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Chapter 1

Real Limits, Continuity and
Differentiation

1.1 Order Properties in R
THEOREM 1.1.1: Discreteness Property of Z

We state two equivalent definitions.

∀𝑘 ∈ Z ∀𝑛 ∈ Z (𝑘 ≤ 𝑛 ⟺ 𝑘 < 𝑛 + 1)

∀𝑛 ∈ Z ∄𝑘 ∈ Z (𝑛 < 𝑘 < 𝑛 + 1)

Proof of: Theorem 1.1.1
Accepted axiomatically, without proof.

DEFINITION 1.1.2: Bounded above, Upper bound

𝐴 is bounded above (in R) when
∃𝑏 ∈ R ∀𝑥 ∈ 𝐴 (𝑥 ≤ 𝑏)

We say that 𝑏 is an upper bound for 𝐴.

DEFINITION 1.1.3: Bounded below, Lower bound

𝐴 is bounded below (in R) when
∃𝑎 ∈ R ∀𝑥 ∈ 𝐴 (𝑎 ≤ 𝑥)

We say that 𝑎 is a lower bound for 𝐴.

DEFINITION 1.1.4: Bounded
𝐴 is bounded when 𝐴 is both bounded above and below.
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DEFINITION 1.1.5: Supremum, Least upper bound, Maximum element

𝐴 has a supremum (or a greatest lower bound) when there exists an element 𝑏 ∈ R such that 𝑏 is
an upper bound for 𝐴 with 𝑏 ≤ 𝑐 for every upper bound 𝑐 ∈ R for 𝐴. In this case, we say 𝑏 is the
supremum (or the greatest lower bound) of 𝐴 and write 𝑏 = sup{𝐴}. When 𝑏 = sup{𝐴} ∈ 𝐴 we also
say that 𝑏 is the maximum element of 𝐴, and we write 𝑏 = max{𝐴}.

DEFINITION 1.1.6: Infimium, Greatest lower bound, Minimum element

𝐴 has an infimum (or a greatest lower bound) when there exists an element 𝑎 ∈ R such that 𝑎 is a
lower bound for 𝐴 with 𝑐 ≤ 𝑎 for every lower bound 𝑐 for 𝐴. In this case, we say 𝑎 is the infimum (or
the greatest lower bound) of 𝐴 and write 𝑎 = inf{𝐴}. When 𝑎 = inf{𝐴} ∈ 𝐴 we also say that 𝑎 is the
minimum element of 𝐴, and we write 𝑎 = min{𝐴}.

EXAMPLE 1.1.7

Let 𝐴 = R>0 = (0, ∞) = {𝑥 ∈ R | 𝑥 > 0} and 𝐵 = [1,
√

2) = {𝑥 ∈ R | 1 ≤ 𝑥 <
√

2}.
• 𝐴 is bounded below, but not above.
• −1 and 0 are both lower bounds for 𝐴.
• inf{𝐴} = 0
• 𝐴 has no minimum element, and no maximum element.
• 𝐵 is bounded both above and below.
• 0 and 1 are both lower bounds for 𝐵
•

√
2 and 3 are both upper bounds for 𝐵.

• inf{𝐵} = 1
• sup{𝐵} =

√
2

• 𝐵 has a minimum element, namely min{𝐵} = 1, but has no maximum element.

THEOREM 1.1.8: The Supremum and Infemum Properties of R

(1) Every non-empty subset of R which is bounded above in R has a supremum in R.
(2) Every non-empty subset of R which is bounded below in R has an infimum in R.

Proof of: Theorem 1.1.8
Accepted axiomatically, without proof.

