AMATH/PMATH 331 - Applied Real Analysis

Cameron Roopnarine

Last updated: December 17, 2020

Contents

Contents 1
1 Real Limits, Continuity and Differentiation 2
1.1 Order Properties in R 2
1.2 Limit of Sequences in \mathbf{R} 5

Chapter 1

Real Limits, Continuity and Differentiation

1.1 Order Properties in R

THEOREM 1.1.1: Discreteness Property of Z
We state two equivalent definitions.

$$
\begin{gathered}
\forall k \in \mathbf{Z} \forall n \in \mathbf{Z}(k \leq n \Longleftrightarrow k<n+1) \\
\forall n \in \mathbf{Z} \nexists k \in \mathbf{Z}(n<k<n+1)
\end{gathered}
$$

Proof of: Theorem 1.1.1
Accepted axiomatically, without proof.

DEFINITION 1.1.2: Bounded above, Upper bound
A is bounded above (in \mathbf{R}) when

$$
\exists b \in \mathbf{R} \forall x \in A(x \leq b)
$$

We say that b is an upper bound for A.

DEFINITION 1.1.3: Bounded below, Lower bound
A is bounded below (in \mathbf{R}) when

$$
\exists a \in \mathbf{R} \forall x \in A(a \leq x)
$$

We say that a is a lower bound for A.

DEFINITION 1.1.4: Bounded

A is bounded when A is both bounded above and below.

DEFINITION 1.1.5: Supremum, Least upper bound, Maximum element

A has a supremum (or a greatest lower bound) when there exists an element $b \in \mathbf{R}$ such that b is an upper bound for A with $b \leq c$ for every upper bound $c \in \mathbf{R}$ for A. In this case, we say b is the supremum (or the greatest lower bound) of A and write $b=\sup \{A\}$. When $b=\sup \{A\} \in A$ we also say that b is the maximum element of A, and we write $b=\max \{A\}$.

DEFINITION 1.1.6: Infimium, Greatest lower bound, Minimum element

A has an infimum (or a greatest lower bound) when there exists an element $a \in \mathbf{R}$ such that a is a lower bound for A with $c \leq a$ for every lower bound c for A. In this case, we say a is the infimum (or the greatest lower bound) of A and write $a=\inf \{A\}$. When $a=\inf \{A\} \in A$ we also say that a is the minimum element of A, and we write $a=\min \{A\}$.

EXAMPLE 1.1.7

Let $A=\mathbf{R}_{>0}=(0, \infty)=\{x \in \mathbf{R} \mid x>0\}$ and $B=[1, \sqrt{2})=\{x \in \mathbf{R} \mid 1 \leq x<\sqrt{2}\}$.

- A is bounded below, but not above.
- -1 and 0 are both lower bounds for A.
- $\inf \{A\}=0$
- A has no minimum element, and no maximum element.
- B is bounded both above and below.
- 0 and 1 are both lower bounds for B
- $\sqrt{2}$ and 3 are both upper bounds for B.
- $\inf \{B\}=1$
- $\sup \{B\}=\sqrt{2}$
- B has a minimum element, namely $\min \{B\}=1$, but has no maximum element.

THEOREM 1.1.8: The Supremum and Infemum Properties of \mathbf{R}

(1) Every non-empty subset of \mathbf{R} which is bounded above in \mathbf{R} has a supremum in \mathbf{R}.
(2) Every non-empty subset of \mathbf{R} which is bounded below in \mathbf{R} has an infimum in \mathbf{R}.

Proof of: Theorem 1.1.8

Accepted axiomatically, without proof.

THEOREM 1.1.9: Approximation Property of Supremum and Infimum

Let $\emptyset \neq A \in \mathbf{R}$.
(1) $b=\sup \{A\} \Longrightarrow \forall \varepsilon \in \mathbf{R}_{>0} \exists x \in A(b-\varepsilon<x \leq b)$
(2) $a=\inf \{A\} \Longrightarrow \forall \varepsilon \in \mathbf{R}_{>0} \exists x \in A(a \leq x<a+\varepsilon)$

Proof of: Theorem 1.1.9
We prove (1). Let $b=\sup \{A\}$ and $\varepsilon>0$. Suppose for a contradiction that there exists no element $x \in A$ with $b-\varepsilon<x$, or equivalently that for all $x \in A$ we have $b-\varepsilon \geq x$. Let $c=b-\varepsilon$. Note that c is an upper bound for A since $x \leq b-\varepsilon=c$ for all $x \in A$. Then, since $b=\sup \{A\}$ and c is an upper bound for A, we have $b \leq c$. However, since $\varepsilon>0$ we have $b>b-\varepsilon=c$, contradiction. Therefore, there exists $x \in A$ with $b-\varepsilon<x$. Now, choose an element $x \in A$. Then, since $b=\sup \{A\}$, we know that b is an upper bound for A and hence $b \geq x$. Therefore, $b-\varepsilon<x \leq b$, as required.

