 2.2.1: Discrete random variable

If a random variable X can only take finite or countable values, X is a discrete random variable.

REMARK 2.2.2

When we say countable, we mean something you can enumerate such as Z or N*.

DEFINITION 2.2.3: Probability function

If X is a discrete random variable, then the probability function (p.f.) of X is given by

(@) = P(X =z) if X can take value x
fla) = 0 if X cannot take value x

DEFINITION 2.2.4: Support

The set A = {x : f(x) > 0} is called the support of X. These are all the possible values X can take.

PROPOSITION 2.2.5: Properties of the Probability Function

(1) f(x)>0foralzeR
@ X fl@)=1

€A
Review some commonly used discrete random variables:

* Bernoulli. X ~ Bernoulli(p) where X can only take two possible values 0 (failure) or 1 (success). Let p
be the probability of a success for a single trial. So,

P(X=1)=p and P(X=0)=1—p
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EXAMPLE 2.2.6: Bernoulli

Toss a coin twice. Let X be the number of heads. Therefore, X ~ Bernoulli(p).

* Binomial. X ~ Binomial(n,p). Suppose we have Bernoulli Trials:
— We run n trials
— Each trial is independent of each other

- Each trial has two possible outcomes: 0 (failure), 1 (success)

P(X=1)=p
Let X be the number of success across these n trials and p be the success probability for a single trial.
x=N"x,
=1
X, is the outcome of the 7™ trial.
P(X;=1)=p

where X, ~ Bernoulli(p).

* Geometric. X ~ Geometric(p). Let X be the number of failures before the first success.
EXAMPLE 2.2.7: Geometric

X = number of tails before you get the first head. Therefore, X ~ Geometric(p).

X can take values 0,1, 2, ....
P(X=2)=(1-p)p

* Negative Binomial. X ~ Negative Binomial(r,p). Let X be the number of failures before you get r
success. X can take values 0,1, 2, ...

J(@) =P(X =) = ( o 1) (1=p)p""p

EXAMPLE 2.2.8: Negative Binomial

X = number of tails before you get the ™ head. Therefore, X ~ Negative Binomial(r, p).

* Poisson. X ~ Poisson(u)

where 0 < z € Z.

2.3 Continuous Random Variables

DEFINITION 2.3.1: Continuous random variable

If the possible values of X is an interval or real line, X is a continuous random variable. In this case,
F(z) is continuous and differentiable almost everywhere. (It’s not differentiable for at most a countable
set of points).

Note that this is not a rigorous definition, but it will be used in this course.
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DEFINITION 2.3.2: Probability density function, Support

The probability density function (p.d.f.) of a continuous random variable is

F’(z) if F(x) is differentiable at x
f@=1, .
otherwise

The set A = {z : f(x) > 0} is called the support of X.

Continuous case: f(z) # P(X = z)
Pz < X <z +0) ~ f(x)8
since
lim
6—0
where F(z +6) — F(z) =Pz < X <2 +9).

Flx+0)—F(x) _, .
Pat0=FD _ pria) = f)

DEFINITION 2.3.3: Properties — Probability Density Function

(D f(z)>0forallz €R
(ID / flx)dx =1

() F(z) = / " F(t) dt with F(—o0) = 0

av) f(z)=F'(x)
W) B(X =) =0 # f(x) b

(VD Pla< X<b)=Pa<X<b)=Pla<X<b)=Pa<X<b)=F@b)—F(a) = f(z)dz
since P(X =a) =P(X =b) =0.

EXAMPLE 2.3.4
Suppose the c.d.f. of X is
0 r<a
F(z) = Z:Z a<z<b
1 x>0b
Find the p.d.f. of X.
Solution.
L <zr<b
flx)y=<b—a “
0 otherwise

We note that X ~ Uniform(a,b).

EXAMPLE 2.3.5
Let the p.d.f. be defined as follows.

0 r<l1

(i) For what values of fis f a p.d.f.
(ii) Find F(x).
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(iii) Find P(—2 < X < 3).

Solution. .
(i) Note that sy > (forall > 0.
Case 1: 6 = 0. f(x) =0, then f cannot be a p.d.f. since LO:O flx)de=0+#1
Case 2: 6§ > 0.

/:f(m)d:v—/;f(m)der/loof(x)dx—/looxildx_ {*‘”79}:0

Therefore, fis a p.d.f. when 6 > 0.
() F(z)=P(X < z).

Case 1: z < 1.
P(X < 2) :/ F(#)dt =0
Case 2: x > 1.
] 1 T o0 0 a2
]P’(Xéx)/oof(t)dt/oof(t)dt+/l f(t)dt/1 ey di = [t L
Therefore,

1—g7? > 1
F(z) = roor=
0 r <1

(iii) P(—2 < X < 3). Either use the c.d.f. we found or the p.d.f.
Using the c.d.f. we have

F@3)—F(-2)=(1-3%-0
Using the p.d.f. we have

/j flz)dz = /: f(z)dx + /13 flz)dx = /13 f(z) dx = exercise

=1—x

—0

LECTURE 3 | 2020-09-13

We first introduce a function that will be used.
DEFINITION 2.3.6: Gamma function

The gamma function, denoted I'(«) for all a > 0, is given by
I'a) = / e % dx
0

PROPOSITION 2.3.7: Properties of the Gamma Function

(1) I'a) =(a—HI'(a—1) for @ > 1
(2) I'(n) =(n—1)! whenn € Z*, where I'(1) = 1.

3) F(é) NG
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EXAMPLE 2.3.8

The p.d.f. is given by
xozflefx/ﬁ

fl@)=49 I()B*
0 z<0

x>0

where o > 0 and 8 > 0. X ~ Gamma(a, f3).

We also say that « is the scale parameter and /3 is the shape parameter for this distribution.
Verify that f(x) is a p.d.f.

Solution. Showing f(x) > 0 is trivial. Now,

00 00 maflefx/ﬁ
/OO f(x)d:c[ 7F(a)ﬁ“ dx

Lety =xz/8 = x = yB and dx = Bdy. Therefore,

[ee] - OOyaflﬂaflefy _ 1 0 N B
/Oof(x)dff—/O T (”B)dy_r(a)/o y* e vdy =1

EXAMPLE 2.3.9

Suppose the p.d.f. is given by

with @ > 0 and 8 > 0. X ~ Weibull(6, 5).
Verify that f(x) is a p.d.f.
Solution. f(z) > 0 for every « € R. Now,

/: F(z)dz = /OOO Hixﬁlexp{<z)ﬁ} dx

Lety = (2/0)® = z = 0y/# and dx = (6/8)y*/#~1 dy. Therefore,

/ f(2) dw:/ H%Qﬂ—ly(,@—l)/ﬁe—y%y(l/ﬂ)—l dy:/ eVdy=I(1) =1
— 0 0 0

EXAMPLE 2.3.10: Normal

The p.d.f. is given by

@) = e -0

forz € R, —00 < u < 00, 02 > 0. Verify that f(x) is a p.d.f.
Solution. f(z) > 0 for every x € R.
Case 1: u = 0 and 02 = 1, then we say X follows a standard normal distribution. We want to show

that )
* 1 T
——exXpy —— pdx =1
/Oo V2n p{ 2 } :

10
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Since the function is symmetrical around 0, we have the following equivalent integral.
0o 1 ZCQ
2 ——expy —— ¢ dx
/0 Van p{ 2 }

2
Lety =122/2 = z=2yand dz = gy*ﬂ dy. Therefore,

2 [ V2 1 [ 1 1
- _Z —yvye _1/2d _ 7/ 1/2—1 —Y dy = ()F() -1
\/%/0 € ) Yy Yy \/77[_ " Yy (& Yy ﬁ 5

Case 2: For general y and o2,
= (2 — )’
——d
/oo 2meXp{ 200

Letz= 2 F — 4= i+ oz and dz = o dz. Therefore,
g

o] 1 ZZ o] 1 22
— ex - dZ = —2~eX —— dZ =1
/Oo 210 p{ 2 }U /oo V2m p{ 2 }

using Case 1.

2.4 Expectation

DEFINITION 2.4.1: Expectation (Discrete)

Suppose X is a discrete random variable with support A and p.f. f(x). Then,

E[X]=) zf()

zeA

if > |z|f(x) < oo (finite). If > |z|f(z) = oo (infinite), then E[X] does not exist.
€A T€EA

DEFINITION 2.4.2: Expectation (Continuous)

Suppose X is a continuous random variable with support A and p.d.f. f(z). Then,

EX] = / zf(x)dz
if/ || f(z) dz < oo (finite). Similarly, if/ |z| f(x) dz = oo (infinite), then E[X] does not exist.

EXAMPLE 2.4.3: Discrete
Suppose




CHAPTER 2. UNIVARIATE RANDOM VARIABLE

for z = 1,2,.... The support setis A = {1,2,...}. We note that f(x) is a p.f. since f(z) > 0 and

> /1 1 1 1 1
S i@ =Y (3- ) =1-gtg gt
= —\z z+l 2 2 3
Find E[X].
Solution.

. 1 1 = 1
;'ﬂf(x):;x(x_x—f—l):Zx+lzoo

Therefore, E[X] does not exist!

EXAMPLE 2.4.4: Continuous

Let the p.d.f. be defined as f(z) = —;
x
Student’s T-distribution with 1 degree of freedom). Find E[X].

Solution.
/ || f(z)d */ || : d
z|f(x) dx | a8 21 T

1 .. e e
: for x € R. This is known as the Cauchy distribution (or

oo I ) o

E[X] does not exist! The following is wrong:

E[X]:/_:xf(x)dxz/mxdxzo

o 1+ a?

since the integral above with |z| is infinite. You must always remember to check that the E[X] is finite
(using |z|) for both the discrete and continuous case whenever the support is negative.

EXAMPLE 2.4.5: Bernoulli and Binomial Random Variable
Suppose X ~ Bernoulli(p).
PX=1)=p and PX=0)=1-p
We know E[X] = (1)P(X =1) + (0) P(X = 0) = p.
Now suppose X ~ Binomial(n,p). Find E[X].

Solution.
E(X)= Y af)=) = () pe(1—py

z€A =0

This is hard to do. But, we know we can use the relationship between the Binomial and Bernoulli
random variable so,

Therefore,

EXAMPLE 2.4.6

Suppose for a random variable X the p.d.f. is given by f(z) = % forz > 1 and 0 when z < 1. Assume
X

12



CHAPTER 2. UNIVARIATE RANDOM VARIABLE 13

6 > 0. Find E[X], and determine the values of 6 for which E[X] exists.
Solution.

/oo|x|f(x)dz/1 (x)xgﬂd:cﬂ/l de<oo<:>9>1

from MATH 138. Therefore, if > 1 then E[X] exists. Also,

> * fx > 1 9

—00 1

DEFINITION 2.4.7: Expectation (Discrete)

If X is a discrete random variable with probability function f(x) and support set A4, then the expectation
of the random variable g(X) is defined by

Elg(X)] =) g(x)f ()

€A

provided the sum converges absolutely; that is, provided

S lg(@)If (@) < oo

T€EA

DEFINITION 2.4.8: Expectation (Continuous)

If X is a continuous random variable with p.d.f. f(x) and support set A, then the expectation of the
random variable g(X) is defined by

E[g(X)] = / " o) f(z) dz

provided the integral converges absolutely; that is, provided

/ s

THEOREM 2.4.9: Expectation is a Linear Operator

Suppose X is a random variable with probability (density) function f(x), and a and b are real constants,
and g(z) and h(x) are real-valued functions. Then,

ElaX +b] = aE[X] +b

Elag(X) + bh(X)] = a E[g(X)] + bE[A(X)]

DEFINITION 2.4.10: Variance

The variance of a random variable is defined as

where p = E[X].
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DEFINITION 2.4.11: Special Expectations

(1) The k™" moment (about 0): E[X*]
(I1) The £™ moment about the mean E[(X — p)*]

THEOREM 2.4.12: Properties of Variance

If X is a random variable, then
V(X) = E[X?] —

where ;i = E[X]. Note that the variance of X exists if E[X?] < oc.

EXAMPLE 2.4.13

Suppose X ~ Poisson(6), the p.f. is defined as f(z) = 0—|e*9 for 0 < x € Z. Find E[X] and V(X).
7

Solution. The support is non-negative, so |z| = z. Therefore,

o~ 0 N~ T g e T,
E[X] = wioxae = ;EG e’ = 9; = 1>!e
Let y =z — 1, then
E[X] = —'6’9 =0(e%)e?
v=0 ¥
since we know ¢/ = Z . Therefore, E[X] = 6.
V(X) = E[X?] — 2
Let’s find E[X?]:
00 o
21 _ 29" 0
E[X?] = ;x e
— axeft‘)
; (z—1)!
> = 1
_ Z (.’L' 1) —|—' 9$67€
~ (z—1)!
— xz ,—0 z ,—0
e L

= ] 0 62
61679 — Jk 2 —0
;(x—l)' ;@—2)
Lety=a —2:
3 0" go2,-0 _ 3 00" o _ g2
= (z—2)! = y!
Therefore,
E[X?%] =6?+6
Therefore,

14
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15
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EXAMPLE 2.4.14
If X ~ Gamma(a, ), prove that

pPI'(a +p)
E[XP] =
[XP] T(@)

for p > —au.
Solution. Recall that

l.aflefz/ﬂ 0

xr >
flx) =9 I'(a)B*
0 <0

So,

oo 00 xa—le—w/ﬂ
E[X?] :/ 2P f(x) dx :/ P ————dzx
0

I(cr) g

There are two methods to solve this integral:
Method 1: Rewrite the function as the p.d.f. of a gamma distribution.

o) Z.PJrOé*le*m/ﬁ
— [ T
G

which is close to the p.d.f. of Gamma(p + «, ).