THEOREM 1.1.9: Approximation Property of Supremum and Infimum

Let ∅ ≠ 𝐴 ∈ R.
(1) 𝑏 = sup{𝐴} ⟹ ∀𝜀 ∈ R>0 ∃𝑥 ∈ 𝐴 (𝑏 − 𝜀 < 𝑥 ≤ 𝑏)
(2) 𝑎 = inf{𝐴} ⟹ ∀𝜀 ∈ R>0 ∃𝑥 ∈ 𝐴 (𝑎 ≤ 𝑥 < 𝑎 + 𝜀)

Proof of: Theorem 1.1.9
We prove (1). Let 𝑏 = sup{𝐴} and 𝜀 > 0. Suppose for a contradiction that there exists no element
𝑥 ∈ 𝐴 with 𝑏 − 𝜀 < 𝑥, or equivalently that for all 𝑥 ∈ 𝐴 we have 𝑏 − 𝜀 ≥ 𝑥. Let 𝑐 = 𝑏 − 𝜀. Note that 𝑐
is an upper bound for 𝐴 since 𝑥 ≤ 𝑏 − 𝜀 = 𝑐 for all 𝑥 ∈ 𝐴. Then, since 𝑏 = sup{𝐴} and 𝑐 is an upper
bound for 𝐴, we have 𝑏 ≤ 𝑐. However, since 𝜀 > 0 we have 𝑏 > 𝑏 − 𝜀 = 𝑐, contradiction. Therefore,
there exists 𝑥 ∈ 𝐴 with 𝑏 − 𝜀 < 𝑥. Now, choose an element 𝑥 ∈ 𝐴. Then, since 𝑏 = sup{𝐴}, we know
that 𝑏 is an upper bound for 𝐴 and hence 𝑏 ≥ 𝑥. Therefore, 𝑏 − 𝜀 < 𝑥 ≤ 𝑏, as required.
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THEOREM 1.1.10: Well-Ordering Properties of Z in R

(1) Every non-empty subset of Z which is bounded above in R has a maximum element.
(2) Every non-empty subset of Z which is bounded below in R has a minimum element.

Proof of: Theorem 1.1.10
We prove (1). Let 𝐴 be a non-empty subset of Z which is bounded above. By Theorem 1.1.8 (1), 𝐴 has
a supremum in R. Let 𝑛 = sup{𝐴}. We must show that 𝑛 ∈ 𝐴. Suppose for a contradiction that 𝑛 ∉ 𝐴.
By Theorem 1.1.9 (using 𝜀 = 1), we can choose 𝑎 ∈ 𝐴 with 𝑛 − 1 < 𝑎 ≤ 𝑛. Note that 𝑎 ≠ 𝑛 since
𝑎 ∈ 𝐴 and 𝑛 ∉ 𝐴, so we have 𝑎 < 𝑛. By Theorem 1.1.9 (using 𝜀 = 𝑛 − 𝑎) we can choose 𝑏 ∈ 𝐴 with
𝑎 < 𝑏 ≤ 𝑛. Since 𝑎 < 𝑏 we have 𝑏 − 𝑎 > 0. Since 𝑛 − 1 < 𝑎 and 𝑏 ≤ 𝑛, we have 1 = 𝑛 − (𝑛 − 1) > 𝑏 − 𝑎.
However, we have (𝑏 − 𝑎) ∈ Z with 0 < 𝑏 − 𝑎 < 1, which contradicts Theorem 1.1.1. Therefore, 𝑛 ∈ 𝐴,
and hence 𝐴 has a maximum element.

THEOREM 1.1.11: Floor and Ceiling Properties of Z in R

(1) ∀𝑥 ∈ R ∃!𝑛 ∈ Z (𝑥 − 1 < 𝑛 ≤ 𝑥).
(2) ∀𝑥 ∈ R ∃!𝑚 ∈ Z (𝑥 ≤ 𝑚 < 𝑥 + 1).

