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Chapter 1

Introduction and Fundamentals

2020-01-06

1.1 An Introduction to Coding Theory

Source → Source Encoder
(digital data)

→ Channel Encoder
(encoding algorithm)

Channel−−−−→
↑↑↑↑

Noise

Channel Decoder
(decoding algorithm)

→ Source Decoder → Data

EXAMPLE 1.1.1: Repetition Code

Message → Codeword Errors/Codeword
Detected

Errors/Codeword
Corrected

Rate

0 → 0
1 → 1 0 0 1

0 → 00
1 → 11 1 0 1/2

0 → 000
1 → 111 2 1 1/3

0 → 00000
1 → 11111 4 2 1/5

Goal of Coding Theory
Design codes such that:

• High information rate
• High error-correcting capability
• Efficient encoding and decoding algorithms

Codes ⊃ Block codes ⊃ Linear codes ⊃ Cyclic codes ⊃ BCH Codes ⊃ RS Codes
Codes not covered in this course:

• Flamming codes.

4



CHAPTER 1. INTRODUCTION AND FUNDAMENTALS 5

• Golay codes.
• Raptor codes.
• LDPC codes.
• Turbo codes.

Requirements for this course:
• MATH 136.
• Not required (but required to take the course): MATH 235.
• Familiarity with: Groups, Fields, Ideals, Rings (these will be taught)
• Useful, if you have completed these you might be bored: PMATH 336, PMATH 334 [or the advanced

equivalents].

The Big Picture
In its broadest sense, coding deals with the reliable, efficient, and secure transmissions of data over channels
that are subject to inadvertent noise and malicious intrusion.

Data source → Source encoder
(data compression)

→ Encryptory authentication
(cryptography; co 487)

→ Channel encoder
(error correction codes)

Channel−−−−−−−−−−−−−−→
↑↑↑↑

noise
(non-malicious)

↑↑↑↑
adversarial intrusion
(malicious)

→ Decriptory verification → Source decoder
(data decompression)

→ Data

2020-01-08

1.2 Fundamental Concepts

Source → Source Encoder
(binary strings)

→ Channel Encoder
(adds redundancy to message)

Channel−−−−→
↑↑↑↑

noise

Channel Decoder

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
CO 331

→ Source Decoder → Data

DEFINITION 1.2.1: Alphabet

An alphabet 𝐴 is a finite set of |𝐴| = 𝑞 ⩾ 2 symbols.

DEFINITION 1.2.2: Word
A word is a finite sequence (tuples or vectors) of symbols from an alphabet 𝐴.

DEFINITION 1.2.3: Length

The length of a word is the number of symbols in it.

DEFINITION 1.2.4: Code
A code 𝐶 over 𝐴 is a finite set of words in 𝐴 with |𝐶| ⩾ 2.
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DEFINITION 1.2.5: Codeword
A codeword 𝒄 is a word in a code 𝐶.

DEFINITION 1.2.6: Block code
A block code is a code where all codewords have the same length. A block code 𝐶 of length 𝑛 containing
𝑀 codewords over 𝐴 is a subset 𝐶 ⊆ 𝐴𝑛, with |𝐶| = 𝑀 . We refer to such a block code as an [𝑛, 𝑀]-code
over 𝐴.

EXAMPLE 1.2.7: Block Code
Let 𝐴 = {0, 1} and 𝐶 = {00000, 11100, 00111, 10101}. 𝐶 is a [5, 4]-code over {0, 1}.

Message → Codeword
00 → 00000
10 → 11100
01 → 00111
11 → 10101

The encoding is a one-to-one map.

The channel encoder transmits only codewords, but what’s received by the channel decoder might not be a
codeword. For example, suppose the channel decoder receives 𝒓 = 11001. What should it do? In our above
example, we can see that 𝒓 is closest to 11100 and 10101 (only two bits are different), so it’s possible that the
codeword was one of those two. However, this may not be the case in practice.

DEFINITION 1.2.8: Assumptions about the Communications Channel

(I) The channel only transmits symbols from 𝐴.
(II) No symbols are deleted, added, or transposed.
(III) Errors are random.

EXAMPLE 1.2.9: Binary Symmetric Channel (BSC)

Let 𝐴 = {0, 1}, and 𝑝 denote the symbol error probability. The encoding map is:

A similar encoding map can be drawn for 𝐴 = {0, 1, 2}, with symbol error probability 𝑝/2.
Suppose that the symbols transmitted are 𝑋1, 𝑋2, …, and the symbols received are 𝑌1, 𝑌2, …. Then for
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all 𝑖 ⩾ 1, 𝑗 ⩾ 1, 𝑘 ⩽ 𝑞, the probability that 𝑌𝑖 is received, given that 𝑋𝑖 is transmitted is:

P(𝑌𝑖 = 𝑎𝑗 | 𝑋𝑖 = 𝑎𝑘) =
⎧{
⎨{⎩

1 − 𝑝, if 𝑗 = 𝑘
𝑝

𝑞 − 1, if 𝑗 ≠ 𝑘

DEFINITION 1.2.10: Notes about the Binary Symmetric Channel

(I) If 𝑝 = 0, the channel is perfect.
(II) If 𝑝 = 1/2, the channel is useless.
(III) If 1/2 < 𝑝 ⩽ 1, then simply flip all bits that are received.
(IV) WLOG, we can assume 0 < 𝑝 < 1/2.
(V) Analogously, for a 𝑞-ary channel, we can assume that 0 < 𝑝 < 𝑞−1

𝑞 .

DEFINITION 1.2.11: Hamming distance

If 𝒙, 𝒚 ∈ 𝐴𝑛, the Hamming distance 𝑑(𝒙, 𝒚) is the number of coordinate positions in which 𝒙 and 𝒚
differ.

EXAMPLE 1.2.12: Hamming Distance

Let 𝒙 = 10111 and 𝒚 = 01010. The Hamming distance of 𝒙 and 𝒚 is 𝑑(𝒙, 𝒚) = 4 since 𝒙 and 𝒚 differ in
the coordinate positions 1, 2, 3, and 5.

DEFINITION 1.2.13: Hamming distance

Let 𝐶 be an [𝑛, 𝑀]-code. The Hamming distance 𝑑 of a code 𝐶 is

𝑑(𝐶) = min{𝑑(𝒙, 𝒚) ∶ 𝒙, 𝒚 ∈ 𝐶, 𝒙 ≠ 𝒚}

THEOREM 1.2.14: Metric
𝑑 is a metric; that is, for all 𝒙, 𝒚, 𝒛 ∈ 𝐴𝑛:
(1) 𝑑(𝒙, 𝒚) ⩾ 0
(2) 𝑑(𝒙, 𝒚) = 0 if and only if 𝒙 = 𝒚
(3) 𝑑(𝒙, 𝒚) = 𝑑(𝒚, 𝒙)
(4) (Triangle inequality): 𝑑(𝒙, 𝒛) ⩽ 𝑑(𝒙, 𝒚) + 𝑑(𝒚, 𝒛)

Proof of Theorem 1.2.14
Proof of (1) to (3) are trivially true.
Proof of (4) Let 𝒙, 𝒚, 𝒛 ∈ 𝐴𝑛. Suppose that 𝒙 and 𝒛 differ in exactly 𝑎 positions; that is, 𝑑(𝒙, 𝒛) = 𝑎.
Out of the 𝑎 positions in which 𝒙 and 𝒛 differ, there are 𝑏 positions in which 𝒚 is identical to 𝒙, but not
𝒛. Out of the 𝑎 positions, there are 𝑎 − 𝑏 positions in which 𝒚 is identical to 𝒛, but not 𝒙. Lastly, in the
𝑛 − 𝑎 positions where 𝒙 is identical to 𝒛, there are 𝑐 positions in which 𝒚 does not match either 𝒙 or 𝒛.
We can see that 𝑑(𝒙, 𝒚) = 𝑏 + 𝐶 and 𝑑(𝒚, 𝒛) = 𝑎 − 𝑏 + 𝐶. We get

𝑑(𝒙, 𝒚) + 𝑑(𝒚, 𝒛) = (𝑏 + 𝐶) + (𝑎 − 𝑏 + 𝐶) = 𝑎 + 2𝑐 ⩾ 𝑎

Therefore 𝑑 is a metric.
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DEFINITION 1.2.15: Rate
The rate (or information rate) of an [𝑛, 𝑀]-code 𝐶 over 𝐴, is

𝑅 =
log𝑞(𝑀)

𝑛
where 𝑞 = |𝐴|.
If the source messages are all 𝑘-tuples over 𝐴, then 𝑀 = 𝑞𝑘, so we have

𝑅 =
log𝑞(𝑞𝑘)

𝑛 = 𝑘
𝑛

EXAMPLE 1.2.16: Rate and Distance of a Code
Let 𝐴 = {0, 1} and 𝐶 = {00000, 11100, 00111, 10101} which is a [5, 4]-code over {0, 1}.