B /oo xp+a—1e—x/5 y F(a+p)6a+p . [‘(a+p)5p .
b I(a+p)Btr I'(a)p™ ()
constant
Method 2: Rewrite the function as a gamma function.
oo x(era)*le*w/,B
E[XP] = ——dx
= [ S
Lety =2/ = x = Py and da = Bdy. Therefore,
o grta—ly(pta)—le—y gP /00 L I'(p+a)
= dy = (pto)=lo=y oy = 2 " 7/
/0 Tape  OW=r@ ) ¥ Y= "I
Additionally;
. _Bl(a+1)
Bra+2) Bla+DI(a+1)
. 2] — — — 2
E[X?] (o) () ala+1)p

* V(X)) =E[X?] —p? =a(a+1)82 —a?p% = af?

2.5 Moment Generating Functions

DEFINITION 2.5.1: Moment generating function

Suppose X is a random variable, then
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is called the moment generating function (m.g.f.) of X if M (¢) exists for ¢t € (—h, h) with some i > 0.

REMARK 2.5.2

If we are able to find some h > 0 such that for any ¢ € (—h, h), E[e!X] < oo, then we say M (t) is the
m.g.f. of X.

EXAMPLE 2.5.3
Suppose X ~ Gamma(«, 8). Find M(t). Recall the p.d.f. is

xozflefx/ﬁ

fl@)=9 (B>
0 z<0

x>0

Solution.

x
o xa‘lexp{— 5 }
(1/B)—t dx

I(a)p>

!
/OO o¢—1€—;c/,6~
0

I'(a) >

dzx

where

Continuing,

The moment generating function must be non-negative since 1 — 5t > 0 and therefore, ¢t < 1/3. Take

h=1/B.

EXAMPLE 2.5.4

z ,—6
for 0 <z € Z. Find M (t).

If X ~ Poisson(), the p.f. is given by f(z) =

16
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Solution.

forall t € R.

Three important properties of M (t).

THEOREM 2.5.5: Moment Generating Function of a Linear Function

Suppose that the moment generating function of X is M x(t). Then Y = aX + b has moment generating
function
My(t) = ethx(at)

Proof of Theorem 2.5.5

My(t) — ]E[ety] — E[et(ax+b)] — bt E[eatX] — ethX(at)

EXAMPLE 2.5.6

@) If Z ~N(0,1), find M,(¢).
(i) If X ~ N(u,0?), find M ().
Solution.

@

(=1 = }
exp{ — dz complete the square
o P{ p q

:exp{j}/: V%exp _@‘2“2}@

where the integral is the p.d.f. of N (u = t,0? = 1). Therefore,

tZ £
E - z
[e"“] EXP{ 9 }
(i) X =o0Z + pwhere Z ~ N(0,1).

My (t) = e*t M, (ot) = e“texp{ <Ut)2} = exp{w;)2 + ut}

I
—
8

17
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THEOREM 2.5.7: Moments from Moment Generating Function
Suppose X has moment generating function M (t).

M®)(0) = E[X*]

EXAMPLE 2.5.8

Gamma(«, ) has m.g.f. M(t) = (1 — ft) > for t < 1/8. What is E[X] and V(X)?
Solution. For E[X] we find M’ ().

M'(t) = (—a)(1 = Bt)~*"H(—B) = (aB)(1 — pt) "

We know,
E[X] = M'(0) = af

For V(X)) we find M"'(t).
M"(t) = (aB)(—a—1)(=f)(1 — pt) =
Now, M"(0) = af?(a + 1) = E[X?]. Therefore,

V(X) = E[X?] — 2 = af?(a + 1) — (af)? = af?

EXAMPLE 2.5.9
The m.g.f. of Poisson(6) is M (t) = exp{f(e' — 1)}. Find E[X] and V(X).

Solution.

M’ (t) = exp{f(et —1)}0e!
Therefore,

E[X] = M’'(0) =
Now,
M (t) = exp{f(e’ — 1)}6%e?" + felexp{f(e’ — 1)}

Therefore,

M"”(0) =E[X?]=6%+0
So,

VX)=E[X*]—p2=6>+0—(0)*=9

THEOREM 2.5.10: Uniqueness of Moment Generating Functions

X and Y have the same moment generating function if and only if X and Y have the same distribution.
EXAMPIE 2.5.11

2
Suppose X has m.g.f. M (t) = exp{g}.
(i) Find m.gf. of Y =2X —1
(ii) Find E[Y] and V(Y)
(iii) What is the distribution of Y.

Solution. )
() My(t) = etexp{@;)} = exp{2t? —t}.
(i)

M{(t) = exp{2t® — t}(4t — 1)

18
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Therefore,
E[Y] = My(0) = -1
Also,
M/ (t) = exp{2t? — t}(4t — 1) + dexp{2t> — t}
and
E[Y2 = M{/(0)=1+4=5
Therefore,

VY)=E[Y?]—p2=5-1=4
(iii) My(t) = exp{2t> —t} is the m.g.f. of NV (—1,4) since if X ~ N (u,o?), then (by previous example)

2,2
My (t) = e“texp{UQ}
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EXAMPLE 2.5.12: Uniqueness Theorem

Suppose My (t) = (1 —2t)~'. What is the distribution of X?
Solution. X ~ Gamma(a =1, = 2).



Chapter 3

Multivariate Random Variables

3.1 Joint and Marginal Cumulative Distribution Functions

Purpose: to characterize a joint distribution of two random variables.
DEFINITION 3.1.1: Joint cumulative distribution function

Suppose X and Y are two random variables. The joint cumulative distribution function of X and Y'is
given by
F(z,y) =P(X <=,Y <y)

for (z,y) € R%.

P(X <z,Y < y): “What is the probability these two events occur simultaneously”
REMARK 3.1.2
Since {X < 2} and {Y < y} are both events, F'(z,y) is well-defined as we consider {X < z} N{Y < y}.

REMARK 3.1.3

If we have more than two random variables, say X, X,, ..., X,, We can similarly define the cumulative
distribution function as
F(zy,...,z,) =P(X; <zq,.., X, <=z,)

’n

However, in this course we will only focus on two events X and Y.

DEFINITION 3.1.4: Joint cumulative distribution function

(I) Fis non-decreasing in z for fixed y
(I) F'is non-decreasing in y for fixed x
Im lim F(z,y)=0and lim F(z,y)=0
T——00 Y——00
By looking at
(X <a}n{Y <y}
as Qo—oc as yjqoo

(Iv)
limF(JcSy) =0and lim F(z,y) =1

(,y)—(—00,—00 (2,y)=(00,00)

20
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DEFINITION 3.1.5: Marginal distribution function
The marginal distribution function of X is given by

Fi(z) = lim F(z,y) =P(X <x)

Y—00

for z € R.
The marginal distribution function if Yis given by

Fy(y) = lim F(z,y) =P(Y <y)

T—00 -

fory € R.

REMARK 3.1.6

The definition of marginal distribution function tells us that we can know all information about marginal
c.d.f. from the joint c.d.f. but the marginal c.d.f. cannot give full information about joint c.d.f.

3.2 Bivariate Discrete Distributions

DEFINITION 3.2.1: Joint discrete random variables

Suppose X and Y are both discrete random variables, then (X,Y) are joint discrete random variables
X and Y.

DEFINITION 3.2.2: Joint probability function, Support
Suppose X and Y are discrete random variables. The joint probability function of X and Y'is given by
flz,y) =P(X =z,Y =vy)

for (z,y) € R%.
The set A = {(x,y) : f(x,y) > 0} is called the joint support of (X,Y).

DEFINITION 3.2.3: Properties — Joint Probability Function

M f(z,y) > 0for (z,y) € R?
> fay =1
(z,y)eA
(IIT) For any set R C R?
P(X,Y)eR) = Y f(z,y)

(z,y)ER

EXAMPLE 3.2.4

Suppose we want to find P(X < Y'). What is the corresponding set R?
Solution. R = {(z,y) : z < y}

Suppose we want to find P(X + Y < 1). What is the corresponding set R?
Solution. R = {(x,y) : z +y < 1}
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DEFINITION 3.2.5: Marginal probability function

Suppose X and Y are discrete random variables with joint probability function f(z,y).
The marginal probability function of X is given by

file) =P(X =2) =B(X =2,Y <o0) = 3 f(z.y)

for z € R.
The marginal probability function of Y'is given by

foy) =P(Y =) =P(X <00, Y =y) =) _ f(=,y)
fory € R.

EXAMPLE 3.2.6

Suppose that X and Y are discrete random variables with joint p.f. f(x,y) = k¢®>p**¥ where
* 0z’
*0<yeZ
* 0<p<l1
*q=1-p
(i) Determine k.
(ii) Find marginal p.f. of X and find marginal p.f. of Y.
(iii) Find P(X <Y).
Solution.
(i) k> 0 since if k = 0 then the summation of the joint p.f. will be 0 (but needs to be 1).

Zz.f(x’y>:1

z=0 y=0
Therefore,
k io: o0 pm+yq2 — qu io:pz io:py — kqQ 1 1 _ ]4;
= — - I—p/\1=p
=0 y=0 =0 y=0
Thus, & = 1.

(ii) Marginal p.f. of X:

Support of X: [0, ).
By symmetry,

Support of Y: [0, c0).
(iii) Find P(X <Y).



CHAPTER 3. MULTIVARIATE RANDOM VARIABLES

REMARK 3.2.7: Interesting Fact
If X and Y are continuous random variables and have the same distribution and independent,

1
P(X<Y)=3

3.3 Bivariate Continuous Distributions

DEFINITION 3.3.1: Joint probability density function, Support

If the joint c.d.f. of (X, Y’) can be written as

F(z,y) Z/;/if(s,t)dtds

for all (x,y) € R?, then X and Y are joint continuous random variables with joint probability density
function f(x,y) where
2F
OF(w.y) if exists
flx,y)=q 0Oxdy

0 otherwise

The set A = {(x,y) : f(x,y) > 0} is called the support of (X,Y).

REMARK 3.3.2

2

We will arbitrarily define f(z,y) to be equal to 0 when 920
0y

[F'(z,y)] does not exist, although we can

define it to be any real number.

DEFINITION 3.3.3: Properties — Joint Probability Density Function

M f(z,y) > 0forall (z,y) € R?
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(I) For any set R C R?:

P(X,Y)eR) = // flz,y)dx dy

(z,y)ER

EXAMPLE 3.3.4
To find P(X <Y), the region is R = {(x,y) : < y}. Therefore,

PX <y) = //f(x,y)dw dy
<y
DEFINITION 3.3.5: Marginal probability density function

Suppose X and Yare continuous random variables with p.d.f. f(z,y). The marginal probability density
function of X is given by

fi(z) = /OO f(z,y)dy

for 2 € R and the marginal probability density function of Yis given by

h) = | A

fory € R.

P(XY) e R) = [[ fepdady = [ [ ) dedy
R oy

Helpful theorem from MATH 237 that some of you may have forgotten:
THEOREM 3.3.6: {

y first, then x
Let R C R? be defined by
ylz) <y <vy,(x) and z,<z<ax,

where y,(x) and y,,(x) are continuous for z, < x < z,,. If f(z,y) is continuous on R, then

femaa= [ " ey dyde
[frevaa= "]

x first, then y
Let R C R? be defined by
z(y) <z <z,(y) and y,<y<y,

where z,(y) and z,,(y) are continuous for y, <y < vy,,. If f(x,y) is continuous on R, then

[ rewaa= [* | (j> F(,y) da dy
R Ye ZelY

We use ¢ for “lower” and u for “upper.”
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EXAMPLE 3.3.7

Describe the region R above the z-axis.

-1.5 1 -0.5 0 0.5 1 15

Solution. R can be described by the set of two inequalities (you can actually verify this in Desmos if
you really forgot how this works):

Using the theorem above,
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Author’s note: Diagrams will be omitted for most of the text, unless the example is not trivial. Students are
encouraged to draw the diagrams when following the examples.

EXAMPLE 3.3.8

Let X and Y be continuous random variables with joint p.d.f.

fog < JEHy 0wl 0sy<1
Y70 otherwise

(i) Show f(z,y) is a joint p.d.f.
(ii) Find
@ P(X<1/3,Y <1/2)
(b) P(X<Y)
© P(X+Y <1/2)
(d) P(XY <1/2)
(iii) Find marginal p.d.f. of X and Y.
Solution.
(i) Note that f(z,y) > 0. We need to show

|| swwaya=1

—00 Y—00
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1 1 1 291 1 % 1
1
//(fc+y)dydx=/ [x+y] dx:/ <x+)dx:{x+ﬂ 1
0 J0 0 2 0 o 2 2 20

(i) @ R={(z,9):0<z<1/3,0<y<1/2}.

/3 1/2 5
/0 /0 (x +y)dydr = =

b) R={(z,y):0<z<1l,z<y<1}.

/ / (x +y)dydx = =
0 a 2

© R={(z,y):0<2<1/2,0<y < (1/2) —x}

/1/2 /(1/2)—.’E( ) 1
z+y)dyde = —
o B 24

(@ R, ={(z,y):0<2<1/2,0<y<1}and R, = {(z,y) : 1/2 <2 < 1,0 <y < (1/2)/z}.
Therefore, we need to evaluate two double integrals.

1x

1/2 p1 1 (1/2)/z 3 05+ R,
/ / (x+y)dydx+/ / (x—i—y)dyd:vzz <
0 0 1/2 Y0 2

0 05 1

(iii) The support of X is [0, 1].
filx) =0 <= z<0orz>1

Therefore, we focuson 0 < z < 1.
oS} 1 y2 1 1
@) = [ faydy= [ @+ydy- [x—i— 2] .

Thus,
1
r+- 0<zx<1
f1($):{ 2

0 otherwise

fo(y) is similar by symmetry.

EXAMPLE 3.3.9
Suppose

Flz.y) = keT®¥ 0<z<y<oo
©Y9 =0 otherwise

is the joint p.d.f. of (X,Y).
(i) Find k.
(ii) Find
@ P(X<1/3,Y <1/2)
(b) P(XY)
© PX+Y>1)
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(iii) Marginal p.d.f. of X and Y.
(iv) Suppose T' = X + Y, find the p.d.f. of T.
Solution.