THEOREM 1.1.10: Well-Ordering Properties of Z in R

(1) Every non-empty subset of \mathbf{Z} which is bounded above in \mathbf{R} has a maximum element.
(2) Every non-empty subset of \mathbf{Z} which is bounded below in \mathbf{R} has a minimum element.

Proof of: Theorem 1.1.10

We prove (1). Let A be a non-empty subset of \mathbf{Z} which is bounded above. By Theorem 1.1.8 (1), A has a supremum in \mathbf{R}. Let $n=\sup \{A\}$. We must show that $n \in A$. Suppose for a contradiction that $n \notin A$. By Theorem 1.1.9 (using $\varepsilon=1$), we can choose $a \in A$ with $n-1<a \leq n$. Note that $a \neq n$ since $a \in A$ and $n \notin A$, so we have $a<n$. By Theorem 1.1.9 (using $\varepsilon=n-a$) we can choose $b \in A$ with $a<b \leq n$. Since $a<b$ we have $b-a>0$. Since $n-1<a$ and $b \leq n$, we have $1=n-(n-1)>b-a$. However, we have $(b-a) \in \mathbf{Z}$ with $0<b-a<1$, which contradicts Theorem 1.1.1. Therefore, $n \in A$, and hence A has a maximum element.

THEOREM 1.1.11: Floor and Ceiling Properties of Z in R

(1) $\forall x \in \mathbf{R} \exists!n \in \mathbf{Z}(x-1<n \leq x)$.
(2) $\forall x \in \mathbf{R} \exists!m \in \mathbf{Z}(x \leq m<x+1)$.

Proof of: Theorem 1.1.11

We prove (1).
Uniqueness. Let $x \in \mathbf{R}$, suppose $n, m \in \mathbf{Z}$ with $x-1<n \leq x$ and $x-1<m \leq x$. Since $x-1<n$ we have $x<n+1$. Since $m \leq x$ and $x<n+1$, we have $m<n+1$, hence $m \leq n$ by Theorem 1.1.1. Similarly, $n \leq m$. Since $n \leq m$ and $m \leq n$, we have $n=m$ as required.
Existence. Let $x \in \mathbf{R}$. First, let us consider the case that $x \geq 0$. Let $A=\{k \in \mathbf{Z} \mid k \leq x\}$. Note that $A \neq \emptyset$ (because $0 \in A$), and A is bounded above by x. By Theorem 1.1.10, A has a maximum element. Let $n=\max \{A\}$. Since $n \in A$, we have $n \in \mathbf{Z}$ and $n \leq x$. Also, note that $x-1<n$ since $x-1 \geq n \Longrightarrow x \geq n+1 \Longrightarrow n+1 \in A \Longrightarrow n \neq \max \{A\}$. Thus, for $n=\max \{A\}$, we have $n \in \mathbf{Z}$ with $x-1<n \leq x$ as required.
Next, consider the case that $x<0$. If $x \in \mathbf{Z}$, we can take $n=x$. Suppose that $x \notin \mathbf{Z}$. We have $-x>0$ so, by the previous paragraph, we can choose $m \in \mathbf{Z}$ with $-x-1<-m<x+1$. Thus, we can take $n=-m-1$ to get $x-1<n<x$.

DEFINITION 1.1.12: Floor, Floor function

Let $x \in \mathbf{R}$. The floor of x, denoted by $\lfloor x\rfloor$, is the unique $n \in \mathbf{Z}$ with $x-1<n \leq x$. The function $f: \mathbf{R} \rightarrow \mathbf{Z}$ given by $f(x)=\lfloor x\rfloor$ is called the floor function.

DEFINITION 1.1.13: Ceiling, Ceiling function

Let $x \in \mathbf{R}$. The ceiling of x, denoted by $\lceil x\rceil$, is the unique $n \in \mathbf{Z}$ with $x \leq n<x+1$. The function $f: \mathbf{R} \rightarrow \mathbf{Z}$ given by $f(x)=\lceil x\rceil$ is called the ceiling function.