• The rate of 𝐶 is 𝑅 = 2/5.
• The distance of 𝐶 is 𝑑(𝐶) = 2, since the minimum distance are from the pair of codewords 00111

and 10101 which have Hamming distance of 2 as they differ in coordinate positions 1 and 4.

2020-01-10

1.3 Decoding Strategy
Suppose we have an [𝑛, 𝑀]-code 𝐶 over 𝐴 of distance 𝑑. We need to adopt a strategy for the channel decoder
(henceforth called the decoder). If decoder receives an 𝑛-tuple 𝒓 ∈ 𝐴𝑛, it must make some decision. This
decision may be one of
(i) No errors have occurred; accept 𝒓 as a codeword.
(ii) Errors have occurred; correct 𝒓 to a codeword 𝒄; e.g., 0 → 0000, 1 → 1111, 𝑟 = 0001 corrected to 0000.
(iii) Errors have occurred; no correction is possible.

1.4 Nearest Neighbour Decoding
Incomplete Maximum Likelihood Decoding (IMLD)
Correct 𝒓 to the unique codeword 𝒄 for which 𝑑(𝒓, 𝒄) is smallest. If 𝒄 is not unique, reject 𝒓.

Complete Maximum Likelihood Decoding (CMLD)
Same as IMLD, except ties are broken arbitrarily.
Question: Is IMLD a reasonable strategy?

THEOREM 1.4.1
IMLD selects the codeword 𝒄 that maximizes P(𝒓 | 𝒄); that is, it maximizes the probability 𝒓 is received,
given 𝒄 was sent.

We actually want to maximize P(𝒓 | 𝒄), but we will ignore that for now.
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Proof of Theorem 1.4.1
Suppose 𝒄1, 𝒄2 ∈ 𝐶 with 𝑑(𝒄1, 𝒓) = 𝑑1 and 𝑑(𝒄2, 𝒓) = 𝑑2. Suppose 𝑑1 > 𝑑2. Now,

P(𝒓 | 𝒄1) = (1 − 𝑝)𝑛−𝑑1( 𝑝
𝑞 − 1)

𝑑1

and P(𝒓 | 𝒄2) = (1 − 𝑝)𝑛−𝑑2( 𝑝
𝑞 − 1)

𝑑2

.
Hence,

P(𝒓 | 𝒄1)
P(𝒓 | 𝒄2) = (1 − 𝑝)𝑑2−𝑑1( 𝑝

𝑞 − 1)
𝑑1−𝑑2

= [ 𝑝
(1 − 𝑝)(𝑞 − 1)]

𝑑1−𝑑2

Recall that, for a 𝑞-ary channel, we can assume that 𝑝 < 𝑞−1
𝑞 . Thus,

⟹ 𝑝𝑞 < 𝑞 − 1
⟹ 0 < 𝑞 − 1 − 𝑝𝑞
⟹ 𝑝 < 𝑞 − 1 − 𝑝𝑞 + 𝑝
⟹ 𝑝 < (1 − 𝑝)(𝑞 − 1)
⟹ 𝑝

(1 − 𝑝)(𝑞 − 1) < 1

Since 𝑑1 > 𝑑2, we get P(𝒓 | 𝒄1)
P(𝒓 | 𝒄2) < 1, and so P(𝒓 | 𝒄1) < P(𝒓 | 𝒄2).

The ideal strategy is to correct 𝒓 to 𝒄 ∈ 𝐶 such that P(𝒄 | 𝒓) is maximized. This is Minimum Error Decoding
(MED).

EXAMPLE 1.4.2: IMLD ≠ MED

Let 𝐶 = {000⏟
𝒄1

, 111⏟
𝒄2

}, P(𝒄1) = 0.1, P(𝒄2) = 0.9, 𝑝 = 1/4, and 𝒓 = 100.

IMLD 𝒓 is decoded to 𝒄1 = 000.
MED

P(𝒄1 | 𝒓) = P(𝒓 | 𝒄1)P(𝒄1)
P(𝒓)

= 𝑝(1 − 𝑝)2(0.1)
P(𝒓)

= 0.0140625
P(𝒓)

P(𝒄2 | 𝒓) = P(𝒓 | 𝒄2)P(𝒄2)
P(𝒓)

= 𝑝2(1 − 𝑝)(0.9)
P(𝒓)

= 0.0421875
P(𝒓)

Since P(𝒄1 | 𝒓) < P(𝒄2 | 𝒓), 𝒓 is decoded to 𝒄2 = 111.

Notes:
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(i) IMLD selects 𝒄 such that P(𝒓 | 𝒄) is maximum.
(ii) MED selects 𝒄 such that P(𝒄 | 𝒓) is maximum.
(iii) MED has a drawback that it requires knowledge of P(𝒄𝑖) for each 𝑖 ∈ [1, 𝑀].
(iv) Suppose source messages are equally likely, so P(𝒄𝑖) = 1

𝑀 for each 𝑖 ∈ [1, 𝑀]. Then,

P(𝒓 | 𝒄𝑖) = P(𝒄𝑖 | 𝒓)P(𝒓)
P(𝒄𝑖)

= P(𝒄𝑖 | 𝒓) 𝑀P(𝒓)⏟
constant

So, maximizing P(𝒓 | 𝒄𝑖) is the same as maximizing P(𝒄𝑖 | 𝒓). Thus, IMLD is the same as MED in this
case.

In the remainder of the course, we will use IMLD/CMLD.

2020-01-13

1.5 Error Correcting & Detecting Capabilities of a Code
• If 𝐶 is used for error correction, the strategy is IMLD/CMLD.
• If 𝐶 is used for error detection only, the strategy is to reject 𝒓 if 𝒓 ∉ 𝐶, otherwise accept 𝒓.
DEFINITION 1.5.1: 𝑒-error correcting code

A code 𝐶 is called an 𝒆-error correcting code if the decoder always makes the correct decision if
at most 𝑒 errors per codeword are introduced per transmission. We define 𝒆-error detecting code
similarly.

EXAMPLE 1.5.2: Error Detecting and Correcting Codes

• 𝐶 = {0000, 1111} is a 1-error correcting code, but not a 2-error correcting code.
• 𝐶 = {0 ⋯ 0⏟

𝑚
, 1 ⋯ 1⏟

𝑚
} is a ⌊ 𝑚−1

2 ⌋-error correcting code.
• 𝐶 = {0000, 1111} is a 3-error detecting code.

THEOREM 1.5.3
If 𝑑(𝐶) = 𝑑, then 𝐶 is a (𝑑 − 1)-error detecting code.

Proof of Theorem 1.5.3
Suppose 𝒄 ∈ 𝐶 is transmitted 𝒓 is received. If no errors occurred during transmission, then 𝒓 = 𝒄, so
the decoder correctly accepts 𝒓. If at least 1 and at most (𝑑 − 1) errors occur, then 1 ⩽ 𝑑(𝒓, 𝒄) ⩽ 𝑑 − 1.
Since 𝑑(𝐶) = 𝑑, we have 𝒓 ∉ 𝐶. Thus, the decoder correctly rejects 𝒓. Thus, 𝐶 is a (𝑑 − 1)-error
detecting code.

THEOREM 1.5.4
If 𝑑(𝐶) = 𝑑, then 𝐶 is not a 𝑑-error detecting code.

Proof of Theorem 1.5.4
Since 𝑑(𝐶) = 𝑑, there exists codewords 𝒄1, 𝒄2 ∈ 𝐶 with 𝑑(𝒄1, 𝒄2) = 𝑑. Hence, it is possible that 𝒄1 is
sent, 𝑑 errors are introduced, and 𝒄2 is received. In this case, the decoder incorrectly accepts 𝒄2. Thus,
𝐶 is not a 𝑑-error detecting code.
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THEOREM 1.5.5

If 𝑑(𝐶) = 𝑑, then 𝐶 is a ⌊𝑑 − 1
2 ⌋-error correcting code.

Proof of Theorem 1.5.5

Suppose 𝒄 ∈ 𝐶 is transmitted, at most 𝑑−1
2 errors are introduced, and 𝒓 is received. Let 𝒛 ∈ 𝐶 with

𝒛 ≠ 𝒄. By the triangle inequality, we have

𝑑(𝒄, 𝒛) ⩽ 𝑑(𝒄, 𝒓) + 𝑑(𝒓, 𝒛) ⟹ 𝑑(𝒓, 𝒛) ⩾ 𝑑(𝒄, 𝒛) − 𝑑(𝒄, 𝒓)

⩾ 𝑑 − 𝑑 − 1
2

= 𝑑 + 1
2

> 𝑑 − 1
2

So, 𝒄 is the unique codeword closest to 𝒓. Hence, IMLD/CMLD will decode 𝒓 to 𝒄. Thus, 𝐶 is a
⌊ 𝑑−1

2 ⌋-error correcting code.