Proof of: Theorem 1.1.11
We prove (1).
Uniqueness. Let 𝑥 ∈ R, suppose 𝑛, 𝑚 ∈ Z with 𝑥 − 1 < 𝑛 ≤ 𝑥 and 𝑥 − 1 < 𝑚 ≤ 𝑥. Since 𝑥 − 1 < 𝑛
we have 𝑥 < 𝑛 + 1. Since 𝑚 ≤ 𝑥 and 𝑥 < 𝑛 + 1, we have 𝑚 < 𝑛 + 1, hence 𝑚 ≤ 𝑛 by Theorem 1.1.1.
Similarly, 𝑛 ≤ 𝑚. Since 𝑛 ≤ 𝑚 and 𝑚 ≤ 𝑛, we have 𝑛 = 𝑚 as required.
Existence. Let 𝑥 ∈ R. First, let us consider the case that 𝑥 ≥ 0. Let 𝐴 = {𝑘 ∈ Z | 𝑘 ≤ 𝑥}. Note
that 𝐴 ≠ ∅ (because 0 ∈ 𝐴), and 𝐴 is bounded above by 𝑥. By Theorem 1.1.10, 𝐴 has a maximum
element. Let 𝑛 = max{𝐴}. Since 𝑛 ∈ 𝐴, we have 𝑛 ∈ Z and 𝑛 ≤ 𝑥. Also, note that 𝑥 − 1 < 𝑛 since
𝑥 − 1 ≥ 𝑛 ⟹ 𝑥 ≥ 𝑛 + 1 ⟹ 𝑛 + 1 ∈ 𝐴 ⟹ 𝑛 ≠ max{𝐴}. Thus, for 𝑛 = max{𝐴}, we have 𝑛 ∈ Z
with 𝑥 − 1 < 𝑛 ≤ 𝑥 as required.
Next, consider the case that 𝑥 < 0. If 𝑥 ∈ Z, we can take 𝑛 = 𝑥. Suppose that 𝑥 ∉ Z. We have −𝑥 > 0
so, by the previous paragraph, we can choose 𝑚 ∈ Z with −𝑥 − 1 < −𝑚 < 𝑥 + 1. Thus, we can take
𝑛 = −𝑚 − 1 to get 𝑥 − 1 < 𝑛 < 𝑥.

DEFINITION 1.1.12: Floor, Floor function

Let 𝑥 ∈ R. The floor of 𝑥, denoted by ⌊𝑥⌋, is the unique 𝑛 ∈ Z with 𝑥 − 1 < 𝑛 ≤ 𝑥. The function
𝑓 ∶ R → Z given by 𝑓(𝑥) = ⌊𝑥⌋ is called the floor function.

DEFINITION 1.1.13: Ceiling, Ceiling function

Let 𝑥 ∈ R. The ceiling of 𝑥, denoted by ⌈𝑥⌉, is the unique 𝑛 ∈ Z with 𝑥 ≤ 𝑛 < 𝑥 + 1. The function
𝑓 ∶ R → Z given by 𝑓(𝑥) = ⌈𝑥⌉ is called the ceiling function.

THEOREM 1.1.14: Archimedean Properties of Z in R

(1) ∀𝑥 ∈ R ∃𝑛 ∈ Z (𝑛 > 𝑥).
(2) ∀𝑥 ∈ R ∃𝑚 ∈ Z (𝑚 < 𝑥).

Proof of: Theorem 1.1.14
Let 𝑥 ∈ R. Let 𝑛 = ⌊𝑥⌋ + 1 and 𝑚 = ⌊𝑥⌋ − 1. Since 𝑥 − 1 < ⌊𝑥⌋, we have 𝑥 < ⌊𝑥⌋ + 1 = 𝑛 and since
⌊𝑥⌋ ≤ 𝑥, we have 𝑚 = ⌊𝑥⌋ − 1 ≤ 𝑥 − 1 < 𝑥.
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THEOREM 1.1.15: Density of Q in R

∀𝑎 ∈ R ∀𝑏 ∈ R ∃𝑞 ∈ Q (𝑎 < 𝑏 ⟹ 𝑎 < 𝑞 < 𝑏)

Proof of

Let 𝑎, 𝑏 ∈ Rwith 𝑎 < 𝑏. By Theorem 1.1.14, we can choose 𝑛 ∈ Zwith 𝑛 > 1
𝑏−𝑎 > 0. Then, 𝑛(𝑏−𝑎) > 1

and so 𝑛𝑏 > 𝑛𝑎 + 1. Let 𝑘 = ⌊𝑛𝑎 + 1⌋. Then we have 𝑛𝑎 < 𝑘 ≤ 𝑛𝑎 + 1 < 𝑛𝑏 hence 𝑎 < 𝑘
𝑛 < 𝑏. Thus,

we can take 𝑞 = 𝑘
𝑛 to get 𝑎 < 𝑞 < 𝑏.