(i) We know f(z,y) >0 < k > 0. Actually, £ > 0 since if k = 0, then f(z,y) = 0. We solve k by

solving the following:
[ | sewdsay=1

o0 (o] k
/ / keT* Vdydx = =
0 a8 2

Therefore,

Thus, k/2 =1 = k=2.
() @) P(X <1/3,Y <1/2).

R={(z,y):0<2<1/3,2 <y<1/2}

Therefore,

1/3  p1/2
P(X <1/3,Y <1/2) = / / 267V dy da
0 az

=1—e23 4 2(6’5/6 — 671/2)
~ 0.1427

(b) P(X <Y). Note that the region is the same as the support. Therefore,
PO <Y) = [[ e pdzdy=1
<y

(©) P(X +Y > 1). Note that this region is a bit complicated, so we will consider 1 —P(X +Y <
1) =1—P(X +Y < 1). The equal sign does not account for any area (it’s continuous, but
not required to know in this course).

R={(a,y):0<c<1/2s<y<l—a}

1/2 pl-z
PIX+Y <1)= / / 2e Pe Vdydx
0

x

=1—2¢!

Thus, (X +Y >1)=1-P(X+Y <1)=1—(1—2"!) =2¢1.
(iii) Marginal p.d.f. of X. The support of X is (0, c0). We know z > 0, so

x

fi(z) = / flz,y)dy = / 2" Vdy = 2" [—e’y] T 2e 2@
The marginal p.d.f. of Y. The support of Yis (0, c0). We know y > 0, so
Yy
faly) = / 2e " Ydxr =2e7Y [—e‘x] o 26_y<1 = e‘y) =2eY -2
o 0

(iv) Suppose T'= X +Y, find the p.d.f. of T. We first find the c.d.f. of 7, then we take the derivative of
T.

Support of T'is (0, c0).
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When t <0, Fr(t) =P(T <t) =0, sowe only focuson t > 0, so Fip(t) = P(T < t).
R={(z,y):0<z<t/2a<y<t—uz}

Therefore,

So,
l—et—te? t>0
0 t<0

Therefore, by computing %[FT(t)], the p.d.f. of T'is

folt) = tet t>0
77 Yo t<0

28
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3.4 Independence

DEFINITION 3.4.1: Independent
For any two random variables, we say X and Y are independent if and only if
P(Xe€AYeB)=PXecAPY € B)

for any two sets A and B of real numbers.

THEOREM 3.4.2: Independent Random Variables

Suppose X and Y are random variables. X and Y are independent if and only if
(D F(xa y) - Fl(x)FQ(y): or
@ f(z,y) = fi(2)f2(y)

THEOREM 3.4.3

Let g and h be real-valued functions. If X and Y are independent, then g(X) and h(Y") are independent.

EXAMPLE 3.4.4

If X and Y are independent, then X2 and Y? are independent. However, if X2 and Y2 are independent,
then X and Y may not be independent. Can you find an example here? Choose X where
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EXAMPLE 3.4.5

Consider the joint discrete random variable f(x,y) = ¢°p®"¥, where 0 < z € Z and 0 < y € Z. Then
fi(x) = gp® and f5(y) = gp¥. Therefore, f(z,y) = f,(z)f,(y) shows that X and Y are independent.
r+y 0<z<1, 0<y<l1
0 otherwise

1
f1<x>={“2 et

0 otherwise

Consider f(z,y) = We’ve shown that

1
y+- 0<y<l1

faly) = { 2
0 otherwise

We see that f(z,y) # f;(x)f5(y) therefore, X and Y are not independent.

THEOREM 3.4.6: Factorization Theorem for Independence

Suppose X and Y are random variables with joint probability (density) function f(x,y). Suppose also that
A is the support set of (X,Y"), A; is the support set of X, and A,, is the support set of Y. Then X and Y are
independent random variables if and only if there exist non-negative functions g(x) and h(y) such that

f(z,y) = g(x)h(y) V(z,y) € A; x 4y

where A; x Ay = {(z,y):x € A,y € Ay}

REMARK 3.4.7

Equivalently, we can check that both conditions are met:
» The support of A is a square or rectangle.
* The range of X does not depend on the values of y and the range of Y does not depend on the
values of x.

EXAMPLE 3.4.8

fT+y —260
flzyy) = '6' where 0 < z,y € Z. Are X and Yindependent or not? Find the marginal p.f. of X
and Y.
Solution. o -
0% 0
flay) = e

9(@)  h(y)
The range of X does not depend on the value of y. Therefore, X and Y are independent.

> x ,—0
f1<$):Zf(l‘,y>: ; 0<zecZ
y=0 :
- Gve=?
faly) = fla,y) = T 0<yez
z=0 :

If we’ve shown that X and Y are independent, then we can verify

f(@,y) = g(x)h(y)
With f,(z) = Cg(z) and f,(y) = Cyh(y) where C;, Cy € R is a constant. We know that C;C, = 1.
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EXAMPLE 3.4.9

3
If X and Y have joint p.d.f. f(x,y) = §y(1 —2?%) where —1 <z <land 0 <y < 1. Are X and Y

independent? Find f; (z) and f,(y).
Solution. f(z,y) = (1—22) 3y and A = {(z,y) : —1 <2 < 1,0 <y < 1} is a rectangle. Therefore, X

h(z)  g(y)
and Y are independent. So,

filx) =Cih(z) =C;(1—2?%) for —1<z<1
So, let’s consider the integral:
1 1 3
/ fl(a:)da::C’l/ (1—z3)dz=1 = C, = 1
Ll -1
Using our previous result, we know that

y=2y 0<y<l1

N | W

foly) = Cilh(y) = g

EXAMPLE 3.4.10: Uniform Distribution on a Semicircle

2
f(z,y) = — where 0 < z < /1 —y? and —1 < y < 1. The area of the semicircle is given by 7/2. Are X
T

and Yindependent? Find f; (z) and f5(y).

Solution. f(x,y) = 2/m. Take g(x) = 1 and h(y) = 2/x. Also, this is not
a rectangle, so X and Y are not independent. Similarly, for a particular
value of = we can easily see that y depends on . 12
The support of X is [0, 1].

™ ™
_ J >
The support of Yis [—1, 1].

1—y?

2 2
B = [ Zd=ZVi=p

s ™ -1 4 -

0

Neither of these marginal distributions are uniform.
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3.5 Joint Expectation

This section: extend the definition of expectation from univariate to bivariate cases.

DEFINITION 3.5.1: Joint exepectation

Suppose h(z,y) is a real-valued function.
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If X and Y are discrete random variables with joint probability function f(z,y) and support set A then

ERhX, V)= Y hxy)f(zy)

(z,y)€A

provided the joint sum converges absolutely.
If X and Y are continuous random variables with joint probability density function f(z,y) then

B V) = [ [ ey dedy
provided the joint integral converges absolutely.

EXAMPLE 3.5.2

Z Z zyf(x,y) X, Y are joint discrete
EXY] =< ‘oo oo
/ / zyf(x,y)dedy X,Y are joint continuous
Z Z zf(z,y) X, Y are joint discrete
E[X] =< oo

/ / zf(z,y)dedy X,Y are joint continuous

Alternatively,

E[X] = 3o/ (@) = Zaz[z )]

x x

PROPOSITION 3.5.3: Linearity Property

Suppose X and Y are random variables with joint probability (density) function f(z,y), a and b are
constants, and g(x,y) and h(z,y) are real-valued functions. Then

Elag(X,Y) + bh(X,Y)] = aE[g(X,Y)] + bE[R(X,Y)]

COROLLARY 3.5.4

If X,,...,X,, are random variables and a, ..., a,, are real constants then
E {Z aiXi:| = Z a; E[X;]
i=1 i=1
THEOREM 3.5.5: Expectation and Independence

(1) If X and Y are independent random variables and g(xz) and h(y) are real-valued functions then

(2) More generally, if X, ..., X,, are independent random variables and h is a real-valued function then

E [ﬁl h(Xi)] = ﬁE[h(Xi)]
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DEFINITION 3.5.6: Covariance

The covariance of random variables X and Y'is defined by
Cov(X,Y) = E[(X — pux)(Y — py)]
where py = E[X] and u, = E[Y].
THEOREM 3.5.7: Covariance and Independence
If X and Y are random variables then
Cov(X,Y) = EIXY] — iy

If X and Y are independent then Cov(X,Y) = 0.

Proof of Theorem 3.5.7

Cov(X,Y) = E[(X — px)(Y — uy)]

S
=
|

[

[

[(XY] — ux E[Y] — puy E[X] + pxpy

[ E[X]E[Y] - E[Y]E[X] + E[X]E[Y]
[

Now, if X and Y are independent, then by Theorem 3.5.5, E[XY] = E[X]E[Y] = 0. Thus, Cov(X,Y) =
0.

THEOREM 3.5.8: Results for Covariance
(1) Cov(X,X) = E[(X — jix)(X — )] = E[(X — jix))?] = V(X)
(2) Cov(X+Y,Z)=Cov(X,Z)+Cov(Y, Z)

THEOREM 3.5.9: Variance of a Linear Combination

(1) Suppose X and Y are random variables and a and b are real constants then

V(aX +bY) = a2 V(X) = b2 V(Y) + 2abCov(X,Y)

(2) Suppose X1, ..., X,, are random variables and a4, ..., a,, are real constants then
V(Zain):Za?V( —|—ZaaCon X;) = Z —|—2ZaaCon X;)
i=1 i=1 itj =1 i<j

( = ) terms (; ) terms

3 If Xy,...,X,, are random variables and a4, ..., a,, are real constants then

v (i aiXZ) = Zn: a? V(X
=1 =1

32
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EXAMPLE 3.5.10

z+y ,—20
Suppose the joint p.f. of X and Yis f(z,y) = 0 'e' , Where 0 < z,y € Z. Find V(2X + 3Y).
zly!
Solution. gt fve—d
e~ Ve~
o= (55) (%)
g(z) h(y)

Thus, the range of X does not depend on Y. Therefore, X and Y are independent. In other words, we
can write

o= —0
fz)=C""— 0<gzez
xX.:
o0 eace—e
Since Z =1 as it is Poisson we get that C' = 1. Also,
o x!
gve?
foly) = o 0<yel

Thus, V(X) = 6 and V(Y') = 6. Finally,

V(2X +3Y) =4V(X) +9V(Y) = 130

EXAMPLE 3.5.11

The joint p.d.f. of X and Yis f(z,y) = {a: ty 2yel0]

0 otherwise
Find V(X +7Y).
Solution. We know V(X +Y) = V(X) 4+ V(Y) 4 2Cov(X,Y). Recall that
+1 € [0,1] +1 € [0,1]
x 5 T ) Yy 5 Y )
fl(x){ 2 f2<y){ 2
0 otherwise 0 otherwise

5 7\ 11
= 2 — 2 = — — —_ = —
= V(X) =E[X?] — p% ( ) T
We know that E[Y] = 7/12, V(Y') = 11/144. Now,

1 1
E[XY] :/ / e 4= ) Tyl =
0 0 3

1 7 7 1
— cou(x, ) =EIXY] - i = 3 - (15) (55 ) =~ 1;

Hence,

11 11 2 20 5
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DEFINITION 3.5.12: Correlation coefficient
The correlation coefficient of random variables X and Y'is defined by

Cov(X,Y)

P = A D)

REMARK 3.5.13

p(X,Y) can only be used to characterize linear association between X and Y. For example, there might
exist some quadratic relationship between X and Ybut p(X,Y) — 0.

EXAMPLE 3.5.14

Y = X2 and X ~ N(0,1). Note that p(X,Y) = 0, but obviously there is some relationship between X
and Y.

THEOREM 3.5.15

If p(X,Y) is the correlation coefficient of random variables X and Y, then —1 < p(X,Y) <1
(D p(X,)Y)=1 < Y =aX +bwitha > 0.
2 pX,)Y)=—-1 < Y =aX+bwitha <0.

EXAMPLE 3.5.16

x4y x,y€|0,1]
Let ,Y) =

fy) 0 otherwise
Solution. Recall that V(X) = V(Y) = 11/144 and Cov(X,Y) = —1/144. So,

. Find p(X,Y).

—1/144 1

T /iijida /1114 1

p(X,Y)
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3.6 Conditional Distributions

DEFINITION 3.6.1: Conditional probability (density) function

Suppose that X and Y have joint probability (density) function f(z,y), and marginal probability
(density) functions f;(x) and f,(y) respectively. Suppose also that the support set of (X,Y) is A =

{(z,y) : f(z,y) >0}
The conditional probability (density) function of X given Y = y is

z, .
A 19) = L2 provided f,(5) >0 (2.y) € 4
f2(y)
The conditional probability (density) function of Y given X =z
fawle) = L2 provided fy(2) >0 (zy) € A

f1(z)
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PROPOSITION 3.6.2: Properties — Conditional Probability Function

fi(z | y) and f5(y | =) are both probability functions; that is,

Ay >0 and > filz|y)=1 = fi(z|y)isapf.

Llz) >0 and > folylz)=1 = fo(y|z)isapf.
Y

PROPOSITION 3.6.3: Properties — Conditional Probability Function

fi(z | y) and f5(y | ) are both probability density functions; that is,

fie]y) >0 and / file |y de=1 = fi(z|y)isapdf
foly|2)>0 and /fz(ylx)dy=1=>f2(y|x)isap-d-f-

EXAMPLE 3.6.4

8zy O<y<z<l
Let f(z,y) = {O otherwise
Find
@ fi(z|y)
() foly|z)
Solution.

(i) To find f,(z | y), we need to calculate f,(y).

1
fg(y):/ 8rydr = —4y3 +4y 0<y<1
Y

By definition,
fz,y) 8xy 2z
= = = 1
Aol =Ty " g “ 1o 0¥
Given 0 < y < 1, the support of X isy < = < 1.
(i) To find f,(y | ), we need to calculate f, ().

fl(x):/ Srydy =42 0<z <1
0

By definition,

ez 8 2
Lyl z) = ;ixy))—ﬁ—;; O<z<1

Given 0 < z < 1, the support of Yis 0 < y < .