THEOREM 1.5.6

If 𝑑(𝐶) = 𝑑, then 𝐶 is not a (⌊𝑑 − 1
2 ⌋+1)-error correcting code.

EXERCISE 1.5.7
Prove Theorem 1.5.6.

Given 𝑞, 𝑛, 𝑀, 𝑑, does there exist an [𝑛, 𝑀]-code over 𝐴 with |𝐴| = 𝑞 such that 𝑑(𝐶) = 𝑑?
Let 𝐶 = {𝒄1, … , 𝒄𝑀} and 𝑒 = ⌊ 𝑑−1

2 ⌋. For any codeword 𝒄 ∈ 𝐶, let 𝑆𝒄 be the sphere of radius 𝑒 centred at 𝒄;
that is,

𝑆𝒄 = {𝒓 ∈ 𝐴𝑛 ∶ 𝑑(𝒓, 𝒄) ⩽ 𝑒}
We proved that if 𝒄𝑖, 𝒄𝑗 ∈ 𝐶 with 𝑖 ≠ 𝑗, then 𝑆𝒄𝑖

∩ 𝑆𝒄𝑗
= ∅ for each 𝑖 ≠ 𝑗. This question can be viewed as a

sphere packing problem: Can we place 𝑀 spheres of radius 𝑒 in 𝐴𝑛 such that no two spheres overlap? This
is a purely combinatorial problem.
Does there exist a block code with parameters 𝑞 = 2, 𝑛 = 128, 𝑀 = 264, 𝑑 ⩾ 22? Yes, we will see this in
Chapter 6.

Road map
We’ll view {0, 1}𝑛 as a vector space of dimension 𝑛 over Z𝑞 where |𝐴| = 𝑞. We will choose the code 𝐶 to be an
𝑀 -dimensional subspace of this vector space, and we will choose special subspaces that satisfy the 𝑑(𝐶) = 𝑑
requirement.



Chapter 2

Finite Fields

2020-01-15

2.1 Introduction
DEFINITION 2.1.1: Field
A field 𝐹 is a set of elements under two binary operations, which we denote by + and ⋅, such that
+∶ 𝐹 × 𝐹 → 𝐹 and ⋅ ∶ 𝐹 × 𝐹 → 𝐹 where all the following axioms are satisfied:

V1 𝑎 + (𝑏 + 𝑐) = (𝑎 + 𝑏) + 𝑐.
V2 𝑎 + 𝑏 = 𝑏 + 𝑎.
V3 ∃ 0 ∈ 𝐹 such that 𝑎 + 0 = 𝑎.
V4 ∃ (−𝑎) ∈ 𝐹 such that 𝑎 + (−𝑎) = 0.
V5 𝑎 ⋅ (𝑏 ⋅ 𝑐) = (𝑎 ⋅ 𝑏) ⋅ 𝑐.
V6 𝑎 ⋅ 𝑏 = 𝑏 ⋅ 𝑎.
V7 ∃ 1 ∈ 𝐹 such that 𝑎 ⋅ 1 = 𝑎.
V8 ∀ 𝑎 ≠ 0, ∃ (𝑎−1) ∈ 𝐹 such that 𝑎 ⋅ (𝑎−1) = 1.
V9 𝑎 ⋅ (𝑏 + 𝑐) = 𝑎 ⋅ 𝑏 + 𝑎 ⋅ 𝑐.

DEFINITION 2.1.2: Infinite Field
A field 𝐹 is infinite if |𝐹 | is infinite.

DEFINITION 2.1.3: Finite Field
A field 𝐹 is finite if |𝐹 | is finite.

DEFINITION 2.1.4: Order
The order of a field 𝐹 denoted by ord(𝐹), is |𝐹 |.

EXAMPLE 2.1.5: Infinite and Finite Fields
• Q,R,C are infinite fields.
• Z is not a field since 3 ∈ Z, but (1/3) ∉ Z.

Question: For what 𝑛 ∈ Z⩾2 does there exist finite fields of order 𝑛? If a field of order 𝑛 exists, how do we
“construct” it?

12
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Recall: Let 𝑛 ∈ Z⩾2. The integers modulo 𝑛, denoted by Z𝑛, is the set of all equivalence classes modulo
𝑛.

Z𝑛 = {[0], [1], [2], … , [𝑛 − 1]}
where [𝑎] + [𝑏] = [𝑎 + 𝑏] and [𝑎][𝑏] = [𝑎𝑏]. More simply, Z𝑛 = {0, 1, … , 𝑛 − 1} with addition and multiplication
performed modulo 𝑛.

EXAMPLE 2.1.6: Modular Arithmetic
Let Z9 = {0, 1, … , 8}.

• 5 + 7 = 3; that is, 5 + 7 ≡ 3 (mod 9)
• 5 ⋅ 7 = 8; that is, 5 + 7 ≡ 8 (mod 9)

DEFINITION 2.1.7: Commutative ring

A commutative ring satisfies field axioms V1-V9 except V8.

THEOREM 2.1.8
Z𝑛 is a commutative ring.

THEOREM 2.1.9
Z𝑛 is a field if and only if 𝑛 is prime.

Proof of Theorem 2.1.9
( ⟸ ) Suppose 𝑛 is prime. Let 𝑎 ∈ Z𝑛, 𝑎 ≠ 0 (i.e., 1 ⩽ 𝑎 ⩽ 𝑛 − 1). Since 𝑛 is prime, gcd(𝑎, 𝑛) = 1 so
∃ 𝑠, 𝑡 ∈ Z such that

𝑎𝑠 + 𝑛𝑡 = 1
Reducing both sides modulo 𝑛 gives

𝑎𝑠 ≡ 1 (mod 𝑛)
Define 𝑎−1 = 𝑠. Thus, V8 is satisfied and hence Z𝑛 is a field of order 𝑛.
( ⟹ ) Suppose for a contradiction that 𝑛 is composite, say 𝑛 = 𝑎𝑏 where 2 ⩽ 𝑎, 𝑏 ⩽ 𝑛 − 1. Suppose
𝑎−1 exists, and define 𝑎−1 = 𝑠. Then,

𝑎𝑠 ≡ 1 (mod 𝑛) ⟹ 𝑎𝑏𝑠 ≡ 𝑏 (mod 𝑛) ⟹ 𝑛𝑠 ≡ 𝑏 (mod 𝑛) ⟹ 0 ≡ 𝑏 (mod 𝑛)

So, 𝑛 ∣ 𝑏 which is impossible. Therefore, 𝑎−1 does not exist, and hence Z𝑛 is not a field.

Question: Do there exist finite fields of orders 4 and 6?
DEFINITION 2.1.10: Characteristic
The characteristic of a field denoted by char(𝐹), is the smallest positive integer 𝑚 such that

1 + ⋯ + 1⏟⏟⏟⏟⏟
𝑚

= 0

If no such 𝑚 exists, then we define char(𝐹) = 0

EXAMPLE 2.1.11: Characteristic of Fields
• char(Q) = 0
• char(R) = 0
• char(C) = 0
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• char(Z𝑝) = 𝑝 where 𝑝 is prime.

THEOREM 2.1.12
If char(𝐹) = 0, then 𝐹 is infinite.

Proof of Theorem 2.1.12
Consider 1, 1 + 1, … , 1 + ⋯ + 1⏟⏟⏟⏟⏟

𝑎
∈ 𝐹 . Suppose for a contradiction there exists distinct 𝑎, 𝑏 ∈ Z such that

1 + ⋯ + 1⏟⏟⏟⏟⏟
𝑎

= 1 + ⋯ + 1⏟⏟⏟⏟⏟
𝑏

where 𝑎 > 𝑏, then
1 + ⋯ + 1⏟⏟⏟⏟⏟

𝑎
= 1 + ⋯ + 1⏟⏟⏟⏟⏟

𝑏
+ 1 + ⋯ + 1⏟⏟⏟⏟⏟

𝑎−𝑏
= 1 + ⋯ + 1⏟⏟⏟⏟⏟

𝑏

Hence, 1 + ⋯ + 1⏟⏟⏟⏟⏟
𝑎−𝑏

= 0 ⟹ char(𝐹) = (𝑎 − 𝑏) which contradicts char(𝐹) = 0. Thus, 𝐹 is infinite.

THEOREM 2.1.13
If 𝐹 is a finite field, then char(𝐹) is prime.