THEOREM 1.1.14: Archimedean Properties of Z in R

(1) $\forall x \in \mathbf{R} \exists n \in \mathbf{Z}(n>x)$.
(2) $\forall x \in \mathbf{R} \exists m \in \mathbf{Z}(m<x)$.

Proof of: Theorem 1.1.14

Let $x \in \mathbf{R}$. Let $n=\lfloor x\rfloor+1$ and $m=\lfloor x\rfloor-1$. Since $x-1<\lfloor x\rfloor$, we have $x<\lfloor x\rfloor+1=n$ and since $\lfloor x\rfloor \leq x$, we have $m=\lfloor x\rfloor-1 \leq x-1<x$.

THEOREM 1.1.15: Density of Q in R

$$
\forall a \in \mathbf{R} \forall b \in \mathbf{R} \exists q \in \mathbf{Q}(a<b \Longrightarrow a<q<b)
$$

Proof of

Let $a, b \in \mathbf{R}$ with $a<b$. By Theorem 1.1.14, we can choose $n \in \mathbf{Z}$ with $n>\frac{1}{b-a}>0$. Then, $n(b-a)>1$ and so $n b>n a+1$. Let $k=\lfloor n a+1\rfloor$. Then we have $n a<k \leq n a+1<n b$ hence $a<\frac{k}{n}<b$. Thus, we can take $q=\frac{k}{n}$ to get $a<q<b$.

1.2 Limit of Sequences in \mathbf{R}

DEFINITION 1.2.1: Sequence, Term

For $p \in \mathbf{Z}$, let $Z_{\geq p}=\{k \in \mathbf{Z} \mid k \geq p\}$. A sequence in a set A is a function of the form $x: \mathbf{Z}_{\geq p} \rightarrow A$ for some $p \in \mathbf{Z}$. Given a sequence $x: \mathbf{Z}_{\geq p} \rightarrow A$, the $k^{\text {th }}$ term of the sequence is the element $x_{k}=x(k) \in A$, and we denote the sequence x by

$$
\left(x_{k}\right)_{k \geq p}=\left(x_{p}, x_{p+1}, \ldots\right)
$$

Note that the range of the sequence $\left(x_{k}\right)_{k \geq p}$ is the set $\left\{x_{k}\right\}_{k \geq p}=\left\{x_{k} \mid k \geq p\right\}$.

DEFINITION 1.2.2: Limit, Convergence, Divergence

Let $\left(x_{k}\right)_{k \geq p}$ be a sequence in \mathbf{R}. For $a \in \mathbf{R}$ we say that $\left(x_{k}\right)_{k \geq p}$ converges to a (or that the limit of $\left(x_{k}\right)_{k \geq p}$ is equal to a), and we write $x_{k} \rightarrow a$ (as $k \rightarrow \infty$), or we write $\lim _{k \rightarrow \infty} x_{k}=a$, when

$$
\forall \varepsilon \in \mathbf{R}_{>0} \exists m \in \mathbf{Z} \forall k \in \mathbf{Z}_{\geq p}\left(k \geq m \Longrightarrow\left|x_{k}-a\right|<\varepsilon\right)
$$

We say that the sequence $\left(x_{k}\right)_{k \geq p}$ converges (in \mathbf{R}) when there exists $a \in \mathbf{R}$ such that $\left(x_{k}\right)_{k \geq p}$ converges to a. We say that $\left(x_{k}\right)_{k \geq p}$ diverges (in \mathbf{R}) when it does not converge (to any $a \in \mathbf{R}$). We say that $\left(x_{k}\right)_{k \geq p}$ diverges to infinity, or that the limit of $\left(x_{k}\right)_{k \geq p}$ is equal to infinity, and we write $x_{k} \rightarrow \infty$ (as $k \rightarrow \infty$), or we write $\lim _{k \rightarrow \infty} x_{k}=\infty$, when

$$
\forall r \in \mathbf{R} \exists m \in \mathbf{Z} \forall k \in \mathbf{Z}_{\geq p}\left(k \geq m \Longrightarrow x_{k}>r\right)
$$