1.2 Limit of Sequences in R
DEFINITION 1.2.1: Sequence, Term

For 𝑝 ∈ Z, let 𝑍≥𝑝 = {𝑘 ∈ Z | 𝑘 ≥ 𝑝}. A sequence in a set 𝐴 is a function of the form 𝑥 ∶ Z≥𝑝 → 𝐴 for
some 𝑝 ∈ Z. Given a sequence 𝑥 ∶ Z≥𝑝 → 𝐴, the 𝑘th term of the sequence is the element 𝑥𝑘 = 𝑥(𝑘) ∈ 𝐴,
and we denote the sequence 𝑥 by

(𝑥𝑘)𝑘≥𝑝 = (𝑥𝑝, 𝑥𝑝+1, …)
Note that the range of the sequence (𝑥𝑘)𝑘≥𝑝 is the set {𝑥𝑘}𝑘≥𝑝 = {𝑥𝑘 | 𝑘 ≥ 𝑝}.

DEFINITION 1.2.2: Limit, Convergence, Divergence

Let (𝑥𝑘)𝑘≥𝑝 be a sequence in R. For 𝑎 ∈ R we say that (𝑥𝑘)𝑘≥𝑝 converges to 𝑎 (or that the limit of
(𝑥𝑘)𝑘≥𝑝 is equal to 𝑎), and we write 𝑥𝑘 → 𝑎 (as 𝑘 → ∞), or we write lim

𝑘→∞
𝑥𝑘 = 𝑎, when

∀𝜀 ∈ R>0 ∃𝑚 ∈ Z ∀𝑘 ∈ Z≥𝑝 (𝑘 ≥ 𝑚 ⟹ |𝑥𝑘 − 𝑎| < 𝜀)

We say that the sequence (𝑥𝑘)𝑘≥𝑝 converges (in R) when there exists 𝑎 ∈ R such that (𝑥𝑘)𝑘≥𝑝 converges
to 𝑎. We say that (𝑥𝑘)𝑘≥𝑝 diverges (in R) when it does not converge (to any 𝑎 ∈ R). We say that
(𝑥𝑘)𝑘≥𝑝 diverges to infinity, or that the limit of (𝑥𝑘)𝑘≥𝑝 is equal to infinity, and we write 𝑥𝑘 → ∞ (as
𝑘 → ∞), or we write lim

𝑘→∞
𝑥𝑘 = ∞, when

∀𝑟 ∈ R ∃𝑚 ∈ Z ∀𝑘 ∈ Z≥𝑝 (𝑘 ≥ 𝑚 ⟹ 𝑥𝑘 > 𝑟)

Similarly, we say that (𝑥𝑘)𝑘≥𝑝 diverges to −∞, or that the limit of (𝑥𝑘)𝑘≥𝑝 is equal to negative infinity,
and we write 𝑥𝑘 → −∞ (as 𝑘 → ∞), or we write lim

𝑘→∞
𝑥𝑘 = −∞ when

∀𝑟 ∈ R ∃𝑚 ∈ Z ∀𝑘 ∈ Z≥𝑝 (𝑘 ≥ 𝑚 ⟹ 𝑥𝑘 < 𝑟)

REMARK 1.2.3
We shall assume that students are familiar with sequences and limits of sequences from first-year calcu-
lus. For example, students should know that if the limit of a sequence exists, then it is unique. Also, the
limit does not depend on the first few terms (indeed the first few finitely many terms) and so we often
omit the starting value 𝑝 from our notation and write the sequence (𝑥𝑘)𝑘≥𝑝 as (𝑥𝑘). Students should
also be able to calculate limits using various limit rules, such as Operation on Limits, the Comparison
Theorem, and the Squeeze Theorem (which can all be found in the Appendix).
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DEFINITION 1.2.4: Bounded above, Bounded below, Bounded

Let (𝑥𝑘) be a sequence in R. For 𝑏 ∈ R, we say that the sequence (𝑥𝑘) is bounded above by 𝑏 when
the set {𝑥𝑘} is bounded above by 𝑏; that is, when 𝑥𝑘 ≤ 𝑏 for all 𝑘, and we say that the sequence (𝑥𝑘) is
bounded below by 𝑏 when the set {𝑥𝑘} is bounded below by 𝑏; that is, when 𝑏 ≤ 𝑥𝑘 for all 𝑘. We say
(𝑥𝑘) is bounded above when it is bounded above by some element 𝑏 ∈ R, we say that (𝑥𝑘) is bounded
below when it is bounded below by some 𝑏 ∈ R, and we say that (𝑥𝑘) is bounded when it is bounded
above and bounded below.