Proof of Theorem 2.1.13
Suppose for a contradiction that char(𝐹) = 𝑚 is composite, say 𝑚 = 𝑎𝑏 where 2 ⩽ 𝑎, 𝑏 ⩽ 𝑚 − 1. Now

(1 + ⋯ + 1⏟⏟⏟⏟⏟
𝑎

)(1 + ⋯ + 1⏟⏟⏟⏟⏟
𝑏

) = 1 + ⋯ + 1⏟⏟⏟⏟⏟
𝑚

= 0

since char(𝐹) = 𝑚. Let 1 + ⋯ + 1⏟⏟⏟⏟⏟
𝑎

= 𝑠 and 1 + ⋯ + 1⏟⏟⏟⏟⏟
𝑏

= 𝑡, so 𝑠𝑡 = 0 where 𝑠 ≠ 0. Since char(𝐹) =

𝑚 > 𝑎, there exists 𝑐 ∈ 𝐹 such that 𝑐𝑠 = 1 ⟹ 𝑐 = 𝑠−1. Therefore, 𝑠−1𝑠𝑡 = 0. Thus, 𝑡 = 0 which is a
contradiction to char(𝐹) = 𝑚.

Road map
Let 𝐹 be a finite field of order 𝑛. Then, char(𝐹) = 𝑝 where 𝑝 is prime. Then, Z𝑝 is a subfield of 𝐹 . 𝐹 is a
vector space over Z𝑝 of dim = 𝑘. Then, order of 𝐹 is 𝑝𝑘.

2020-01-17

DEFINITION 2.1.14: Isomorphic

We say two fields 𝐹 and 𝑆 are isomorphic if they have the same binary operations and if there exists
a bijection between them.

DEFINITION 2.1.15: Subfield
Let 𝐹 be a field. A subset 𝑆 ⊆ 𝐹 is called a subfield of 𝐹 if 𝑆 is a field itself with respect to the same
operations of 𝐹 .
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EXAMPLE 2.1.16: Subfield
Let 𝐹 be a finite field where char(𝐹) = 𝑝. Consider 𝐸 = {0, 1, 1 + 1, … , 1 + ⋯ + 1⏟⏟⏟⏟⏟

𝑝−1
} ⊆ 𝐹 . We see that

𝐸 is a field with the same field operations as 𝐹 . Also, 𝐸 has order 𝑝. If we label the elements of 𝐸
naturally such that 1 + ⋯ + 1⏟⏟⏟⏟⏟

𝑝−1
⟷ 𝑝 − 1, then

𝐸 = {0, 1, 1 + 1, … , 1 + ⋯ + 1⏟⏟⏟⏟⏟
𝑝−1

} = Z𝑝 = {0, 1, 2, … , 𝑝 − 1} ⊆ 𝐹

So 𝐸 is isomorphic to Z𝑝.

THEOREM 2.1.17
If 𝐹 is a finite field of characteristic 𝑝, then Z𝑝 is a subfield of 𝐹 .

EXERCISE 2.1.18
Prove Theorem 2.1.17.

DEFINITION 2.1.19
Let 𝐹 be a finite field, and consider Z𝑝 ⊆ 𝐹 .

• Each 𝑣 ∈ 𝐹 is vector.
• Each 𝑐 ∈ Z𝑝 is a scalar.
• Addition in 𝐹 is defined by vector addition.
• Multiplication in 𝐹 by elements in Z𝑝 is defined by scalar multiplication.

THEOREM 2.1.20
If 𝐹 is a finite field of characteristic 𝑝, then 𝐹 is a vector space over Z𝑝.

EXERCISE 2.1.21
Prove Theorem 2.1.20.

THEOREM 2.1.22
If 𝐹 is a finite field of characteristic 𝑝, then

ord(𝐹) = 𝑝𝑘

for some 𝑘 ∈ Z⩾1.

Proof of Theorem 2.1.22
Let 𝑘 be the dimension of the vector space 𝐹 over Z𝑝. Let {𝛼1, … , 𝛼𝑘} be a basis for 𝐹 . Then, every
element in 𝐹 can be written as

𝑐1𝛼1 + ⋯ + 𝑐𝑘𝛼𝑘

where 𝑐𝑖 ∈ Z𝑝. For each 𝛼𝑖, there are 𝑝 possible choices for 𝑐𝑖, hence ord(𝐹) = 𝑝𝑘.

EXAMPLE 2.1.23
There is no field of order 6.
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Question: Is there a finite field of order 4, 8, 9?

2.2 Irreducible Polynomials
DEFINITION 2.2.1: Set of all polynomials in 𝑥 over 𝐹

Let 𝐹 be a field. The set of all polynomials in 𝑥 over 𝐹 (polynomials with coefficients from 𝐹 ) is
denoted 𝐹[𝑥]. Addition and multiplication are both done in the usual way, with coefficient arithmetic
in 𝐹 .

EXAMPLE 2.2.2: Polynomial Modular Arithmetic

In Z11, (2 + 5𝑥 + 6𝑥2) + (3 + 9𝑥 + 5𝑥2) = 5 + 3𝑥.

THEOREM 2.2.3
Let 𝐹 be a field. 𝐹[𝑥] is a commutative ring.

DEFINITION 2.2.4
Let 𝐹 be a field and let 𝑓 ∈ 𝐹 [𝑥] with deg(𝑓) ⩾ 1. If 𝑔, ℎ ∈ 𝐹 [𝑥] with 𝑓 ∣ (𝑔 − ℎ), then we write

𝑔 ≡ ℎ (mod 𝑓)

or equivalently, we can write 𝑔 − ℎ = ℓ𝑓 for some ℓ ∈ 𝐹 [𝑥].

THEOREM 2.2.5
Congruence is an equivalence relation.

DEFINITION 2.2.6: Equivalence class containing 𝒈 ∈ 𝑭 [𝒙]

For a given 𝑓 ∈ 𝐹 [𝑥], the equivalence class containing 𝒈 ∈ 𝑭 [𝒙] is

[𝑔] = {ℎ ∈ 𝐹[𝑥] ∶ ℎ ≡ 𝑔 (mod 𝑓)}

DEFINITION 2.2.7
For 𝑔, ℎ ∈ 𝐹 [𝑥], we define addition and multiplication as follows:

• Addition: [𝑔] + [ℎ] = [𝑔 + ℎ]
• Multiplication: [𝑔][ℎ] = [𝑔ℎ]

THEOREM 2.2.8
(1) The set of all equivalence classes, denoted 𝐹[𝑥]/(𝑓) where 𝑓 ∈ 𝐹 [𝑥] and deg(𝑓) ⩾ 1 is a commutative

ring.
(2) The polynomials in 𝐹[𝑥] of degree less than degree of 𝑓 are a system of distinct representatives of

equivalence classes in 𝐹[𝑥]/(𝑓).

Proof of Theorem 2.2.8
Let 𝑔 ∈ 𝐹 [𝑥]. By division algorithm for polynomials we can write 𝑔 = ℓ𝑓 +𝑟 where deg(𝑟) < deg(𝑓). So,
𝑔 − 𝑟 = ℓ𝑓 . Hence, 𝑔 ≡ 𝑟 (mod 𝑓). Thus, [𝑔] = [𝑟] and we have deg(𝑟) < deg(𝑓). Also, if 𝑟1, 𝑟2 ∈ 𝐹[𝑥]
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with 𝑟1 ≠ 𝑟2, and deg(𝑟1),deg(𝑟2) < deg(𝑓), then

𝑓 ∤ (𝑟1 − 𝑟2) ⟺ 𝑟1 ≢ 𝑟2 (mod 𝑓)

Thus, [𝑟1] ≠ [𝑟2].

2020-01-20

DEFINITION 2.2.9: Irreducible
Let 𝐹 be a field, and 𝑓 ∈ 𝐹 [𝑥] of degree 𝑛 ⩾ 1. 𝑓 is irreducible over 𝐹 if 𝑓 cannot be written as 𝑓 = 𝑔ℎ,
where 𝑔, ℎ ∈ 𝐹 [𝑥] and deg(𝑔),deg(𝑛) ⩾ 1.

EXAMPLE 2.2.10: Irreducible
• 𝑥2 + 1 is irreducible over R.
• 𝑥2 + 1 is reducible over C since (𝑥 + 𝑖)(𝑥 − 𝑖) = 𝑥 + 1.
• 𝑥2 + 1 is reducible over Z2 since (𝑥 + 1)2 = 𝑥 + 1.
• 𝑥2 + 1 is irreducible over Z3.

THEOREM 2.2.11
Let 𝐹 be a field and 𝑓 ∈ 𝐹 [𝑥] of degree 𝑛 ⩾ 1. 𝐹[𝑥]/(𝑓) is a field if and only if 𝑓 is irreducible over 𝐹 .