Similarly, we say that $\left(x_{k}\right)_{k \geq p}$ diverges to $-\infty$, or that the limit of $\left(x_{k}\right)_{k \geq p}$ is equal to negative infinity, and we write $x_{k} \rightarrow-\infty$ (as $k \rightarrow \infty$), or we write $\lim _{k \rightarrow \infty} x_{k}=-\infty$ when

$$
\forall r \in \mathbf{R} \exists m \in \mathbf{Z} \forall k \in \mathbf{Z}_{\geq p}\left(k \geq m \Longrightarrow x_{k}<r\right)
$$

REMARK 1.2.3

We shall assume that students are familiar with sequences and limits of sequences from first-year calculus. For example, students should know that if the limit of a sequence exists, then it is unique. Also, the limit does not depend on the first few terms (indeed the first few finitely many terms) and so we often omit the starting value p from our notation and write the sequence $\left(x_{k}\right)_{k \geq p}$ as $\left(x_{k}\right)$. Students should also be able to calculate limits using various limit rules, such as Operation on Limits, the Comparison Theorem, and the Squeeze Theorem (which can all be found in the Appendix).

DEFINITION 1.2.4: Bounded above, Bounded below, Bounded

Let $\left(x_{k}\right)$ be a sequence in \mathbf{R}. For $b \in \mathbf{R}$, we say that the sequence $\left(x_{k}\right)$ is bounded above by b when the set $\left\{x_{k}\right\}$ is bounded above by b; that is, when $x_{k} \leq b$ for all k, and we say that the sequence $\left(x_{k}\right)$ is bounded below by b when the set $\left\{x_{k}\right\}$ is bounded below by b; that is, when $b \leq x_{k}$ for all k. We say $\left(x_{k}\right)$ is bounded above when it is bounded above by some element $b \in \mathbf{R}$, we say that $\left(x_{k}\right)$ is bounded below when it is bounded below by some $b \in \mathbf{R}$, and we say that $\left(x_{k}\right)$ is bounded when it is bounded above and bounded below.

DEFINITION 1.2.5: Increasing, Non-decreasing, Strictly increasing, Strictly decreasing, Monotonic

Let $\left(x_{k}\right)_{k \geq p}$ be a sequence in \mathbf{R}.

- $\left(x_{k}\right)$ is increasing (non-decreasing) when

$$
\forall k, \ell \in \mathbf{Z}_{\geq p}\left(k \leq \ell \Longrightarrow x_{k} \leq x_{\ell}\right)
$$

- $\left(x_{k}\right)$ is strictly increasing when

$$
\forall k, \ell \in \mathbf{Z}_{\geq p}\left(k<\ell \Longrightarrow x_{k}<x_{\ell}\right)
$$

- $\left(x_{k}\right)$ is decreasing (non-increasing) when

$$
\forall k, \ell \in \mathbf{Z}_{\geq p}\left(k \leq \ell \Longrightarrow x_{k} \geq x_{\ell}\right)
$$

- $\left(x_{k}\right)$ is strictly decreasing when

$$
\forall k, \ell \in \mathbf{Z}_{\geq p}\left(k<\ell \Longrightarrow x_{k}>x_{\ell}\right)
$$

- $\left(x_{k}\right)$ is monotonic when it is either increasing or decreasing.

THEOREM 1.2.6: Monotonic Convergence Theorem

Let $\left(x_{k}\right)$ be a sequence in \mathbf{R}.
(1) Suppose $\left(x_{k}\right)$ is increasing. If $\left(x_{k}\right)$ is bounded above, then $x_{k} \rightarrow \sup \left\{x_{k}\right\}$, and if $\left(x_{k}\right)$ is not bounded above, then $x_{k} \rightarrow \infty$.
(2) Suppose $\left(x_{k}\right)$ is decreasing. If $\left(x_{k}\right)$ is bounded below, then $x_{k} \rightarrow \inf \left\{x_{k}\right\}$, and if $\left(x_{k}\right)$ is not bounded below, then $x_{k} \rightarrow-\infty$.