EXAMPLE 3.6.5

F,y) = {x+y x,y € [0,1]

0 otherwise
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Recall that f,(z) =2z +1/2for 0 <z <1 and f,(y) =y + 1/2 for 0 < y < 1. Therefore,

B
helv) =20y =yriz

Given 0 < y < 1, the supportof Xis 0 <z < 1.

faly|9) = 251

Given 0 < z < 1, the support of Yis 0 <y < 1.

EXAMPLE 3.6.6

f(z,y) = ¢*p* ¥ where 0 < x,y € Z. Note we derived that f; (x) = ¢p® and f,(y) = gp". Therefore,

f(x,y)

filz|y) = XN qp® = fi(x)

oty 2) = L2 — g — 1)

This is another way to show independence of X and Y.

THEOREM 3.6.7

X and Y are independent if and only if
(D) fi(z|y) = fi(z), and
@ foly | z) = fo(y).

THEOREM 3.6.8: Product Rule
f(@,y) = fil@ [ 9) f2(y) = foly | 2) fi(2)

EXAMPLE 3.6.9: Product rule

Suppose Y ~ Poisson(f) and X | Y = y ~ Binomial(y, p). Find the marginal p.f. of X.
Before we get to the solution of this problem, let’s consider a physical setup.
* Y: number of students who go to Tim Hortons in one day. Note that Y ~ Poisson(#).
* X | Y = y: number of students among these y visitors
What is the distribution of X? We guess that X ~ Poisson(6p).
Solution.

f(z,y) = filz | y) fa(y)

y! =\ o
= T(] — y—x | __
(o)
(axpm) eyfz(l . p)yfz »
= 6

x! (y — x)!

36
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(X,Y) supportisz = 0,1, ...,y and 0 < y € Z. Therefore,
fi(z) = flz,y)

Y

S (0 =p)rE

> (%) (o)

e(0p)” & [6(1—p)]"

= fc!p h; h!p h=p—E

—0 T

¢ W) (6p) e0(1-p)
z!

(0p)® o—0p

x!

Therefore, 0 < = € Z and so X ~ Poisson(fp).

EXAMPLE 3.6.10

a—1

Suppose Yhas p.d.f. fo(y) = ?(a)

filz|y) =ye ¥ forz >0,y >0

e ¥ for y > 0; that is, Y ~ Gamma(a, 8 = 1). The conditional p.d.f.
of X given Y =y is

Find the marginal p.d.f. of X.
Solution. Firstly, find the joint p.d.f. of (X,Y) is

f@.9) = fi@ [ 9)fay) = ye ™ Fme™ = Fy(oc;) e~(@+1)y

The support of X is (0, 00). Recall that the gamma function is I'(«) = / x® le % dz.
0
The marginal p.d.f. of X is

oo (o] ozef(:b+1)
f1(33):/ f(sc,y)dy:/ yTa)ydy
—00 0

Lett = (z + 1)y, therefore y = t/(z + 1) and dy = dt/(z + 1).

/Oo ta — L dt = ! /oota “tdt = ! I'la+1)
| G+ (@ z2+17 " @+ (@) ° “T @r)ein@
By Proposition 2.3.7, we know that I'(ac + 1) = («)I'(«). Therefore,

la+1) (o) () o

@+ Do) (@ + 1) (@) (@t Dor

That is, f;(z) = and the support of X is positive.

o
(z + 1)ett

LECTURE 10 | 2020-10-04
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3.7 Conditional Expectation

DEFINITION 3.7.1: Conditional expectation

The conditional expectation of g(Y") given X = « is defined as

Zg(y)fg(y | z) Yis discrete
Ejg(Y)| X =2]={ joo
/ 9(y)fo(y | ) dy Yis continuous

REMARK 3.7.2

* Supplementary notes: E[g(Y) | X = z] is denoted by E[g(Y) | z].
We’re interested in
1. The conditional mean of Y given X = z is denoted E[Y| X = z] since g(Y) = Y.
2. The conditional variance of Y given X = x is denoted by V(Y| X = z) and is given by

V(Y| X = 2) =E[Y2| X = 2] — (E[Y| X = 1])

3. E[etY| X = 2], that is, g(Y) = e'Y.

THEOREM 3.7.3: Independence
If X and Y are independent random variables then
Elg(Y) [ X = 2] =E[g(Y)] and E[r(X)[Y =y] = E[r(X)]

In other words, the conditional expression becomes an unconditional one.

EXAMPLE 3.7.4

If X and Y are independent, then
EY| X =z]=E[Y] and VY |X=2z)=V()

Also, V(Y| X = 2) = E[Y? | X = 2] — (E[Y| X = 2])” = E[Y?] — (E[Y])’

THEOREM 3.7.5: Substitution Rule
If X and Y be random variables and h : R> — R then

E[R(X,Y)| X = 2] = E[h(z,Y) | X = 2]

EXAMPLE 3.7.6
* EX+Y|X=2]=Ez+Y|X=2]=z+E]Y|X =12]
s EXY| X =z|=E[2Y| X =z] =zE[Y| X = z]
THEOREM 3.7.7

The conditional expectation has all properties of expectation like linearity.
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EXAMPLE 3.7.8

0 otherwise

Flz,y) = {Sxy 0<y <2<l eve found that f,(z | y) = (22)/(1—y?) for0 <y < landy < z < L.

E[X|Y=y]Z/Oomfl(ﬂy)dm:/l(x)lede: (2)1_93 _ (2)zf+y+1

3)1—y2 3 y+1

Les by Y

1 4
2z 2\1—y 1
2 = = 2y_ =™ = — = — 2
E[X?|Y =y] /(:U)1 y2dy (4)1 " <2>(y +1) 0<y<l1

Y

VX|Y = y) = (;>(1+y2>— (@W 0<y<1

EXAMPLE 3.7.9

Suppose Y ~ Poisson(f) and X | Y = y ~ Binomial(y, p). Then,

EX|Y=y|=yp and V(X|Y =y)=yp(l-p)

REMARK 3.7.10
Note that E[g(Y) | X] # E[g(Y) | X = z].

E[g(Y) | X] is a random variable because it’s a function of X, denoted by h(X). Its value is given by

h(z) =E[g(Y)| X = z] for X = z.
How to get it? Two steps.

» Step 1: Find E[g(Y) | X = z]| = h(z)

* Step 2: Replace = with X to get the random variable E[¢(Y) | X] = h(X).
EXAMPLE 3.7.11

Suppose Y ~ Poisson(f) and X | Y = y ~ Binomial(y, p). Then,

EX|Y=y]l=yp = E[X|Y]=Yp

39

These concepts lead to the Double Expectation Theorem or more commonly known as the Law of Total

Expectation.
THEOREM 3.7.12: Double Expectation (Law of Total Expectation)
Suppose X and Y are random variables then
Elg(Y)] = E[E[g(Y) | X]

In particular; E[Y] = E[E[Y| X]].

EXAMPLE 3.7.13

Suppose Y ~ Poisson(f) and X | Y = y ~ Binomial(y, p). Find E[X].
Solution. By Theorem 3.7.12 we have

E[X] = E[E[X | Y]] = E[Yp] = pE[Y] = pf

Recall that we’ve shown that X ~ Poisson(pf) = E[X] = pf.
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THEOREM 3.7.14: Law of Total Variance

Suppose X and Y are random variables then

V(Y) = E[V(Y| X)] + V(E[Y| X))

REMARK 3.7.15

V(Y| X) is a random variable and function of X.
How to get it? Two steps:

1. VY| X =2) =E[Y? | X = 2] — (E[Y| X = z])%

2. Replace z with X to get the random variable V(Y| X).
EXAMPLE 3.7.16

Y ~ Poisson(f), X | Y = y ~ Binomial(y, p). Find V(X).
Solution. We know that X ~ Poisson(pf), then V(X) = pf. But we can alternatively use the Double
Expectation Theorem.

V(X) = E[V(X|Y)] + V(E[X | Y])

To find V(X | Y),
V(XY =y)=yp(l-p) = V(X|Y)=Yp(l—p)

To find E[X | Y],
EX|Y=y|l=yp = E[X|Y]=Yp

Therefore,
V(X) =E[Yp(1 —p)]+V(pY) =p(1 —p)E[Y] + p* V(Y) = p(1 — p)0 + p*0 = pf
EXAMPLE 3.7.17
Suppose X ~ Uniform(0,1) and Y | X = # ~ Binomial(10, z). Find E[Y] and V(Y).
E[Y] = E[E[Y] X]]
Two steps to find E[Y] X].
E[Y| X = 2] =10z = E[Y|X] = 10X

E[Y] = E[10X] = 10E[X] = 10(1;0> =5

V(Y) =E[V(Y| X)] = V(E[Y]| X])
Two steps to find V(Y| X).

V(Y| X = 2) = 102(1 —p) = V(Y| X) = 10X(1 — X)
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V(Y) = E[10X(1 — X)] + V(10X)
— 10E[X] — 10 E[X2] + 100 V(X)

_ 10(1 ‘; O) —10[V(X) + (E[X])] + 100 V(X)
B (0—1)2 (140}’ (0—1)2
_5—1()[ = +< : )1+100[ = ]

11 1
=510 — + = 100( =
5 0(12+4>+ 00(12>

EXAMPLE 3.7.18

Suppose Y ~ Poisson(d) and X | Y = y ~ Binomial(y, p). Find the m.g.f. of X using the Double
Expectation Theorem. [We could use the formula sheet to find M (t) since we already know X ~
Poisson(p#)]

Solution. By definition, the m.g.f. of X is

MX(t) — ]E[ tX tX | Y]

St
:i(z)pe -

Therefore, E[e*X | Y] = (1 — p + pe')Y. Therefore,

Given Y =y,

My (t) = E[(1—p+ pe)"]

0 0Y —0
=Y (1—p+pe)y ye,

y=0

- ,92 1—p+pe )]

=e eXP{9(1 *erpet)}
= exp{fp(e’ — 1)}

Actually, this is the m.g.f. of Poisson(fp).
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3.8 Joint Moment Generating Functions

DEFINITION 3.8.1: Joint moment generating function
If X and Y are random variables, then
M(ty,ty) = E[ehXtt=Y]

is called the joint moment generating function of X and Y'if M (¢,,t,) exists for |t;| < hy and |t5| < h,
for some hq, hy > 0.

REMARK 3.8.2

In general, suppose X, ..., X,, are random variables, then

n
M(ty,....t,) =E [exp{ ZtiXiH
=1
is the joint moment generating function if it exists for |t;| < h, for some h;, > 0 wherei =1,...,n.

REMARK 3.8.3: Applications of Joint Moment Generating Functions
(1) From joint m.g.f. to marginal m.g.f. Given M (¢,,t,) for |¢;| < hy and |t,| < hy With Ay, hy > 0,
Mx(t;) = M(t;,t, = 0) = E[e"™]
My(ty) = M(0,t,) = E[e*"]
(2) Independence Property. X and Y are independent if and only if
M(ty,ty) = Mx(t) My(t,)

More generally, if X, ..., X,, are independent, then

i

M(ty, .. t) = [ [ Mx, ()

EXAMPLE 3.8.4

Suppose f(x,y) = e ¥ for 0 < x < y is the joint p.d.f. of (X,Y"). Find the joint m.g.f. of X and Y. Are
they independent? Find the marginal p.d.f. of X and Y.

42
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Solution.

=
~+
=
~
(V)
~
|

E[et1X+t2Y]

with ¢, —1 < 0and ¢; +t, — 1 < 0. Therefore, ¢, < 1 and ¢; +t, < 1.

1
Mx(ty) = M(ty,ty =0) = 1—t
which is the m.g.f. of Exponential(1).
1
My(ty) = M(t, = 0,t,) = =52

which is the m.g.f. of Gamma(a = 2, 5 = 1). Note that the joint support is a triangle (not a rectangle),
so obviously M (t;,t5) # Mx(t;)My(t,). Thus, X and Y are not independent.

EXAMPLE 3.8.5: Additivity of Poisson Random Variables
Suppose X ~ Poisson(f,) and Y ~ Poisson(f,) with X and Y independent. Prove that X + Y ~

Poisson(6; + 6,).
Solution. We can try to find the p.d.f. of X + Y (direct method). Alternatively, find M (t).

My y(t)

E[etX+tY]

= E[e!XetY] X and Yindependent
— E[e!X]E[e!"]

= exp{0, (' — 1)}exp{fy(e’ — 1)}

= exp{(0y +0,)(e' —1)}

which is the m.g.f. of Poisson(6; + 6,).

LECTURE 12 | 2020-10-18
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3.9 Multinomial Distribution

DEFINITION 3.9.1: Multinomial distribution
(X4, ..., X,) are joint discrete random variables with joint p.f. given by

n! " =
1 k
-.-xk'pl -..pk

=P(X; = ey X = =
f(1'17 7xk> ( 1 Ly Yk xk) 1‘1!332!

. k k
where z; = 0,1,...,n (¢ = 1,2,...,k). Furthermore, }°° =z, =mn, >>° p; =1, for0 < p; <1
i=1,...,k Then, (X;,..., X,) follows a multinomial distribution.

(X4,...,X},) ~ Multinomial(n; py, ..., px)

EXAMPLE 3.9.2: Possible Application

* There are k boxes and each box has same balls.
e The probability of choosing a ball from the i box is p; fori = 1,2, ..., k.
* We randomly choose n balls from % boxes.

Let X, := number of boxes from the i box for i = 1,2, ..., k. Then,

(X4,...,X},) ~ Multinomial(n; py, ..., px)

Note: if there are only two boxes, then X; ~ Binomial(n, p, ).