Proof of Theorem 2.2.11
Note that 𝐹[𝑥]/(𝑓) is a commutative ring.
( ⟸ ) Suppose 𝑔 ∈ 𝐹 [𝑥]/(𝑓) where 𝑔 ≠ 0 and deg(𝑔) < deg(𝑓). Then, gcd(𝑔, 𝑓) = 1 and so by EEA for
polynomials, there exists 𝑠, 𝑡 ∈ 𝐹 [𝑥] such that

𝑔𝑠 + 𝑓𝑡 = 1

Reducing both sides modulo 𝑓 gives
𝑔𝑠 ≡ 1 (mod 𝑓)

So, 𝑔−1 = 𝑠. Hence, 𝐹[𝑥]/(𝑓) is a field.

EXERCISE 2.2.12
Prove the forward direction of Theorem 2.2.11.

We need an irreducible polynomial 𝑓 ∈ Z𝑝[𝑥] of degree 𝑛. Then, Z[𝑥]/(𝑓) is a finite field of order 𝑝𝑛.
THEOREM 2.2.13
For any prime 𝑝 and 𝑛 ∈ Z⩾2, there exists an irreducible polynomial of degree 𝑛 over Z𝑝.

THEOREM 2.2.14
There exists a finite field of order 𝑞 if and only if 𝑞 is a prime power.

EXAMPLE 2.2.15
Construct a finite field of order 22 = 4.
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Solution. Take 𝑓(𝑥) = 𝑥2 + 𝑥 + 1 ∈ Z2[𝑥] which is irreducible over Z2[𝑥]. Thus, the field is

Z2[𝑥]/(𝑥2 + 𝑥 + 1) = {0, 1, 𝑥, 𝑥 + 1}

Examples of operations:
• 𝑥 + (𝑥 + 1) = 1
• 𝑥(𝑥 + 1) = 𝑥2 + 𝑥 = 1
• 𝑥−1 = 𝑥 + 1
• 1−1 = 1
• 𝑥−1 = 𝑥 + 1
• (𝑥 + 1)−1 = 𝑥

EXAMPLE 2.2.16
Construct a field of order 23 = 8.
Solution. We need an irreducible polynomial of degree 3 over Z2. Take 𝑓1(𝑥) = 𝑥3 + 𝑥 + 1 which is
irreducible over Z2. Then a field of order 8 is

𝐹1 = Z2[𝑥]/(𝑥3 + 𝑥 + 1) = {0, 1, 𝑥, 𝑥 + 1, 𝑥2, 𝑥2 + 1, 𝑥2 + 𝑥, 𝑥2 + 𝑥 + 1}

Examples of operations:
• 𝑥2 + (𝑥2 + 𝑥 + 1) = 𝑥 + 1
• 𝑥2(𝑥2 + 𝑥 + 1) = 𝑥4 + 𝑥3 + 𝑥2 = 1
• (𝑥2)−1 = 𝑥2 + 𝑥 + 1
• 𝑥−1 = 𝑥2 + 1

EXAMPLE 2.2.17

Construct a field of order 23 = 8.
Solution. Take 𝑓2(𝑥) = 𝑥3 + 𝑥2 + 1. Then a field of order 8 is

𝐹2 = Z2[𝑥]/(𝑥3 + 𝑥2 + 1) = {0, 1, 𝑥, 𝑥 + 1, 𝑥2, 𝑥2 + 1, 𝑥2 + 𝑥, 𝑥2 + 𝑥 + 1}

Examples of operations:
• 𝑥−1 = 𝑥2 + 𝑥

Note: 𝐹1 and 𝐹2 are two different fields of order 23 = 8, but they are isomorphic. That is, there is a bijection
𝛼 ∶ 𝐹1 → 𝐹2 such that

𝛼(𝑎 + 𝑏) = 𝛼(𝑎) + 𝛼(𝑏)
𝛼(𝑎𝑏) = 𝛼(𝑎)𝛼(𝑏)

for all 𝑎, 𝑏 ∈ 𝐹1.
THEOREM 2.2.18
Any two finite fields of order 𝑞 are isomorphic.

EXERCISE 2.2.19
Prove Theorem 2.2.18.

DEFINITION 2.2.20: Galois field of order 𝑞

We will denote the Galois field of order 𝑞 by 𝐺𝐹(𝑞).

We saw one representation of 𝐺𝐹(22) and two different representations of 𝐺𝐹(23).
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2020-01-22
EXAMPLE 2.2.21
Construct 𝐺𝐹(24 = 16).
Solution. Take 𝑓(𝑥) = 𝑥4 + 𝑥 + 1 ∈ Z2[𝑥].

• 𝑓 has no roots in Z2 and hence no linear factors.
• Long division shows that 𝑥2 + 𝑥 + 1 ∤ 𝑥4 + 𝑥 + 1, so 𝑓 has no irreducible quadratic factors.
• 𝑓 is irreducible over Z2.

Thus, 𝐺𝐹(16) = Z2[𝑥]/(𝑥4 + 𝑥 + 1).

2.3 Properties of Finite Fields
PROPOSITION 2.3.1: Coprimeness and Divisiblity (CAD)

† For all integers 𝑎, 𝑏 and 𝑐, if 𝑐 ∣ 𝑎𝑏 and gcd(𝑎, 𝑐) = 1, then 𝑐 ∣ 𝑏.

LEMMA 2.3.2
† For each integer 𝑘 ∈ [1, 𝑝 − 1],

𝑝 ∣ (𝑝
𝑘)

Proof of Lemma 2.3.2
We know that (𝑝

𝑘) ∈ Z and
(𝑝

𝑘) = 𝑝!
(𝑝 − 𝑘)𝑘!

Since 𝑘 ⩾ 1, then
(𝑝

𝑘) = 𝑝(𝑝 − 1) ⋯ (𝑝 − 𝑘 + 1)
𝑘!

Therefore, 𝑘!(𝑝
𝑘) = 𝑝(𝑝 − 1) ⋯ (𝑝 − 𝑘 + 1).

We note that 𝑝 ∣ 𝑝(𝑝 − 1) ⋯ (𝑝 − 𝑘 + 1) and therefore 𝑝 ∣ 𝑘!(𝑝
𝑘). Since 𝑝 is prime and 𝑝 > 𝑘, then

gcd(𝑝, 𝑘!) = 1. Therefore, by Proposition 2.3.1

𝑝 ∣ (𝑝
𝑘)

THEOREM 2.3.3: Frosh’s Dream
Let 𝛼, 𝛽 ∈ 𝐺𝐹(𝑞) where char(𝐺𝐹(𝑞)) = 𝑝.

(𝛼 + 𝛽)𝑝 = 𝛼𝑝 + 𝛽𝑝

Proof of Theorem 2.3.3

(𝛼 + 𝛽)𝑝 = 𝛼𝑝 +
𝑝−1
∑
𝑘=1

(𝑝
𝑘)𝛼𝑘𝛽𝑝−𝑘 + 𝛽𝑝

By Lemma 2.3.2,
𝑝 ∣ (𝑝

𝑘) ⟹ 𝑝𝜆𝑘 = (𝑝
𝑘)
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where 𝜆𝑘 ∈ Z for each 𝑘 ∈ [1, 𝑝 − 1]. Hence,
𝑝−1
∑
𝑘=1

(𝑝
𝑘)𝛼𝑘𝛽𝑝−𝑘 =

𝑝−1
∑
𝑘=1

(𝑝𝜆𝑘)𝛼𝑘𝛽𝑝−𝑘

=
𝑝−1
∑
𝑘=1

(1 + ⋯ + 1⏟⏟⏟⏟⏟
𝑝

)𝜆𝑘𝛼𝑘𝛽𝑝−𝑘

= 0

Thus, (𝛼 + 𝛽)𝑝 = 𝛼𝑝 + 𝛽𝑝.

COROLLARY 2.3.4
Let 𝛼, 𝛽 ∈ 𝐺𝐹(𝑞) where char(𝐺𝐹(𝑞)) = 𝑝.

(𝛼 + 𝛽)𝑝𝑚 = 𝛼𝑝𝑚 + 𝛽𝑝𝑚

for all 𝑚 ∈ Z⩾1.