DEFINITION 1.2.5: Increasing, Non-decreasing, Strictly increasing, Strictly decreasing, Mono-
tonic

Let (𝑥𝑘)𝑘≥𝑝 be a sequence in R.
• (𝑥𝑘) is increasing (non-decreasing) when

∀𝑘, ℓ ∈ Z≥𝑝 (𝑘 ≤ ℓ ⟹ 𝑥𝑘 ≤ 𝑥ℓ)

• (𝑥𝑘) is strictly increasing when

∀𝑘, ℓ ∈ Z≥𝑝 (𝑘 < ℓ ⟹ 𝑥𝑘 < 𝑥ℓ)

• (𝑥𝑘) is decreasing (non-increasing) when

∀𝑘, ℓ ∈ Z≥𝑝 (𝑘 ≤ ℓ ⟹ 𝑥𝑘 ≥ 𝑥ℓ)

• (𝑥𝑘) is strictly decreasing when

∀𝑘, ℓ ∈ Z≥𝑝 (𝑘 < ℓ ⟹ 𝑥𝑘 > 𝑥ℓ)

• (𝑥𝑘) is monotonic when it is either increasing or decreasing.

THEOREM 1.2.6: Monotonic Convergence Theorem

Let (𝑥𝑘) be a sequence in R.
(1) Suppose (𝑥𝑘) is increasing. If (𝑥𝑘) is bounded above, then 𝑥𝑘 → sup{𝑥𝑘}, and if (𝑥𝑘) is not bounded

above, then 𝑥𝑘 → ∞.
(2) Suppose (𝑥𝑘) is decreasing. If (𝑥𝑘) is bounded below, then 𝑥𝑘 → inf{𝑥𝑘}, and if (𝑥𝑘) is not bounded

below, then 𝑥𝑘 → −∞.

Proof of: Theorem 1.2.6
We prove (1). Let (𝑥𝑘) be an increasing sequence. Assume (𝑥𝑘) is bounded above, say by 𝑏 ∈ R. Let
𝐴 = {𝑥𝑘 |𝑘 ≥ 𝑝} (so 𝐴 is the range of the sequence (𝑥𝑘)). Note that 𝐴 is non-empty and bounded above
(indeed 𝑏 is an upper bound for 𝐴). By Theorem 1.1.8 (1), 𝐴 has a supremum in R. Let 𝑎 = sup{𝑥𝑘 |
𝑘 ≥ 𝑝}. Note that 𝑎 ≥ 𝑥𝑘 for all 𝑘 ≥ 𝑝 and 𝑎 ≤ 𝑏 by the definition of supremum. Let 𝜀 > 0.
By Theorem 1.1.9 (1), we can choose an index 𝑚 ≥ 𝑝 so that 𝑥𝑚 ∈ 𝐴 satisfies 𝑎 − 𝜀 < 𝑥𝑚 ≤ 𝑎. Since
(𝑥𝑘) is increasing, for all 𝑘 ≥ 𝑚, we have 𝑥𝑘 ≥ 𝑥𝑚, so we have 𝑎 − 𝜀 < 𝑥𝑚 ≤ 𝑥𝑘 ≤ 𝑎, and hence
|𝑥𝑘 − 𝑎| < 𝜀. Thus, lim

𝑘→∞
𝑥𝑘 = 𝑎 ≤ 𝑏.
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DEFINITION 1.2.7
For 𝑎, 𝑏 ∈ R with 𝑎 ≤ 𝑏, we write