PROPOSITION 3.9.3: Properties — Multinomial Distribution

If (X4,...,X}) ~ Multinomial(n; py, ... , ps,), then
(1) M(ty,...,t;) = E[etrXitTtXe] = (pefr + ... + petr)™ where |t;| < oo fori=1, ...,k
(2) X, ~ Binomial(n,p;) fori=1,... k.
(3 T =X, + X, foris j then T ~ Binomial(n, p; + p;)
(4 Cov(X;,X,;) = —np;p; fori+j
(5) The conditional probability function of X; given X; = x; for i # j is

X, | X; =1 NBinomial<n—xj, 1fip.>
J

(6) The conditional distribution of X; given T'= X, + X for i # j is

X, | X; + X ~ Binomial <t, il )
p; TPy

Proof of Proposition 3.9.3

Proof of (1): Too long for my poor soul to type. Proof requires the Multinomial Theorem.
Proof of (2): The moment generating function of X, fori =1,... ,kis

M(0,...,0,t,0,...,0) = [p;et + (1 —p;)]" t,€R

which is the moment generating function of a Binomial(n, p,) random variable. By Theorem 2.5.10 we
have X, ~ Binomial(n,p,) fori =1, ... k.

44
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Proof of (3): The moment generating function of 7' = X, + X for i # j is

t) = E[e"]
:E[etX+X]
:E[etX+tX]
= M(0,...,0,t,0,...,0,t,0,...,0)
= (py + - +pet + - +pje+ P )" teR
= [(p; + pj)et + (1 —p; —p))]" teR

which is the moment generating function of a Binomial(n, p; + p,) random variable. By Theorem 2.5.10
we have T ~ Binomial(n, p; + p;) for i # j.

Proof of (4): By (2) we have E[X;] = np;, V(X;) = np,(1 —p;), and V(X;) = np;(1 — p;). By (3) we
have X; + X; ~ Binomial(n, p; + p;), so V(X, + X;) = n(p; + p;)(1 — p; — p;). Thus,

Cov(X; + X;, X, + X;) = V(X,) + V(X;) + 2Cov(X,, X;)
= n(p; +p;) (1 —p; —p;) = np;(1 —p;) + np;(1 — p;) + 2Cov(X;, X))
Therefore, Cov(X;, X;) = —np;p;.
Proof of (5): There are x; outcomes from the 4™ category. Therefore, there are (n — x; ;) balls chosen

from the remaining (k — 1) boxes. We are not allowed to choose from the j* box, we are only allowed
to choose from the remaining (k — 1) boxes. Therefore, proportionally we get the success probability as

i/ (1 = pj)-

EXERCISE 3.9.4

Prove property (6) from Proposition 3.9.3.

3.10 Bivariate Normal Distribution

DEFINITION 3.10.1: Bivariate normal distribution
Suppose that X; and X, are continuous random variables with joint probability density function

1
27| X|1/?

= (3“1) . p= (/h) . TI= ( o7 P012‘72)
T2/ 51 H2/ 9x1 Po103 92/ xk

and X is positive semi-definite. Also, |X| is the determinant of X. Then, X = (X;,X,)' follows a
bivariate normal distribution, and we write

for,a) = ——mewp{ 2@ — W S @ -} (@,2,) R

Also,

X ~BVN(p, X)
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REMARK 3.10.2:

Alternatively, we could write

f(@q,75)
1

= —————————exp} —
270094/ 1 — p? { 2(1—p?) J1 T2 0102

PROPOSITION 3.10.3: Properties — Bivariate Normal Distribution
(1) X, X, has joint moment generating function
1
M(ty,ty) = E[ehrX1tt2Xa] = exp{tTu + itTEt} vt € R?

(2) Marginally,
1
My (t,) = M(t,,0) = exP{tl,Ul + §t%‘7%}

! [(wl—u1)2+(xg—ug)Q_QP(xl—ul)(wz—/m)

)

which is the m.g.f. of N'(u,,0%); that is, X; ~ N (uy,0%). Also, E[X;] = p; and V(X;) = o2

1
My, (t2) = M(0,t;) = exp{tir + 31303 |

which is the m.g.f. of N (s, 03); that is, Xy ~ N (s, 03). Also, E[X,] = py and V(X,) = o2.

(3) Conditional distribution.

poy(zy —
Xy | X :xlNN(N2+2(Ull)aU%(1_P2)>
1

PO1(Ty — [
X1|X2:x2~]\f<,u1+M,o%(l—;ﬂ))

. [y, 25)
falzg [ 21) = 7}@1(%)
. [y, 25)
fi(zy [z9) = 7f2($2)

4 Cov(X,,X,) = poyo,
(5) p=0 < X, and X, are independent.
(6) Linear transformations of bivariate normal are still normal.

(7)) (X =)' 27X —p) ~x*(2)

Proof of Proposition 3.10.3

Proof of (4): We want to find E[X; X,] = E[E[X; X, | X;]].
Step 1:

EX )Xo | X; =21 = E[2, X, | Xy = 2] = 3, E[X, | X = 2] = 24 (ﬂz + o

Step 2:

poa (X — p)
E[X; X, | Xq] = X, (Mz + 211)

%51

poa(Ty — piy)

46
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X1poo( X1 — 1)
%51

= 1, E[X,] + %(E[X%] — m E[Xy])

po
= popty + "2 (] + of — pi)
1

= Hilg + pO10,

E[X; Xo] =E| Xpp +

Thus,
Cov(Xy, Xy) = E[X, X,] — E[X,] E[X,] = poy 0y
Corr(Xl,X2> o M =p
V(X)) V(X,)

Proof of (5): We know if X, and X, are independent, then p = 0. If p = 0, e.g., X, | X; = 2 ~
N(py,0?) and X | Xy = 25 ~ N (4, 07). In summary: If joint bivariate normal then uncorrelated =
independence.

Proof of (6): Let ¢ = (c;,¢5) ", then ¢" X = ¢; Xy + 3 Xy ~ N(cqpuy + cypin, ¢ Xe). Furthermore, if
A€R??2 and b = (b;,b,)", then
AX +b~BVN(Au + b, AYAT)
Two linear combinations of BVN is joint BVN.
REMARK 3.10.4
Remark of (7): Note x?(1) := Z? where Z ~ N (0, 1).

n
X2(n) =) 22
=1

where 7, ..., Z,, are independent N (0, 1).
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Let (X4, ..., X,,) be continuous random variables. We want to find the distribution of Y = h(X,, ..., X,)).
Three methods here:
(1) Cumulative Distribution Function Technique
(2) One-to-One Transformation
(3) Moment Generating Function Technique
* (1) and (3) are useful to find marginal distribution Y = h(X,, ..., X,,).

* (3) is useful to find both univariate and multivariate functions. For example,
Y, =h(X,,...,X,) and Y, =hy(X,,..,X,)

If we want to find the joint distribution of more than one function, we can use this method.

4.1 Cumulative Distribution Function Technique
Tutorial 5: T =E[X | Y] =
Y =nX,,..,X,)

Step 1: Find the c.d.f. of Y by definition.

3y,

Step 2: Find the p.d.f. of Yby
fly) = Fyly)

EXAMPLE 4.1.1: Cumulative Distribution Function Technique

Suppose the joint p.d.f. of (X,Y) is f(x,y) = 3y for 0 < z < y < 1. Find the p.d.f. of T = XY and p.d.f.
of S=Y/X.
Solution. T' = XY. Support of T'is (0, 1).

o Ift > 1, then Fp(t) =P(T <t)=1.

* Ift <0, then Fj(t) = 0.
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e If0<t<1,then

Fy(t) = B(T < 1)
= P(XY < 1)
=1-—-P XY > t

(] [

=1— (2632 —3t+1)
=3t — 2t%/2
Therefore, the p.d.f. of Tfor 0 < ¢ < 1is
fr(t) =3 -3Vt
S =Y /X. Support of S'is (1,00).

* If s <1, then Fg(s) =0
e If s > 1, then

Therefore, the p.d.f. of S for s > 1is

EXAMPLE 4.1.2: Distribution of maximum and minimum

Suppose (X, ..., X,,) = Uniform(0, #). Find the p.d.f. of the largest order statistic; that is,

X, = max X,
(n) = 1<i<n
and the smallest order statistic; that is,
Xy = min X,
1<i<n

Solution. Fy (y) = P(X(,) < y).
* Ify <0, then Fy (y)=0.
* If y > 0, then Fx.., (y) = 1.
* If 0 <y < 6, then

49
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The p.d.f. of Xn) for0 <y <0is

n—1

n
fx(”) (y) = o ¥
For X 4, the support is [0,6]. If 0 <y < 0,

The p.d.f. of X(y) for 0 <y < @ is

EXERCISE 4.1.3

IfXx,.. X, = Exponential(1), find X, and X4,.

50
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4.2 One-to-One Transformations (Univariate)
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EXAMPLE 4.2.1: Cumulative Distribution Function Technique

If X ~ N(0,1), find the p.d.f. of Y = X?2.
Solution. Support of Yis [0, 00). The c.d.f. of Yfor y > 0 is

Fy(y)

P(Y <y)

P(X2 <y)
=PI <X < D)
Fx(Vy) = Fx (=)

The p.d.f. of Yis
fyly) = Fy(y)

_ m(;f) Fi(—yB) (—2\1@)

_ 27y[fXW@ + fx(=v3)]

= 2}/@ [J%exp{—( 2?/)2} + \/%Texp{ <_\2/@2 H
1 2 Y

- [mexp{Q }

The p.d.f. of Yis also x?(1) or Gamma(a = 1/2, 3 = 2).

EXAMPLE 4.2.2: Cumulative Distribution Function Technique

Suppose the p.d.f. of X is f(z) = sy for x > 1 and 6 > 0. Find the p.d.f. of Y = In(X).
Solution. Support of Yis [0, c0). The cd.f of Yfory > 0is

Fy(y) =P(Y <y)

In(X) <y)
X< e’/)

IP(

P(
[
=1-

The p.d.f. of Yis

0 otherwise

e Yo
Fily) = fyly) = {9 y=>0

Special case: If h(x) is a one-to-one transformation on the support of X, then we have a formula to find p.d.f.
of Y = h(X).

THEOREM 4.2.3: One-to-One Univariate Transformations

If h(x) is one-to-one transformation on the support of X, then the probability density function of Y'is given
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by

0vly) = Fx@| 5]

dy
REMARK 4.2.4

Replace z in the right-hand side by function of y; that is, z = h~!(y) (inverse of h).
EXAMPLE 4.2.5: One-to-One Transformation (Univariate)

Suppose the p.d.f. of X is f(z) = % for x > 1 and 6 > 0. Find the p.d.f. of Y = In(X).

r0+1
Solution. Support of Yis [0, 00). h(z) = In(x) is a one-to-one transformation. For y > 0 we have

9v(y) :fx@)‘% y=In(z) = z=e¢¥

= fx(e¥)|eY|
0
= (ev)f+1 (€¥)

= fe=

1 1
Note that d—m = = —— = z. So we could’ve done
dy dy/dx 1/z

() = Ix(@)| 7|
= Ix(@le

0 y
= T )

= Pe¥?

EXAMPLE 4.2.6: One-to-One Transformation (Univariate)

Suppose X ~ N(0,1) and the c.d.f. of X is ¢(z). Find the p.d.f. of Y = &(X).
Solution. Support of Yis [0,1]. The p.d.f. of Yfor0 <y < 1is

dx
9v(v) = Ix@)| 7|
- x(@)| 7 y=a) = L =0 = fx()
1
=1

Thus, Y ~ Uniform(0, 1).

EXAMPLE 4.2.7: One-to-One Transformation (Univariate)

Suppose X ~ Uniform(0, 1). Find the p.d.f. of Y = —In(X).



CHAPTER 4. FUNCTION OF RANDOM VARIABLES 53

Solution. Support of Yis [0, c0). Note that y = —In(x) = dy/dx = —1/x. The p.d.f. of Yfor y > 0 is

() = Fx(o)| 7

1
dy/dx

=T
— eV

where the last equality follows since y = —In(z) = z =¢ ¥ fory > 0.

REMARK 4.2.8

The c.d.f. technique is always useful, but the one-to-one transformation is less useful, and you are more
likely to make a mistake. It is not recommended using the formula.
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Find the p.d.f. of Y = h(X). Two possible ways:
* Method 1: CDF Technique

* Method 2: If h(z) is a one-to-one function, then
dz
ov(v) = Ix(@)| |

4.3 One-to-One Transformations (Bivariate)

Given X and Y, the joint p.d.f. of (X,Y) is f(z,y). We would like to find the joint p.d.f. of
U=h(X,Y) and V =hy(X,Y)
One-to-one bivariate transformation
u=hy(x,y) and v=hy(z,y)
The two functions are a one-to-one transformation if there exist another two unique functions such that
x=w(u,v) and y=wy(u,v)
for (x,y) in support of (X,Y).
THEOREM 4.3.1: One-to-One Bivariate Transformations
The p.d.f. of U = hy(X,Y) and V = h,(X,Y) is given by

_ (z,y)
o) = fla)| 522
where the Jacobian matrix is 5 5
Ox,y) _ qu gy
A(u,v) = =

Step 1: Find support of (U, V') by making use of h,, h,, and support of (X,Y).
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Step 2: u = hy(z,y) and v = hy(z,y) implies z = w; (u,v) and y = w,(u, v), compute Jacobian:

Ox/0u Ox/dv
Oy/ou 0Oy/ov

Step 3:

o(u,0) = f(a:,y)‘

EXAMPLE 4.3.2: One-to-One Transformation (Bivariate)

Suppose X ~ N (0,1) and NV (0, 1) independent. Find the joint p.df. of U = X +Yand V = X — V.
Solution. Since X and Y are independent, the joint p.d.f. of X and Y'is given by

2

Flw,9) = (@) firly) = V%exp{—f}\/%exp{_%} _ ;rexp{_xz ‘2“’2}

Step 1: w = z +yand v = z — y implies « = (v + v)/2 and y = (u — v)/2. Support of U and V'is
(_007 OO)
Step 2: Jacobian is given by

Ox,y) _|0x/du dx/0v
d(u,v)  |9y/Ou Oy/ov
(5)(=)-(G) )
__1
2
Step 3:
o) = fa)| 522

EXAMPLE 4.3.3: One-to-One Transformation (Bivariate)

Suppose that X and Y are continuous random variables with joint p.d.f. f(x,y) = e * ¥ for 0 < x < oo
and 0 < y < oo. Find the joint p.d.f. of U = X + Yand V = X. Find the marginal p.d.f. of U.
Solution. © = x + y and v = x implies x = v and y = u — v. Therefore, 0 < v < cc and 0 < u — v < oo.
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In other words, the joint support of (U, V) is 0 < v < u < co. Jacobian is

d(x,y) |0xz/Ou Ox/dv
O(u,v) |0y/Ou Oy/ov
o 1
1 -1

=—1

Therefore, the joint p.d.f. of (U, V) for 0 < v < u < 0o is

o) = J(o)| G2

= e =Y

_ e—(r+y)

Find the p.d.f. of U = X + V.
1. CDF Technique
2. Define V =X (or V =Y), find (U, V) with the Theorem.