Proof of: Theorem 1.2.6

We prove (1). Let $\left(x_{k}\right)$ be an increasing sequence. Assume $\left(x_{k}\right)$ is bounded above, say by $b \in \mathbf{R}$. Let $A=\left\{x_{k} \mid k \geq p\right\}$ (so A is the range of the sequence $\left(x_{k}\right)$). Note that A is non-empty and bounded above (indeed b is an upper bound for A). By Theorem 1.1.8 (1), A has a supremum in \mathbf{R}. Let $a=\sup \left\{x_{k} \mid\right.$ $k \geq p\}$. Note that $a \geq x_{k}$ for all $k \geq p$ and $a \leq b$ by the definition of supremum. Let $\varepsilon>0$. By Theorem 1.1.9 (1), we can choose an index $m \geq p$ so that $x_{m} \in A$ satisfies $a-\varepsilon<x_{m} \leq a$. Since $\left(x_{k}\right)$ is increasing, for all $k \geq m$, we have $x_{k} \geq x_{m}$, so we have $a-\varepsilon<x_{m} \leq x_{k} \leq a$, and hence $\left|x_{k}-a\right|<\varepsilon$. Thus, $\lim _{k \rightarrow \infty} x_{k}=a \leq b$.

DEFINITION 1.2.7

For $a, b \in \mathbf{R}$ with $a \leq b$, we write

- $(a, b)=\{x \in \mathbf{R} \mid a<x<b\}$
- $[a, b]=\{x \in \mathbf{R} \mid a \leq x \leq b\}$
- $(a, b]=\{x \in \mathbf{R} \mid a<x \leq b\}$
- $[a, b)=\{x \in \mathbf{R} \mid a \leq x<b\}$
- $(a, \infty)=\{x \in \mathbf{R} \mid a<x\}$
- $[a, \infty)=\{x \in \mathbf{R} \mid a \leq x\}$
- $(-\infty, b)=\{x \in \mathbf{R} \mid x<b\}$
- $(-\infty, b]=\{x \in \mathbf{R} \mid x \leq b\}$
- $(-\infty, \infty)=\mathbf{R}$

An interval in \mathbf{R} is any set of one of the above forms.

- Degenerate intervals: If $a=b$, then $(a, b)=[a, b)=(a, b]=\emptyset$, and $[a, b]=\{a\}$.
- Non-degenerate intervals contain at least two points.
- Open intervals: $\emptyset,(a, b),(a, \infty),(-\infty, b)$, and $(-\infty, \infty)$.
- Closed intervals: $\emptyset,[a, b],[a, \infty),(-\infty, b]$, and $(-\infty, \infty)$.
- Bounded intervals: $\emptyset,(a, b),(a, b],[a, b)$, and $[a, b]$.
- Unbounded intervals: $(a, \infty),[a, \infty),(-\infty, b),(-\infty, b]$, and $(-\infty, \infty)$.

THEOREM 1.2.8: Nested Interval Theorem

Let $I_{1}, I_{2}, I_{3}, \ldots$ be non-empty, closed, and bounded intervals in \mathbf{R}.

$$
I_{1} \supseteq I_{2} \supseteq I_{3} \supseteq \cdots \Longrightarrow \bigcap_{k \geq 1} I_{k} \neq \emptyset
$$

Proof of: Theorem 1.2.8

For each $k \geq 1$, let $I_{k}=\left[a_{k}, b_{k}\right]$ with $a_{k} \leq b_{k}$. For each k, since $I_{k+1} \subseteq I_{k}$, we have $a_{k} \leq a_{k+1} \leq b_{k+1} \leq$ b_{k}. Since $a_{k} \leq a_{k+1}$ for all k, the sequence $\left(a_{k}\right)$ is increasing. Since $a_{k} \leq b_{k} \leq b_{k-1} \leq \cdots \leq b_{1}$ for all k, the sequence $\left(a_{k}\right)$ is bounded above by b_{1}. Since $\left(a_{k}\right)$ is increasing, and bounded above, it converges. Let $a=\sup \left\{a_{k}\right\}=\lim _{k \rightarrow \infty} a_{k}$. Similarly, $\left(b_{k}\right)$ is decreasing, and bounded below by a_{1}, so it converges. Let $b=\inf \left\{b_{k}\right\}=\lim _{k \rightarrow \infty} b_{k}$. Since $a_{k} \leq b_{k}$ for all k, by the Comparison Theorem, we have $a \leq b$, and so the interval $[a, b]$ is not empty. Since $\left(a_{k}\right)$ is increasing, with $a_{k} \rightarrow a$, it follows (proof as an exercise), that $a_{k} \leq a$ for all $k \geq 1$, Similarly, $b_{k} \geq b$ for all $k \geq 1$, and so $[a, b] \subseteq\left[a_{k}, b_{k}\right]=I_{k}$. Therefore,

$$
[a, b] \subseteq \bigcap_{k \geq 1} I_{k} \Longrightarrow \bigcap_{k \geq 1} I_{k} \neq \emptyset
$$