• (𝑎, 𝑏) = {𝑥 ∈ R | 𝑎 < 𝑥 < 𝑏}
• [𝑎, 𝑏] = {𝑥 ∈ R | 𝑎 ≤ 𝑥 ≤ 𝑏}
• (𝑎, 𝑏] = {𝑥 ∈ R | 𝑎 < 𝑥 ≤ 𝑏}
• [𝑎, 𝑏) = {𝑥 ∈ R | 𝑎 ≤ 𝑥 < 𝑏}
• (𝑎, ∞) = {𝑥 ∈ R | 𝑎 < 𝑥}
• [𝑎, ∞) = {𝑥 ∈ R | 𝑎 ≤ 𝑥}
• (−∞, 𝑏) = {𝑥 ∈ R | 𝑥 < 𝑏}
• (−∞, 𝑏] = {𝑥 ∈ R | 𝑥 ≤ 𝑏}
• (−∞, ∞) = R

An interval in R is any set of one of the above forms.
• Degenerate intervals: If 𝑎 = 𝑏, then (𝑎, 𝑏) = [𝑎, 𝑏) = (𝑎, 𝑏] = ∅, and [𝑎, 𝑏] = {𝑎}.
• Non-degenerate intervals contain at least two points.
• Open intervals: ∅, (𝑎, 𝑏), (𝑎, ∞), (−∞, 𝑏), and (−∞, ∞).
• Closed intervals: ∅, [𝑎, 𝑏], [𝑎, ∞), (−∞, 𝑏], and (−∞, ∞).
• Bounded intervals: ∅, (𝑎, 𝑏), (𝑎, 𝑏], [𝑎, 𝑏), and [𝑎, 𝑏].
• Unbounded intervals: (𝑎, ∞), [𝑎, ∞), (−∞, 𝑏), (−∞, 𝑏], and (−∞, ∞).

THEOREM 1.2.8: Nested Interval Theorem
Let 𝐼1, 𝐼2, 𝐼3, … be non-empty, closed, and bounded intervals in R.

𝐼1 ⊇ 𝐼2 ⊇ 𝐼3 ⊇ ⋯ ⟹ ⋂
𝑘≥1

𝐼𝑘 ≠ ∅

Proof of: Theorem 1.2.8
For each 𝑘 ≥ 1, let 𝐼𝑘 = [𝑎𝑘, 𝑏𝑘] with 𝑎𝑘 ≤ 𝑏𝑘. For each 𝑘, since 𝐼𝑘+1 ⊆ 𝐼𝑘, we have 𝑎𝑘 ≤ 𝑎𝑘+1 ≤ 𝑏𝑘+1 ≤
𝑏𝑘. Since 𝑎𝑘 ≤ 𝑎𝑘+1 for all 𝑘, the sequence (𝑎𝑘) is increasing. Since 𝑎𝑘 ≤ 𝑏𝑘 ≤ 𝑏𝑘−1 ≤ ⋯ ≤ 𝑏1 for all 𝑘,
the sequence (𝑎𝑘) is bounded above by 𝑏1. Since (𝑎𝑘) is increasing, and bounded above, it converges.
Let 𝑎 = sup{𝑎𝑘} = lim

𝑘→∞
𝑎𝑘. Similarly, (𝑏𝑘) is decreasing, and bounded below by 𝑎1, so it converges.

Let 𝑏 = inf{𝑏𝑘} = lim
𝑘→∞

𝑏𝑘. Since 𝑎𝑘 ≤ 𝑏𝑘 for all 𝑘, by the Comparison Theorem, we have 𝑎 ≤ 𝑏, and so
the interval [𝑎, 𝑏] is not empty. Since (𝑎𝑘) is increasing, with 𝑎𝑘 → 𝑎, it follows (proof as an exercise),
that 𝑎𝑘 ≤ 𝑎 for all 𝑘 ≥ 1, Similarly, 𝑏𝑘 ≥ 𝑏 for all 𝑘 ≥ 1, and so [𝑎, 𝑏] ⊆ [𝑎𝑘, 𝑏𝑘] = 𝐼𝑘. Therefore,

[𝑎, 𝑏] ⊆ ⋂
𝑘≥1

𝐼𝑘 ⟹ ⋂
𝑘≥1

𝐼𝑘 ≠ ∅
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