EXAMPLE 4.3.4: Support of One-to-One Transformation (Bivariate)

Suppose that the support of (X,Y) is 0 < x < y < 1. Find the support of (U, V) where U = X and
V = XY.
Solution. « = x and v = xy implies x = u and y = v/u.

O<u<_<l — O<ul<v<u<l
u
(multiply by u)

EXAMPLE 4.3.5: Support of One-to-One Transformation (Bivariate)

Suppose the support of (X,Y)is 0 < z < 1 and 0 < y < 1. Find the support of (U, V) where U = X /Y
and V = XVY.
Solution. « = z/y and v = xy.

w=2> = z=uw

_v:>_v_v1/2_ v
LA y_\/uv_ul/Qvl/Q_ U

1
0<Vvuww<l = 0<uw<l = 0<u<- (v>0)
v

So,

O<\/3<1 =>O<§<1 = 0<v<u (u>0)

Combining, we get 0 < v < u < 1/v.

55
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4.4 Moment Generating Function Technique

Idea:
(1) Find the moment generating function of a random variable

(2) Use the uniqueness theorem of moment generating function to find the distribution of the random
variable and then the p.d.f. of a random variable.

THEOREM 4.4.1

Suppose X1, ..., X,, are independent, then T' = Z?: | X; has moment generating function

MT(t)]E[exp{tiXi}]E[f{lexp{tXi}] HE {tx,}] = f[lMXi(t)

In particular; if X4, ..., X,, are independently and identically distributed, then they have the exact same
moment generating function M (t); that is,

Next, we use the m.g.f. technique to find properties of normal, x?, ¢-distribution, and F-distributions.

LEMMA 4.4.2
If X ~ N(p,0?), then

aX +b~ N(ap+ b, a?0?)
Proof of Lemma 4.4.2

Recall that the m.g.f. of X ~ N (u,0?) is

242
My (t) = exp{,ut I J;}

Therefore,

M, x4 (t) = E[etl@X+0)]

a

— ebt E[etaX]

= " My (ta)
o?(at)?
= ebtexp{u(ta) + (215) }

242
:exp{(a,u—&—b)t—i— a (;t }

which is the m.g.f. NV (au + b, a%0?).
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THEOREM 4.4.3

If X ~ N(pu,0?), then
X—p
o

~ N(0,1)

THEOREM 4.4.4: Linear Combination of Independent Normal Random Variables

If X; ~ N(u;,02), i =1, ...,n independently, then
>~ (S am Y ato?
=1 i=1 =1

Proof of Theorem 4.4.4

By Lemma 4.4.2, we have a,X; ~ N (a;p;,a?0?) fori = 1,...,n and the m.g.f.

14N

ajo;
M, x, (0 = expf (ae + 02}

Therefore,

which is the m.g.f. of N( S ity > aF07

i=1 %71

S
)

~—

COROLLARY 4.4.5
IFXy, .., X, S N(y,o?), then

(D ZXi ~ N (np,no?)

i=1 " 02
> x ¥ (w2 )
=il w

@ X, =

S|

Proof of Corollary 4.4.5

(1) Leta; =1, u; = p, 07 = o in Theorem 4.4.4.
(2) Leta; = £, pu; = p, 07 = o in Theorem 4.4.4.
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DEFINITION 4.4.6: Chi-Squared Distribution

IfZ,,...,Z, ~ N(0,1) are independent and 0 < k € Z, then

i=1

follows a chi-squared distribution with k degrees of freedom and write Q ~ x?(k).

If X ~ N(u,0?), then

If Y, ~ x%(k,;) are independent, then
n n
Z Y ~ X < kz)
i=1 i=1
The m.g.f. of x2(1) is (1 — 2¢)~ /2. Derive the m.g.f. x2(n): (1 — 2t)""/2.

) =>"Xx7 X, X N(0,1)
=1

Let T'= 3" Y, then

M(t) = [T My, (1) = [T =205/ = (1 - 20 2 /2

=1 i=1

i(xi —u)2 _ ZL(X; W ()

i=1 g g

If Xy, ., X, S Ny, 0?)

DEFINITION 4.4.7: Student’s ¢-distribution
Let Z ~ N (0,1) and Q ~ x?(v) be independent, then
Z

VQ/v

follows a student’s t-distribution with k degrees of freedom and write T' ~ ¢(v) where v > 0.
Support of T: (—oo, 00).

DEFINITION 4.4.8: F-distribution
If X ~ x?(n) and Y ~ x?(m) are independent, then

X/n

Y/m o 8y )

follows a F-distribution.
Support of F(n,m):

e Ifn=1:[0,00).

e If n # 1: (0,00).

If X ~x?(n) and Y ~ x?(m) are independent, then
X+Y ~x%(n+m)
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EXERCISE 4.4.9

Prove or disprove.
X/n
(X+Y)/(n+m)

(X+Y)/(m+n)
X/n

g__n X—|—Y_n+n X_n+Y/mm
S om4n\ X " m4+n m+n\X) m+n X/n\m+n

Assume n > 2, then

e R e R

1
Thus, Z does not follow F'(m + n,n), hence - does not follow F'(n,n + m).

~ F(n,n+m)

Solution. False. Define Z = , we have

LEMMA 4.4.10: Useful Identity

Proof of Lemma 4.4.10

Z(Xi*li)z: (X; = X+ X —p)?
=1 =1

since
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THEOREM 4.4.11
If X; ~ N(p,0?), i = 1, ..., n independently, then

" (X - X)?
Z"I(U; L =)

Proof of Theorem 4.4.11

By Lemma 4.4.10 we have

02 02 + o2
Y U b %
X —
Note that yrX —p ~ N(0,1), thus
o

Z:;(Xi — )

p ~ x*(n).
Since U and V are independent and Y = U + V, then

Previously, we derived Y =

My(t) = E[e™] = E[e"VV)] = E[e"V] E[e""] = My(t)My(?)

Thus,
1
(1—2t)""% = My(t)(1 —2t)"? t< 3

1
= My(t) =1 —2t)~D2 < 5

which is the m.g.f. of x?(n — 1).

Why X is independent of Y- (X; — X)*?

(X, X; - X,...,X,, — X) ~ MVN(")
0

Verify that X independent of (X, — X, ..., X,, — X) by calculating the correlation.

EXAMPLE 4.4.12: t-distribution

If X,, ..., X, % N(uo0?), then

where

is defined as the sample variance (E[S?] = 02).
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Solution. ~
—p
oI N(0,1)
n—1)52 Z:L_ (X; — X)?
< 02) _ =il — ~ X2(n _ 1)
are independent, then ~
X—p B
o/Vn =2 b in—1)
(n—1)S2 S/vn
72/(” —1)
(o

EXAMPLE 4.4.13: F-distribution

fXx,.,X, e N(py,02)and Yy, ...,Y,, = N (s, 03) are independent. Define

S22 =
1 n—1 =
m Y;_YQ 7 1™
s TmW=T? o 1o
m—1 m
=1
Then,
St /o
52 /0 ~F(n—1m-—1)
Reasoning: -
i (X — X)?
S;f B o? x3(n—1)
o? n—1 n—1

are independent, therefore,

S0t Xm-Dfn-1) .o
$%/0? ~ m—Djm—1) L bm—l
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Limiting/Asymptotic Distribution
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Motivation: We're very interested in the distribution /n(X — ), here X, ..., X, ™ with c.d.f. Fwith E[X;]=u

and V(X,) = o2,
X=-) X,
=1

SRS

In practice, we don’t know the distribution of X,.

REMARK 5.0.1

@) It is impossible to find the exact distribution of /n(X — p). B
(ii) Main idea: are we able to find an approximate distribution for /n(X — p)? Concept of limit-
ing/asymptotic distribution is introduced for this purpose.

Let F,(z) be the c.d.f. of \/n(X — p); that is, F,,(z) = P(y/n(X — p) < z). Consider: lim F,(z) (pointwise
n—00
limit) and find that lim F, (z) = F(x) where F(x) is a known distribution, e.g., normal c.d.f. then we can use
n—0o0
F(z) to approximate F,, (z) for a sufficiently large n.

To continue, we need some formal definition of this limit mathematically.

5.1 Convergence in Distribution

DEFINITION 5.1.1: Convergence in Distribution

Let X,,..., X,, be a sequence of random variables such that X, has c.d.f. F, (x). Let X be another
random variable with c.d.f. F(z). If
lim F,(z) = F(x)

n—oo
for all z at which F(z) is continuous, then we say X,, converges in distribution to X, and write
d
X, = X.
REMARK 5.1.2

(i) F(z) is called the limiting distribution (or asymptotic distribution) of X, .
(i) It’s the c.d.f. to which X, converges to, not the random variables. This means, F,, (z) ~ F(z) for
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n sufficiently large, however X, is not approximately, X
(iii) lim E,(z) = F(x) only for continuous points of F'(x), e.g.,

F(x):{l Tr>a

0 z<a

which is the c.d.f. of constant X = a; that is, P(X = a) = 1. It’s easy to tell that the c.d.f. of X is
not continuous. X,, — X with c.d.f. F(z) if lim F, (x) = F(z) for x # a; that is,
n—oo

1
lim Fn(:c):{ v
n—00 0 z<a

we don’t care what's the limit of F, (z) as n — occ.
(iv) This definition holds for both discrete and continuous random variables.

THEOREM 5.1.3: ¢ Limit
Letb,c €R, le Y(n) =

lim
n—oo

n

cn
[1 125 7’&(”)} = ete
n
COROLLARY 5.1.4
Letb,c € R

b cn
lim [1 + ] = gt
n

n—oo

EXAMPLE 5.1.5

Suppose that X, ..., X, = Umform(O 1). Let X3, = min(Xy, ..
Find the limiting dlStrlbuthH of

(@) nX()and n(1 — X))

(i) X and X,

-, X,) and X, = max(Xy,...,X,,).

Solution.
() nX(y. Support is [0, 7], so the c.d.f. of n.X ;) i
® szn, Fn< ):]P)(’I’LX(D )—1
* <0, F,(2) =P(nX,) <z)=0
s 0<x<n,
x
=Pl X, < —
m=_
—1-P(X,> 2, X, > )
n n
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Therefore,
0 z<0
P(nXy) <) :=F,(v) = 1_(1_m> 0<z<n
n

1 T>n

0 <0

— lim F,(z) = v=
n—00 1l—e™® x>0

Aside: lim 1+ 2 ) = e* which is the c.d.f. of Exponential(1).

n—00 n

n(1 — X,). Support is [0, n], so the c.d.f. of n(1 — X,,)) is
cz2>n, F(r)=Pn(l-X,)<z)=1
e <0, F, (x)=Pn(1

s 0<x<n,
F,(2) = P(n(1 — X)) < )
x
=] — < —
P(l X<")_n>
T
=1-P(Xy <1-7)
:lfIP’(X1<1—E,...,Xn<17£>
n n
T n
:1—{P(X1<1—n)}
N
n
Therefore,
0 z <0
T n
E, (z)= 1—(1—n> 0<z<n
1 T>n
0 <0
— lim F,(2) = v=
n—00 l1—e™ >0

which is the c.d.f. of Exponential(1).
(i) X(y). Support (0,1).

0 z <0
F(z)=PXy<z)=q1—-(1-2)" 0<z<1
1 x>1
v msl 0 2<0
= lim F, (z) =<1 0<x<1—{ v=
n—00 1 >0
1 z>1

Question: What is F(z)?
Fla) {0 x <0

1 >0
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will make F'(z) right-continuous. F'(x) is not continuous at = = 0. Here, we don’t require that
F, (x) converges to F'(z) at x = 0. F(x) is actually the c.d.f. of X which satisfies P(X = 0) = 1.

Uoosl 0 z<1
x
lim F,(x) =<0 O<:1:<1={
n—00 1 z>1
1 z>1

which is right-continuous.
Therefore, lim F, (x) = F(z) is the limiting distribution in this case only.
n—oo -
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5.2 Convergence in Probability

DEFINITION 5.2.1: Converges in Probability

Let X,,..., X,, be a sequence of random variables such that X, has c.d.f. F, (z). Let X be a random
variable with c.d.f. F'(x). If for any £ > 0,

lim P(|X,, — X| >¢)=0

n—oo

or
lim P(|X,, — X| <e)=1

n—oo

. s . P
then we say X, converges in probability to X, and write X,, — X.

REMARK 5.2.2

(i) Here it’s the convergence or limit for a probability, therefore it’s called convergence in probability.

11 <« : 77 P «_” :
(ii) “Meaning” of X,, — X. As n — oo, X,, cannot be “c” away from X. That is, X, becomes very
close to X as n — oo. Because of that, we expect that F,, (z) becomes very close to F(z).

THEOREM 5.2.3: Convergence in Probability Implies Convergence in Distribution
i d
If X, = X, then X,, — X.

REMARK 5.2.4

Probability convergence is stronger than distribution convergence. The converse is not always true.