Proof of Corollary 2.3.4

† We prove this result by induction on 𝑚, where 𝑃(𝑚) is the statement

(𝛼 + 𝛽)𝑝𝑚 = 𝛼𝑝𝑚 + 𝛽𝑝𝑚

Base Case: The statement 𝑃 (1) is given by

(𝛼 + 𝛽)𝑝 = 𝛼𝑝 + 𝛽𝑝

which is clearly true by Theorem 2.3.3.
Inductive Hypothesis: Assume

(𝛼 + 𝛽)𝑝𝑘 = 𝛼𝑝𝑘 + 𝛽𝑝𝑘

for an arbitrary integer 𝑘 ⩾ 1.
Inductive Conclusion: We wish to prove 𝑃(𝑘 + 1) which is the statement

(𝛼 + 𝛽)𝑝𝑘+1 = 𝛼𝑝𝑘+1 + 𝛽𝑝𝑘+1

Starting with the expression on the left-hand side of 𝑃(𝑘 + 1), we obtain

(𝛼 + 𝛽)𝑝𝑘+1 = [(𝛼 + 𝛽)𝑝]𝑝
𝑘

= (𝛼𝑝 + 𝛽𝑝)𝑝𝑘
by Theorem 2.3.3

= (𝛼𝑝)𝑝𝑘 + (𝛽𝑝)𝑝𝑘 by IH
= 𝛼𝑝𝑘+1 + 𝛽𝑝𝑘+1

The result is true for 𝑚 = 𝑘 + 1, and hence holds for all 𝑚 ∈ Z⩾1 by the Principle of Mathematical
Induction.

THEOREM 2.3.5
Let 𝛼 ∈ 𝐺𝐹(𝑞). Then

𝛼𝑞 = 𝛼
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Proof of Theorem 2.3.5
If 𝛼 = 0, then 𝛼𝑞 = 0 = 𝛼.
If 𝛼 ≠ 0, let

{𝑎1, 𝑎2, … , 𝑎𝑞−1}
be the distinct non-zero elements in 𝐺𝐹(𝑞). Consider

{𝛼𝑎1, 𝛼𝑎2 … , 𝛼𝑎𝑞−1}

These are all distinct because otherwise for some 𝑖 ≠ 𝑗, 𝛼𝑎𝑖 = 𝛼𝑎𝑗 ⟹ 𝑎𝑖 = 𝑎𝑗 which is a contradiction.
Hence,

{𝛼𝑎1, … , 𝛼𝑎𝑞−1} = {𝑎1, … , 𝑎𝑞−1}
This implies

(𝛼𝑎1) ⋯ (𝛼𝑎𝑞−1) = 𝑎1 ⋯ 𝑎𝑞−1
⟹ 𝛼𝑞−1(𝑎1 ⋯ 𝑎𝑞−1) = 𝑎1 ⋯ 𝑎𝑞−1
⟹ 𝛼𝑞−1 = 1

since 𝑎𝑖 is non-zero for each 𝑖 ∈ [1, 𝑞 − 1]. Thus, since 𝛼 ≠ 0 we have 𝛼𝑞 = 𝛼.

DEFINITION 2.3.6
Let 𝐺𝐹(𝑞)∗ = 𝐺𝐹(𝑞)/{0}.

DEFINITION 2.3.7: Order of 𝛼 ∈ 𝐺𝐹(𝑞)∗

The order of 𝜶 ∈ 𝑮𝑭 (𝒒)∗, denoted ord(𝛼), is the smallest positive integer 𝑡 such that 𝛼𝑡 = 1.

EXAMPLE 2.3.8
How many elements of order 1 are there in 𝐺𝐹(𝑞)?
Solution. 𝛼 = 1

EXAMPLE 2.3.9

Find ord(𝑥) in 𝐺𝐹(16) = Z2/(𝑥4 + 𝑥 + 1).
Solution.

• 𝑥1 = 𝑥
• 𝑥2 = 𝑥2

• 𝑥3 = 𝑥3

• 𝑥4 = 𝑥 + 1
• 𝑥5 = 𝑥2 + 𝑥
• 𝑥6 = 𝑥3 + 𝑥2

• 𝑥7 = 𝑥3 + 𝑥 + 1
• 𝑥8 = 𝑥2 + 1
• 𝑥9 = 𝑥3 + 𝑥
• 𝑥10 = 𝑥2 + 𝑥 + 1
• 𝑥11 = 𝑥3 + 𝑥2 + 𝑥
• 𝑥12 = 𝑥3 + 𝑥2 + 𝑥 + 1
• 𝑥13 = 𝑥3 + 𝑥2 + 1
• 𝑥14 = 𝑥3 + 1
• 𝑥15 ≡ 1 (mod 𝑥4 + 𝑥 + 1)

Since ord(𝑥) ≠ 1, 3, 5 ord(𝑥) ∣ 15, so we have ord(𝑥) = 15.
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LEMMA 2.3.10
Let 𝛼 ∈ 𝐺𝐹(𝑞)∗, ord(𝛼) = 𝑡 and 𝑠 ∈ Z.

𝛼𝑠 = 1 ⟺ 𝑡 ∣ 𝑠

Proof of Lemma 2.3.10
Let 𝑠 ∈ Z. By the division algorithm for integers,

𝑠 = ℓ𝑡 + 𝑟

where 0 ⩽ 𝑟 ⩽ 𝑡 − 1. Then
𝛼𝑠 = 𝛼ℓ𝑡+𝑟 = (𝛼𝑡)ℓ𝛼𝑟 = 𝛼𝑟

So,

𝛼𝑠 = 1 ⟺ 𝑎𝑟 = 1
⟺ 𝑟 = 0 since 0 ⩽ 𝑟 ⩽ 𝑡 − 1
⟺ 𝑡 ∣ 𝑠

COROLLARY 2.3.11
If 𝛼 ∈ 𝐺𝐹(𝑞)∗, then ord(𝛼) ∣ (𝑞 − 1).

Proof of Corollary 2.3.11

We know 𝛼𝑞−1 = 1, so ord(𝛼) ∣ (𝑞 − 1) by the previous Lemma.

DEFINITION 2.3.12: Generator
An element 𝛼 ∈ 𝐺𝐹(𝑞) is a generator of 𝐺𝐹(𝑞)∗ if

{𝛼𝑖 ∶ 𝑖 ⩾ 0} = 𝐺𝐹(𝑞)∗

That is, 𝛼 generates all the non-zero field elements. ord(𝛼) = 𝑞 − 1.

THEOREM 2.3.13
If 𝛼 is a generator of 𝐺𝐹(𝑞)∗, then

{𝛼1, … , 𝛼𝑞−1} = 𝐺𝐹(𝑞)∗

2020-01-24

THEOREM 2.3.14
If 𝐺𝐹(𝑞)∗ has order 𝑡, then

𝛼1, … , 𝛼𝑡−1

are pairwise distinct.

Proof of Theorem 2.3.14
Suppose for a contradiction that 𝛼𝑖 = 𝛼𝑗 where 0 ⩽ 𝑖, 𝑗 ⩽ 𝑡 − 1. WLOG suppose 𝑗 > 𝑖, then 𝛼𝑗−𝑖 = 1
which contradicts ord(𝛼) = 𝑡 since 1 ⩽ 𝑗 − 𝑖 ⩽ 𝑡 − 1.
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2.4 † Existence of Generators
LEMMA 2.4.1
Let 𝛼 ∈ 𝐺𝐹(𝑞)∗ with ord(𝛼) = 𝑡. Then ord(𝛼𝑖) = 𝑡/ gcd(𝑡, 𝑖).

Proof of Lemma 2.4.1
Let 𝑑 = gcd(𝑡, 𝑖). The order of 𝑎𝑖 is the smallest positive integer 𝑠 such that 𝛼𝑖𝑠 = 1. Now,

𝛼𝑖𝑠 = 1 ⟺ 𝑡 ∣ 𝑖𝑠 ⟺ 𝑡
𝑑 ∣ 𝑖

𝑑 𝑠 ⟺ 𝑡
𝑑 ∣ 𝑠

Since the smallest positive integer 𝑠 satisfying 𝑡
𝑑 ∣ 𝑠 is 𝑠 = 𝑡

𝑑 , we have ord(𝛼𝑖) = 𝑡
𝑑 .

LEMMA 2.4.2
Let 𝛼, 𝛽 ∈ 𝐺𝐹(𝑞)∗, with ord(𝛼) = 𝑚 and ord(𝛽) = 𝑛. If gcd(𝑚, 𝑛) = 1 then ord(𝛼𝛽) = 𝑚𝑛.