We consider a special case.
DEFINITION 5.2.5: Convergence in Probability to a Constant
Let X, ..., X,, be a sequence of random variables, and b be a constant. If lim P(|X, —b| > ¢) =0 for
n—00

any € > 0. We say X, converges in probability to b, and write X, 5.
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THEOREM 5.2.6
Let X, ..., X, be a sequence of random variables such that X,, has c.d.f. F,(z). If

lim 7 (z) = 4° ®<0
n—00 1 =z>0

or limiting distribution of X, is

1 z>0b

F(m):{o z<b

(c.d.f. of X, which satisfies P(X = b) = 1), then X, % b and write X, o

In other words, X, — b implies X, L Therefore,
d P
X,—=b = X, 6 —b

Proof of Theorem 5.2.6

Forany e > 0, P(|X,, —b| > ¢) = 0as n — oo.
(i) Lower bound: P(|X,, —b| >¢) >0
(i) Upper bound:

P(IX, —b|>e) =P((X, >b+e)U(X, <b—¢))
=1-P(X, <b+e)+ P(X, <b—e¢)
F, (b—¢)

< 1—IP>(Xn §b+§> Y E (b—e)

1Fn(b+;> Y F (b—e)

n—oo

asn — oo, F, (b+ ;) >1land lim F,(b—e¢) =0, so the upper bound willbe 1 —1+0 = 0, and

hence
0< lim P(|X,,—b|>¢) <0
n—oo

and hence . .
X,—=b = X, —=b

EXAMPLE 5.2.7

X, X, & Uniform(0, 1). In Example 5.1.5, we showed that

0 <0 d P
lim P(X,, < z2)= = X -0 = X, —0
lim P(X () <) {1 I (1) B

. 0 z<1 d P
< =
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EXAMPLE 5.2.8
Xy, ..., X, are iid with p.df. f(z) = e @), 2 > 0. Show that X, — .

d
Solution 1. Only need to show that X 1 — 6 that is,

0 z<80
lim P(X,,, <z)=
n—00 ( (D_I) {1 x>0

or limiting distribution of X, is

Flz) = {O x <0
1 z>6
Support Xy is (6, 00). P(X(y) < 7) = F, (2).
* <6, F,(r)=0
x>0,

P(Xq) <z) =1-[P(X; >2)]"
=1— efn(mfe)

since P(X, > z) = / e~ (=9 dt = ¢~(==9), Therefore,
x

<
F@)=1" , 220 fim p@=4° <9
1—e et 59 n—o0 1 >0

d
SO, X(D — 0 = X(l) E) 0.
Solution 2. By definition, for any € > 0,
* Lower bound: P(|X(;) — 6| >¢) >0
* Upper bound:

=[P(X; >0+¢e)]"
— e—n(9+a—9)
e

Therefore, P(|.X ;) — 0] > €) = 0 as n — oo which implies X, Lo by definition.

Brief Summary:
* Convergence in distribution.
* Convergence in probability.
* Special case. Convergence in probability to a constant if and only if convergence to distribution.
* X4y =min,_,, X; and X,,) = max,_;,, X;.
Next, our main job is to study convergence in distribution and probability X, = i Z:: L X
Sequence of results:

* Convergence in probability of X, , WLLN.
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s Convergence in distribution of \/n(X,, — p1). CLT.
* Combine them together: Slutsky’s Theorem, Delta Method.

THEOREM 5.2.9: Markov’s Inequality

Suppose that X is a random variable. For any k > 0, ¢ > 0, we have

E[lX|]
PX|2 ) < =15
Markov’s Inequality relates probability to moments.
In most situations, we take k& = 2; that is, we consider
E[X?
B(X| > ¢) < ]
c

EXAMPLE 5.2.10: Weak Law of Large Numbers

Suppose X1, ..., X,, are i.i.d. random variables with E[X,] = ¢ and V(X,) = 02 < oo, then
X, =2 zn: X; 5
n - n < i 12
Solution. By definition, we only need to show that for any ¢ > 0,

lim P(|X,, —p| >€)=0

n—0o0

Lower bound: P(|X,, — u| > ¢) > 0.
Upper bound:

Aside: E[X,] = p, V(X,,) = <, so

By Squeeze Theorem, P(|X,, — u| > ) = 0.

EXERCISE 5.2.11: Markov’s Inequality

If X,,..., X, are independent. E[X;] = g and V(X;) = 07 fori =1,...,n. max,_;.,, o7 < c. Show that
_ P
X, =i

EXAMPLE 5.2.12

If Xy, .., X, 9\2(1), then X,, 5 1.
Solution. E[X,| = =E[X, ] = 1.

From term test 1, x2(1) m.g.f. is (1 — 2t)~'/2 which is Gamma(a = 1/2, 5 = 2), so V(x3(1)) = af? =
(1/2)(2)2 = 2. By WLLN, X, -5 yu = 1.
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EXAMPLE 5.2.13

Y
IfY, ~ v2(n), then - 55 1.
n

Solution. We can write Y, = Z?: , X; where X = x%(1), then

Y, 1 _ P
=N X =X, o1
e ni:l

EXAMPLE 5.2.14

i} o
IfXx,. X, 5 Poisson(u), then X, — p.
Solution. E[X,] = 1 < 00 and V(X,) = u < 00, 50 by WLLN, X,, — .

EXERCISE 5.2.15

If Y,, ~ Poisson(n), then
Y,

P
— =l
n

Solution. Y,, = >°" X, where X, = Poisson(1), so by WLLN,

n

1 _ P
— X, =X, —~1
n n 4

=

oy
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5.3 Some Useful Limit Theorems

In this section, we’ll discuss some theorems regarding convergence in distribution of X, or function of
X

n*

THEOREM 5.3.1: Central Limit Theorem (CLT)

Let X4, ..., X,, be i.i.d. random variables with E[X,] = u and V(X;) = 0% < 0. Let X,, = %Z?zl X;.
Then, the limiting distribution of

o
is the c.d.f. of N (0, 1).

The proof is not hard, we use a standard method, but we need to put several pieces together. We need the
following theorem.
THEOREM 5.3.2

Let X, ..., X,, be a sequence of random variables such that X, has m.g.f. M, (t). Let X be another random
variable with m.g.f. M (t). If there exists some h > 0, such that

lim M, (t) = M(t)

n—oo



CHAPTER 5. LIMITING/ASYMPTOTIC DISTRIBUTION

forallt € (—h, h), then

Therefore, our next steps:

(1) Find the m.g.f. of VX = 1) Genoted by M, (t).

g

2
Find the m.g.f. of (0, 1), denoted by M(t) = exp{l;}.

(2) We try to show that for ¢ € (—h, h) where h > 0 that

. t2
711520 Mn <t) = exp{ 5 }

Step 1: Find m.g.f. of M
o

VX, —p) Wi (Ki—w) 1 X
Y v P \/ﬁl— = ==1: * 7
o c Vn c

,thenY;,...,Y, areii.d. with E[Y;] = 0 and V(Y;) = 1. Then,

rTn

Xi—n
g

LetY, =

Suppose Y, has m.g.f. My(t), then
s My(0)=1
« M{(0)=0
© MY(0) =E[Y?] =V(Y) + (E[Y])* =1

since E[exp{\/tﬁ}/i}] = MY<\/tﬁ>

Step 2: We want to show that

tim ()] =e{3)

() =m0 () + 450 (G5 ()
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t2 t2 n t2 n t2
lim 1+ — 4o — =lim |1+ — | =exps —
n—00 2n n n—00 2n 2

Suppose that X, ..., X, S y2(1) and Y, = > X;. Show that

Then,

EXAMPLE 5.3.3

Yo 4 1)

9

Solution. E[X;] =1 = pand V(X;) =2 = 02 < co. CLT tells us

o V2
— " X, —n X — X —
V2n V2n V2n V2
Suppose that Y,, ~ x?(n), we might ask you to prove
Y —n d
n — Z ~N(0,1
o (0,1)

and you might have to figure out Y,, = 3" X; where X, ..., X, ).

EXAMPLE 5.3.4

. Y —
X, X, = Poisson(u). Let Y, = Z’,Zl X,. Find the limiting distribution of In OB

1= /n'LL
Solution. CLT tells us that

MiZwN(O,l)

NG
Now,
_ "X, —n X — X, —p) d
Yn ny — Zz:l o — n(Xn M) — \/E(Xn :u’) 37 ~ N(O, 1)
VI N N VH
Y —
Alternatively: If Y, ~ Poisson(nu), what is the limiting distribution of In N,
Non

THEOREM 5.3.5: Continuous Mapping Theorem

Suppose that g(-) is a continuous function.
(1) If X, > o, then g(X,,) > g(a).
d d
@ X, % X, then g(X,) % g(%).

THEOREM 5.3.6: Slutsky’s Theorem

d
IfX,— X andy, 5 b, then
d
@ X, +Y, - X+0b Ifwereplace b by Y'it is still true.
d
(b) X,Y, — bX.
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X, d X
© Ynﬁzforb#o.

EXERCISE 5.3.7
d d
Find a counter-example to the following statement. If X, — X and Y,, — Y, then
d
X, +Y, = X+Y
EXAMPLE 5.3.8

@ If X, >0, a >0, then /X, - a.

(ii) If X, - a, then X2 5 a2.

i) If X, S X ~ A(0,1), then
e 2x, 52X ~ (0, 4).
© 2X, 4 152X 41~ N(1,4).
e x2 5 x2 020,

@) IfX, S X ~ N (0,1)and Y, -5 b for b # 0, then
c X, +Y, S X1+b~N0,1).
.« XY, 50X ~ N(0,52).

EXAMPLE 5.3.9

Suppose that X, ..., X, = Poisson(y). Find the limiting distribution of

Solution. For Z,,

\/H(Xn — u’) d ~
Vi — Z ~ N(0,1)
, VX =) VK, —p) B
VS VE/x,

_ P
= 1 since X,, — u by WLLN

d
For U,,, by Slutsky’s theorem, Z, — Z ~ N (0, 1).

U,=vn(X, —p) = \/ﬁ()\(}u)\/ﬁ 4 VZ ~ N (0, ) by continuous mapping theorem
m
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EXAMPLE 5.3.10

XX, S Uniform(0,1) and U,, = max,_;,, X;. In the first two examples of this chapter, we’ve
shown that

P
d
U, —1
and q
n(l - X)) =n(l-U,) — X ~ Exponential(1)
Then,
i) eVU»

(i) sin(1—U,)
(i) e(1-Un)
Solution.
(i) eY» Take g(x) = e*. Continuous mapping theorem:

U, i 1 = eUn ﬂ el
(i) sin(1 —U,,). Take g(z) = sin(1 — x).
sin(1—-U,,) N sin(1—1)=0

(i) e (1=Un),
d .
n(l —U, ) — X ~ Exponential(1)
Continuous mapping theorem. Take g(x) = e,
en-Un) & X x| Exponential(1)

How to find c.d.f. of e=X? Let Y = e, Support of Yis (0,1). Forany 0 < y < 1,

Therefore,
d
e ™1=Un) 'Y ~ Uniform(0, 1)

iv) (U, + 1)?[n(1 —U,,)]. Since U, %1, Take g(z) = (1 + x)%. Continuous mapping theorem:
(U, +1)2 5 (1 +1)2 =4
d
n(l —U, ) — X ~ Exponential(1)

Slutsky’s Theorem:
U, + 121 -U,)] S 4x
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Let Y = 4X. Support of Yis (0,00). For 0 < y < oo,

Hence, the p.d.f. of Yis

Y ~ Exponential(4).

THEOREM 5.3.11: Delta Method

Let X, ..., X,, be a sequence of random variables such that

Vi(X, —0) 5 X ~ N(0,0?)

and g(z) is differentiable at = = 6 and ¢’(0) # 0. Then,
d
Vlg(X,) —g(0)] = W ~ N(0,[g'(0)]*0®)
Background: /n(X,, — 0)y/n(X,, —0) Lx~ N(0,02). This implies that

VX, —6) & N(0,0?)

(%)

)? Delta method tells us that

equivalently,

X, AN
X

Question: What'’s the approximate distribution of g(

n

Vnlg(X,,) = g(0)] ~ N (0, [g(0)]*0?)

d
= 9(X,) ~ N(9(9)7 D
Not rigorous derivation. By 1st order Taylor expansion:
f(z) = f(zg) + f(zo)(x —x0) (2~ )

9(X,) ~ g(0) + g (0)(X, —0) = Vnl[g(X,) —g0)] ~ Vn(X, —0)g'(6)
N(0,02)

By continuous mapping theorem,

VX, —0)g'(0) % g (0)X ~ N(0.]g(0)]%0?)

Not rigorous since we only considered the 1st Taylor expansion, “why can we drop other terms?”

74



CHAPTER 5. LIMITING/ASYMPTOTIC DISTRIBUTION

EXAMPLE 5.3.12

X, X, = Poisson(y). Find limiting distribution of
= \/ﬁ( \V Xn - \/ﬁ)

Via(X, — )imo )
since E[X;] = p, V(X;) = p. Take g(z) = \/z, ¢’ (x) = 32~/

Recall in Example 5.3.9:

— Vil X = v S N .l wlo?) = ¥ (0,70 = 7) =¥ (0.5

EXAMPLE 5.3.13

X, 7X ~ Exponentlal( ). Find the limiting distribution of
1. X, B
2. Z, M
X,
3. U, = vn(X,
4.V, = yn(ln( n)—ln(e))
Solution. .
1. X,,. By WLLN E[X;] = 6, V(X,) = 62 (also available on cheat sheet), so X, — 6.
" Xn . _
M 4 a(0,1) crT
" XTL a 0 XTL
by continuous mapping theorem, take g(z) g,
b
X

By Slutsky’s Theorem,
Z. 5 7~ N(0,1)(1)
3. U, =vn(X, —0). )
VX, —0),

Uy = Y=——(0) 5 Z ~ N (0,1)

g(z) = Oz, continuous mapping theorem
U, 507 ~ N(0,62)
4.V, = /n(n(X,) —In(®)). g(z) = In(z). ¢’(z) = 1/x. By Delta Method,
VX, —8) S N(0,02)

Delta method, ;
Vn(In(X,)In(6)) — N(0,[¢'(0)]*6) = N (0,1)
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6.1 Introduction

Background: Suppose X, ..., X,, are i.i.d. random variables from f(z;#0). Here, 6 is unknown, but fixed. It
can be a scalar or a vector since
01
- ( ; )
Oy,

Clearly, if kK = 1, 0 is a scalar, and if £ > 1, 6 is a vector.
Purpose: Given X, ..., X, we’d like to estimate 6.
EXAMPLE 6.1.1
e If Xy,.... X, ~N(u, 1), then § = p is a scalar.
e If X,,... X, ~ N(u,0?), then § = (;) is a vector.

Notation:
* ©: parameter space, it contains all possible values of 6.
EXAMPLE 6.1.2
-IfX,, ..., X, ~N(u1l), then
O ={p:—oo< pu<oo}
- If Xy,..., X, ~ N(u,0?), then

O ={(p,0?) : —00 < p < 00,0?% > 0}

* Data: (Xy,...,X,,) data are random variables.

* Observed data/observations: (z,...,z, ), they’re observed values of (X, ..., X,,). Note that z, ...,z
are not random variables.

n

* Statistic: function of data, does not depend on any unknown parameter. Denoted by 7" = T'( X4, ..., X,,)-
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EXAMPLE 6.1.3

— I X, .., X, % N(u,1), then

-13x,

=1

:\H

is a statistic.
- /n(X,, — 1) is not a statistic, since it depends on § =

e Estimator & estimate

1. IfastatisticT = T'(X4, ..., X,,) is used to estimate §, then T' = T'( X, ..., X,,) is an estimator (which
must be a statistic, and also a random variable) of 6.

2. The observed value of T, denote it by t = T'(z4, ..., z,,) is called an estimate (which is an observed
value, therefore not a random variable) of 6.

EXAMPLE 6.1.4

XX, 2 N (p,1) with observed data is (x4, ..., z,,).

3

:N‘

1
= — X, is an estimator.
n ; g

3%

K

1 . .
n = — Y x;is an estimate.
i3

REMARK 6.1.5

We prefer using
« 6=6(X,,... ,X,,) to denote an estimator of 6.
« (Slight abuse of notation) 6 = 6(z,, ..., z,,) to denote an estimate of 6. That is: 6 is used for both

estimator and estimate. L
— If 6 is a random variable, then 6 = (X, ..., X,,) is regarded as an estimator.

— If § is an observed value, then § = (x,, ..., z,,) is regarded as an estimate.

6.2 Method of Moments

Problem setup: Suppose X, ..., X,, are i.i.d. with p.f. f(z;0) or p.d.f. f(z;0). We need to estimate 6 =
(O, ey )7

Method: Method of moments estimator (MM estimator).

1. Population moment. Let y1; = E[Xg] =E[X'])forj=1,...,k.
* p; is called 4™ population moment.
* 4, is a function of 6, and we write it as y;(6).

5o\ J S

2. Sample moments. Let ji; = Z‘:1 X/forj=1,.. k.
© iy gt h sample moment.
* Elf) = 150 B =

3. Idea of method of moments. Choose estimators 6 such that uj(é) = f; = %Z:;l Xf forj=1,... k.
There are k unknown parameters and k equations.

The estimator 8 is called the method of moment estimator of 6.
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EXAMPLE 6.2.1

XX, 2 Poisson(f)
* First population moment is E[X;] = p; =0 — p,(0) =6
* First sample moment is i; = - >." | X;
* MM estimator satisfies y, (6) = i, and 8 = i, = 1 X; which is MM estimator of 6.
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EXAMPLE 6.2.2

X,..., X, areii.d.

1. Exponential(d)

2. Uniform(0, 6)

3. f(z;0) =02 with0O< 2z <1land @ >0
Solution.

1. Exponential(6). u; = E[X ] =0. u,(0) =6

w1 (0) = [i;. Since p, is the identity map,

é:

E)
Il
S|
>

2. Uniform(0, ).

Ml(e) = %

Therefore,

3. f(z;0) =02t withO<z < 1land >0

1
w =E[X;] = / 20z dx = 5
0

Therefore,
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4. Xy, X, S N, 02).
= (%)

Therefore,

6.3 Maximum Likelihood Method
This section: introduce the most commonly used method for estimating unknown parameter 6 referred to as
maximum likelihood method.

¢ Likelihood function
1. Suppose X, ..., X,, are i.i.d. from f(z;0)

2. Given (zq,...,x,,), the observed value of (X, ..., X,,). We calculate the joint p.f. of (X, ..., X,,) at
observed data (x4, ...,x,,) or joint p.d.f. of (X, ..., X,,) at observed data (zq, ..., z,).
Discrete random variables joint p.d.f. of (X,,..., X)) at (z{,...,z,):
]P)(lexla'“v HP :Hf(lzvo)

i=1 =1

Continuous random variables joint p.d.f. of (X,..., X)) at (z,...,x,):
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3. We use L(0;z,...,x,,) or simply L(#) to denote it. That is to say,

P(X, =2x4,...,X, =z,) discrete
L(6;zq,...,z,) =

n
= 0
fx,ox, (@) continuous 11:[1 f(@;;0)
Here, L(6; 24, ..., x,,) is called the likelihood function of 6.
Comments:
1. Likelihood function measures how likely we get the observed data for a given 6.
2. Smaller L(#) means 6 is less likely to generate the observed data.

3. Larger L(6) means 6 is more likely to generate the observed data.

Idea of Maximum Likelihood Method

Choose 6 to maximize L(6) or choose € such that it most likely generates the observed data.
Maximum likelihood estimator/estimate (MLE)

1. ML estimate maximizes L(6), and we use 6 = 6(z,, ... ,x, ) to denote it.

0=06(x,,..x,) = argrglezg(L(Q)

2. ML estimator: 6 = 6(X,, ..., X,,)
3. Log-likelihood function: log of likelihood function:
£(0) = In[L(0)]
Then: an immediate result is:
0=0(zq,..,x,) = argrglea@xﬁ(e) argr(?eag(L(G)

4. Invariance principal of ML estimator 7(f) is a function of . (f) is the ML estimator of 7(6) if f is the
ML estimator of 6.

EXAMPLE 6.3.1

X, X, e Poisson(#). Find ML estimator of 6.

Solution. -
L) — -0
f(z;0) Ee
n n_ oz O i Ti
L) = || f(z;;0) = e e
11;[1 11;[1 !t Hifl(xi!)

ML estimator of 0 satisfies

v
e :0:7251 L n=0 = f=
do s 0
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ML estimator of 0 is

S
[
i
L,

(same as the MM estimator)

REMARK 6.3.2

* ML estimator of 6 is (§)?

* ML estimator of e—? is e~

EXAMPLE 6.3.3

X1,..., X, are ii.d. from f(x;0) = 621 with 0 < x < 1, > 0. Find ML estimator of 6.
Solution.

p=il
awe) no &
E ;m@)
ML estimate 0 satisfies
dﬁ] n < ~ n
— =0 = =+ In(z;) =0 = 0= ——=——
[d& 0—0 0 ; Zi:l In(z;)
ML estimator: - n
0 = ——7———— (is different from MM estimator)
Eiil hl(Xz)
LECTURE 23 | 2020-11-29
EXAMPLE 6.3.4
Suppose X, ..., X,, N (u, 0?). Find ML estimator of 6.

Solution.

L(M702) = H f(xi;:u702)

n
=i

_ _(xi —)? 1 3
= )3 [ 572 5 In(270?)
% . ZZL:I(M —z;)
o o2

5B
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ML estimate satisfies

52 =0
S G (mY (1) _,
2(52)2 2)\o2)
W= — [
"=
5= 3 (X~ )2
ne
ML estimator of (u,0?) is
S I =
H=— ZXz = Xn
"=
R =
0=~ (Xz - Xn)2
e i=1

which is the same as MM estimator.

EXAMPLE 6.3.5

1
f(x,&):{G 0<z <0

0 otherwise

Note that the support of X depends on 6. Find ML estimator of 6.
Solution.

1\" 1
i - 0<2y,.,z, <0 —
L) = [[ f(ai30) = (9> - {9"
=1 0 otherwise 0
* 0>z, L(0) is a strictly monotone decreasing function of 6.
This implies that the ML estimate of 6 is

T(p) = MaAX(Tq, .., Tp)

ML estimator of 0 is R
0= max X, = X (

is different from the MM estimator fy,; = 2X,,.
Which estimator is better? 6y, or 6y, ? STAT 450 covers this.

« Biased or unbiased estimator. Let A denote one estimator of . If E[f] = 6, then @ is an unbiased

estimator of 6. Otherwise, g is a biased estimator of 6.

6.4 Properties of ML Estimator

In this section:

otherwise
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1. We only consider the case that the support of X, ..., X,, does not depend on 6.
2. We talk about random variables, only concerned about ML estimator.
3. We only consider 6 is 1-dimensional or 6 is a scalar.
We define some notation first.
DEFINITION 6.4.1: Score Function

The score function is defined as

S(0) = S(0; ) = %6(9) - %m[L(e)]

where x are the observed data. When the support of X, ..., X, does not depend on 6, then S (6) = 0.

DEFINITION 6.4.2: Information Function
The information function is defined as

d? d?

1(0) = 1(6;@) = = (0) = ——5

where x are the observed data. I(0) is called the observed information.

DEFINITION 6.4.3: Fisher Information/Expected Information
The fisher information (expected information) is defined as

J(6) = E[I(6; X)] = —E [jng(es X)}

where X is the potential data.
In particular, when X = (X,,..., X,,) isi.i.d. from f(z,6), then

(0;2) = 3 Inff (0]
i=1

d? & n.od?
1(0: X) = —~—= 3 In[f(X;:0)] = — Y < In[f(X,;0)]
df p — db
Therefore,

n d2 d2
J6)=E [— 3 A (X e)}] — B[ 75 Inlf(x30)]

DEFINITION 6.4.4: Fisher Information of One Observation

The fisher information of one observation is

2

1,(6) = —nE| 5 Il (X,:0)]

The fisher information in n observations is

J(0) = nJy(0)
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EXAMPLE 6.4.5

Suppose X, ..., X, 0 Poisson(6).

00; ) = znjln[ Fla;0)] = Zn:m[gz:!e] = ( in x) In(¢) — nln(g) — iln(mi!)

i=1 i=1

Score function:

0 T
S(0;x) = %E(ﬁ,w) ;"
Observed information function:
aS > T
I(@,w) ——%S(Q,w) = 92

Fisher information:

EZ Xi nE| X awd  m
J(9)=E[I(9;X)]:El el 0[2 1]:(72_5
~ "X
Recall that: 6,; = Zz:l i
) V(X; 0
— V(ly) = % 2

Is there any relationship between J(#) and V (6, )?

THEOREM 6.4.6: Cramér-Rao Bound

The variance of any unbiased estimator 6 of 8 is bounded by the reciprocal of the Fisher information .J (6):

1

V(o) > 70

COROLLARY 6.4.7

If T'is an unbiased estimator of g(6), then

THEOREM 6.4.8

ML estimator satisfies (wWhen support of X1, ..., X,, does not depend on )
~ P
(1) 8 — 6asn— oo.

@) Ja(o—0) iN(o, J11(9)>

(3) By delta-method, v/n(g(8) — g(6)) Lo (O,




CHAPTER 6. POINT ESTIMATION

REMARK 6.4.9
(1) Tells us that 0 is close to 0 as n — co.
~ 1 2 1 1
(2) Tells us that \/n(0 — 6 z]\/((),) :>0%N(0, ):N(G,)
G=0 7.0 G 70)
- 1
YO~ 79

which is the CR lower-bound. ]E[é] ~ 6.
* § is asymptotically unbiased.
* 0 is asymptotically efficient.
(3) Tells us that g(d) ~ N <g(9>, Lo’ ()" )
J(0)
* ¢(0) is asymptotically unbiased.

- Vo) ~ L

which is the CR lower-bound.

Conclusion: ML estimator is asymptotically optimal.
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EXAMPLE 6.4.10

X, X, = Poisson(6).
(i) Find ML estimator of 6, 0.
(ii) Find ML estimator of P(X; = 0) := g().
(iii) Find limiting distribution of

(iv) Find limiting distribution of

W) Is 0 (or g(é)) unbiased?
Solution.

LB _
Di=-S'X, =X
® 0= ; =X,
(i) P(X, = 0) = e := g(0), therefore, ML estimator of g(f) is g(§) = e *» by the invariance
property.

(i) (6 —0) = /X, —6.
* Method 1 (ML estimator): First, note that the support does not depend on 6. If it does, then
see Method 2.

N TR I N(O,1>

Since we’ve shown J(¢) = 7, find

Therefore,
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* Method 2 (CLT): X, ..., X, = Poisson(f) so E[X;] = 6 and V(X,) = 6.

“W%_@izww

= (0,1)

Continuous mapping theorem,

BV Xn =0 & s nio,0)
Vo
(iv) ~
Vn(g(0) — g(6))
* Method 1 (ML estimator of g(0)): First, note that the support does not depend on 6. If it
does, then see Method 2.

V(e — ety S o, 9 OL,

Here, g(z) = e 7.

c d
So, /n(e=Xn —ef) — N(0,e7200)
* By using delta method

V(X —6) 5 N(0,6)
Take g(z) = e ®. Therefore,

Valg(X,) — g(8)) > N(0, [g' (6)]%)

(v) Approximate mean of g is 0. Approximate mean of e is e?.

expectation.
E[e*Xn] =E|exp 1 zn:Xl
e =1 ’

e Part 1
Xy X, % Poisson(f) —> >, X; ~ Poisson(n)

However, we want the exact

E[e~T/"] = MT< 1) = exp{nf(e /" — 1)}

n

Therefore, R
E[g(0)] # e
lim eflne™"—1
n—od
Consider
e =1+zx+ 22 + o(z?)
1 1 1
—1/n __
e~V _1_n+712+0(n?>
Therefore,

1 1
ne™/m —1) = -1+ = —l—o()
n n

Asymptotic mean of 0 is 6 since

lim E[f] = 0

n—0o0
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e Part 2

0 is an unbiased estimator of 6.
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