Proof of Lemma 2.4.2
Let 𝑡 = ord(𝛼𝛽). Now,

(𝛼𝛽)𝑚𝑛 = 𝛼𝑚𝑛𝛽𝑚𝑛 = 1,
so 𝑡 ∣ 𝑚𝑛. Also,

1 = (𝛼𝛽)𝑡𝑛 = 𝛼𝑡𝑛𝛽𝑡𝑛 = 𝛼𝑡𝑛,
so 𝑚 ∣ 𝑡𝑛. And, since gcd(𝑚, 𝑛) = 1, we have 𝑚 ∣ 𝑡. Similarly,

1 = (𝛼𝛽)𝑡𝑚 = 𝛼𝑡𝑚𝛽𝑡𝑚 = 𝛽𝑡𝑚,

so 𝑛 ∣ 𝑡𝑚. And, since gcd(𝑚, 𝑛) = 1, we have 𝑛 ∣ 𝑡. Hence, since gcd(𝑚, 𝑛) = 1, we have 𝑚𝑛 ∣ 𝑡. Thus.
𝑡 = 𝑚𝑛.

THEOREM 2.4.3
Every finite field 𝐺𝐹(𝑞) has a generator.

Proof of Theorem 2.4.3
Let 𝛼 be an element of highest order in 𝐺𝐹(𝑞)∗; say ord(𝛼) = 𝑡. Suppose that 𝑡 < (𝑞 − 1).
If the order of every element in 𝐺𝐹(𝑞)∗ were to divide 𝑡 then the equation 𝑦𝑡 − 1 = 0 would have 𝑞 − 1
roots in 𝐺𝐹(𝑞), which is impossible since (𝑞 − 1) > 𝑡. Hence, there exists an element 𝛽 ∈ 𝐺𝐹(𝑞)∗

whose order 𝑏 does not divide 𝑡.
Now, let ℓ be a prime such that the highest power of ℓ which divides 𝑏 (say ℓ𝑒) is greater than the
highest power of ℓ which divides 𝑡 (say ℓ𝑓)—such a prime ℓ must exist since 𝑏 does not divide 𝑡.
Consider the field elements 𝛼′ = 𝛼ℓ𝑓 and 𝛽′ = 𝛽𝑏/ℓ𝑒 . We have

ord(𝛼′) = 𝑡
gcd(𝑡, ℓ𝑓) = 𝑡

ℓ𝑓

and
ord(𝛽′) = 𝑏

gcd(𝑏, ℓ𝑒) = 𝑏
𝑏/ℓ𝑒 = ℓ𝑒

Since gcd(𝑡/ℓ𝑓 , ℓ𝑒) = 1, we have ord(𝛼′𝛽′) = (𝑡/ℓ𝑓)(ℓ𝑒) = 𝑡ℓ𝑒−𝑓 > 𝑡. This contradicts the hypothesis
that the highest order of any element in 𝐺𝐹(𝑞)∗ is 𝑡. Hence, the hypothesis that 𝑡 < (𝑞 − 1) is wrong,
and so 𝑡 = 𝑞 − 1. Thus, 𝛼 is a generator of 𝐺𝐹(𝑞)∗.



Chapter 3

Linear Codes

3.1 Introduction
Let 𝐹 = 𝐺𝐹(𝑞). Let 𝑉𝑛(𝐹) = 𝐹 × ⋯ × 𝐹⏟⏟⏟⏟⏟

𝑛
= 𝐹 𝑛. Then, 𝑉𝑛(𝐹) is an 𝑛-dimensional vector space over 𝐹 , and

we have |𝑉𝑛(𝐹)| = 𝑞𝑛.
DEFINITION 3.1.1: Linear (𝒏, 𝒌)-code

Let 𝐹 = 𝐺𝐹(𝑞). A linear (𝒏, 𝒌)-code over 𝐹 is a 𝑘-dimensional subspace of 𝑉𝑛(𝐹).

DEFINITION 3.1.2: Subspace

A subspace of a vector space 𝑉 over 𝐹 is a subset 𝑆 ⊆ 𝑉 such that
V1 𝟎 ∈ 𝑆 ⟹ 𝑆 ≠ ∅
V2 𝒗1 + 𝒗2 ∈ 𝑆, ∀𝒗1, 𝒗2 ∈ 𝑆
V3 𝜆𝒗 ∈ 𝑆, ∀𝜆 ∈ 𝐹 and 𝒗 ∈ 𝑆

Note that 𝑆 ⊆ 𝑉 is also a vector space over 𝐹 .

Let 𝐶 be an (𝑛, 𝑘)-code over 𝐹 . Let 𝒗1, … , 𝒗𝑘 be an ordered basis for 𝐶.
(1) The codewords in 𝐶 are precisely:

𝑚1𝒗1 + ⋯ + 𝑚𝑘𝒗𝑘
where 𝑚𝑖 ∈ 𝐹 . So, |𝐶| = 𝑀 = 𝑞𝑘 since there are 𝑞 choices for each 𝑚. The length of 𝐶 is 𝑛 and has
dimension 𝑘.

(2) The rate of 𝐶 is
𝑅 =

log𝑞(𝑀)
𝑛 = 𝑘

𝑛
DEFINITION 3.1.3: Hamming weight

The Hamming weight of 𝒗 ∈ 𝑉𝑛(𝐹), denoted 𝑤(𝒗) is the number of non-zero coordinate positions in
𝒗.

DEFINITION 3.1.4: Hamming weight of an (𝒏, 𝒌)-code

The Hamming weight of an (𝒏, 𝒌)-code 𝐶 is:

𝑤(𝐶) = min{𝑤(𝒄) ∶ 𝒄 ∈ 𝐶, 𝒄 ≠ 𝟎}

24
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THEOREM 3.1.5
If 𝐶 is a linear code, then 𝑑(𝐶) = 𝑤(𝐶).

Proof of Theorem 3.1.5

𝑑(𝐶) = min{𝑑(𝒙, 𝒚) ∶ 𝒙, 𝒚 ∈ 𝐶, 𝒙 ≠ 𝒚}
= min{𝑤(𝒙 − 𝒚) ∶ 𝒙, 𝒚 ∈ 𝐶, 𝒙 ≠ 𝒚} by A2Q1a
= min{𝑤(𝒄) ∶ 𝒄 ∈ 𝐶, 𝒄 ≠ 𝟎} since 𝐶 is a vector space
= 𝑤(𝐶)

3.2 Generator Matrices and the Dual Code
Since 𝑀 = 𝑞𝑘, there are 𝑞𝑘 source messages. We’ll assume that the source messages are elements of 𝑉𝑘(𝐹).
Then, a natural encoding rule is, given [ 𝑚1 … 𝑚𝑘 ]1×𝑘 ∈ 𝑉𝑘(𝐹) we’ll encode the message as

𝒄 = 𝑚1𝒗1 + ⋯ + 𝑚𝑘𝒗𝑘

The encoding rule depends on the basis chosen for 𝐶.
If 𝒎 = [ 𝑚1 … 𝑚𝑘 ]1×𝑘, then the encoding rule can be written as follows:

𝒄 = [ 𝑚1 … 𝑚𝑘 ]1×𝑘
⎡
⎢⎢
⎣

−𝒗1−
−𝒗2−

⋮
−𝒗𝑘−

⎤
⎥⎥
⎦𝑘×𝑛

= 𝒎𝐺

Note that 𝒗𝑖 are row vectors in this course; that is,

𝒗𝑖 = [ 𝑣𝑖1 … 𝑣𝑖𝑛 ]1×𝑛

DEFINITION 3.2.1: Generator matrix
Let 𝐶 be an (𝑛, 𝑘)-code. A generator matrix 𝐺 for 𝐶 is a 𝑘 × 𝑛 matrix whose rows form a basis for 𝐶.

Note: An encoding rule for 𝐶 with respect to 𝐺 is 𝒄 = 𝒎𝐺. Performing elementary row operations on 𝐺
gives a different matrix for the same code 𝐶 due to the order of the basis.

2020-01-27
EXAMPLE 3.2.2
Consider a binary⏟

𝐹=𝐺𝐹(2)=Z2

(5⏟
𝑛
, 3⏟

𝑘
)-code 𝐶 where 𝐶 = {10010⏟

𝒗1

, 01011⏟
𝒗2

, 00101⏟
𝒗3

}.

A possible generator matrix of a 𝐶 is the following.

𝐺 = ⎡⎢
⎣

1 0 0 1 0
0 1 0 1 1
0 0 1 0 1

⎤⎥
⎦3×5

rank(𝐺) = 3, thus 𝐺 is a generator matrix for 𝐶.
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Using the encoding rule, we can determine some possible codewords in 𝐶.

Message (𝒎) → Codeword (𝒄)
000 → 00000
001 → 00101
010 → 01011
011 → 01110
100 → 10010
101 → 10111
110 → 11001
111 → 11100

• 𝑀 = 𝑞𝑘 = 23

• 𝑅 = 𝑘/𝑛 = 3/5
• 𝑑(𝐶) = 2
• 𝑒 = 0

Note: Any matrix equivalent to 𝐺 is also a generator matrix for 𝐶, but yields a different encoding rule.
DEFINITION 3.2.3: Systematic, Standard form

Let [ 𝐼𝑘 𝐴 ]𝑘×𝑛 be a generator matrix for an (𝑛, 𝑘)-code 𝐶. If an (𝑛, 𝑘)-code has a generator matrix of
this form, then 𝐶 is systematic and the generator matrix is in standard form.

EXAMPLE 3.2.4
𝐶 = {100011, 101010, 100110} is a non-systematic (6, 3)-code.
Some generator matrices are:

𝐺1 = ⎡⎢
⎣

1 0 0 0 1 1
1 0 1 0 1 0
1 0 0 1 1 0

⎤⎥
⎦

𝐺1 ∶ 𝑅2 + 𝑅1

𝐺2 = ⎡⎢
⎣

1 0 0 0 1 1
0 0 1 0 0 1
1 0 0 1 1 0

⎤⎥
⎦

𝐺2 ∶ 𝑅3 + 𝑅1

𝐺3 = ⎡⎢
⎣

1 0 0 0 1 1
0 0 1 0 0 1
0 0 0 1 0 1

⎤⎥
⎦

Clearly 𝐶 is not systematic. However, if every codeword is permuted by moving the second bit to the
fourth bit, we get 𝐶′ that is linear and has the same length, dimension, and distance as 𝐶.

DEFINITION 3.2.5: Equivalent code

Let 𝐶 be an (𝑛, 𝑘)-code. If 𝜋 is a permutation on {1, … , 𝑛}. Then 𝜋(𝐶) (that is, apply 𝜋 to each
codeword) is an (𝑛, 𝑘)-code which is said to be an equivalent code for 𝐶.
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THEOREM 3.2.6
(1) If 𝐶 and 𝐶′ are equivalent codes, then

𝑑(𝐶) = 𝑑(𝐶′)

(2) Every linear code is equivalent to a systematic code.

Proof of Theorem 3.2.6
Let 𝐶 be an (𝑛, 𝑘) code. Let 𝐺 be a generator matrix for 𝐶 in RREF. Then, one can permute the columns
of 𝐺 to get a matrix 𝐺′ = [ 𝐼𝑘 𝐴 ] in standard form. Then, 𝐺′ is a generator matrix for a code 𝐶′ that
is equivalent to 𝐶.

DEFINITION 3.2.7: Inner product

Let 𝒙, 𝒚 ∈ 𝑉𝑛(𝐹). The inner product of 𝒙 and 𝒚 is

𝒙 ⋅ 𝒚 =
𝑛

∑
𝑖=1

𝑥𝑖𝑦𝑖 ∈ 𝐹

THEOREM 3.2.8
If 𝒙, 𝒚, 𝒛 ∈ 𝑉𝑛(𝐹) and 𝜆 ∈ 𝐹 , then
(1) 𝒙 ⋅ 𝒚 = 𝒚 ⋅ 𝒙
(2) 𝒙 ⋅ (𝒚 + 𝒛) = 𝒙 ⋅ 𝒚 + 𝒙 ⋅ 𝒛
(3) (𝜆𝒙) ⋅ 𝒚 = 𝜆(𝒙 ⋅ 𝒚)
(4) 𝒙 ⋅ 𝒙 = 𝟎 does not imply 𝒙 = 𝟎

EXAMPLE 3.2.9

Consider 𝑉2(Z2). Then, [ 1 1 ]1×2 ⋅ [ 1 1 ]1×2 = 0.

DEFINITION 3.2.10: Dual code
Let 𝐶 be an (𝑛, 𝑘)-code over 𝐹 . The dual code of 𝐶 is

𝐶⟂ = {𝒙 ∈ 𝑉𝑛(𝐹) ∶ 𝒙 ⋅ 𝒄 = 𝟎 ∀𝒄 ∈ 𝐶}

THEOREM 3.2.11
Let 𝒙 ∈ 𝑉𝑛(𝐹).

𝒙 ∈ 𝐶⟂ ⟺ 𝒗1 ⋅ 𝒙 = ⋯ = 𝒗𝑘 ⋅ 𝒙 = 0

Proof of Theorem 3.2.11
( ⟹ ) If 𝒙 ∈ 𝐶⟂, then 𝒙 ⋅ 𝒄 = 0 for all 𝒄 ∈ 𝐶. In particular,

𝒙 ⋅ 𝒗1 = ⋯ = 𝒙 ⋅ 𝒗𝑘 = 0

( ⟸ ) Suppose 𝒙 ⋅ 𝒗1 = ⋯ = 𝒙 ⋅ 𝒗𝑘 = 0. Let 𝒄 ∈ 𝐶. We can write

𝒄 = 𝜆1𝒗1 + ⋯ + 𝜆𝑘𝒗𝑘

for all 𝜆𝑖 ∈ 𝐹 . Then,
𝒙 ⋅ 𝒄 = 𝜆1(𝒙 ⋅ 𝒗1) + ⋯ + 𝜆𝑘(𝒙 ⋅ 𝒗𝑘) = 0
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Hence, 𝒙 ∈ 𝐶⟂.

THEOREM 3.2.12
If 𝐶 is an (𝑛, 𝑘)-code over 𝐹 , then 𝐶⟂ is an (𝑛, 𝑛 − 𝑘)-code over 𝐹 .

Proof of Theorem 3.2.12
Consider

𝐺 = ⎡⎢
⎣

𝒗1
⋮

𝒗𝑘

⎤⎥
⎦𝑘×𝑛

Then, 𝒙 ∈ 𝐶⟂ if and only if 𝐺𝒙⊤ = 𝟎. So, 𝐶⟂ is the null space of 𝐺. Hence, 𝐶⟂ is an (𝑛−𝑘)-dimensional
subspace of 𝑉𝑛(𝐹).
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DEFINITION 3.2.13: Orthogonal

If 𝒙, 𝒚 ∈ 𝑉𝑛(𝐹) and 𝒙 ⋅ 𝒚 = 0, then 𝒙 and 𝒚 are orthogonal.

THEOREM 3.2.14

If 𝐶 is a linear code, then (𝐶⟂)⟂ = 𝐶.

Proof of Theorem 3.2.14

Let 𝐶 be an (𝑛, 𝑘)-code. Then 𝐶⟂ is an (𝑛, 𝑛 − 𝑘)-code. So, (𝐶⟂)⟂ is an (𝑛, 𝑘)-code. But 𝐶 ⊆ (𝐶⟂)⟂

by definition of 𝐶⟂. Suppose 𝐶 is a code over 𝐹 = 𝐺𝐹(𝑞). Then |𝐶| = 𝑞𝑘 and |(𝐶⟂)⟂| = 𝑞𝑘. Thus,
𝐶 = (𝐶⟂)⟂.

THEOREM 3.2.15
Let 𝐶 be an (𝑛, 𝑘)-code with standard form 𝑘 × 𝑛 generator matrix. Then, a generator matrix for 𝐶⟂ is

𝐻 = [ −𝐴⊤ 𝐼𝑛−𝑘 ](𝑛−𝑘)×𝑛

Proof of Theorem 3.2.15

rank(𝐻) = 𝑛 − 𝑘, so 𝐻 is indeed a generator matrix for some (𝑛, 𝑛 − 𝑘)-code 𝐶. Now,

𝐺𝐻⊤ = [ 𝐼𝑘 𝐴 ]𝑘×𝑛 [ −𝐴
𝐼𝑛−𝑘

]
𝑛×(𝑛−𝑘)

= −𝐴 + 𝐴
= 0

Since 𝐺𝐻⊤ = 0, every row of 𝐻 is orthogonal to every row of 𝐺, so every vector in the row space of
𝐻 is orthogonal to every vector in the row space of 𝐺. Hence, 𝐶 ⊆ 𝐶⊤. Since dim(𝐶) = dim(𝐶⟂) we
have 𝐶 = 𝐶⟂.
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3.3 The Parity-Check Matrix
DEFINITION 3.3.1: Parity-check matrix

A generator matrix for 𝐶⟂ is called a parity-check matrix (PCM) for 𝐶.

EXAMPLE 3.3.2
Consider a (5, 2)-code 𝐶 over Z3 with generator matrix

𝐺 = [2 0 2 1 0
1 1 0 0 1] ← 𝒄1

← 𝒄2

Find the length, dimension, order, number of codewords, codewords, distance, weight and errors that
can be corrected for 𝐶.
Solution.

• Length: 𝑛 = 5 ((𝑛, 𝑘)-code)
• Dimension: 𝑘 = 2 ((𝑛, 𝑘)-code)
• Order: 𝑞 = 3 (Z3)
• Number of codewords: 𝑀 = 𝑞𝑘 = 32 = 9
• Codewords: 𝐶 = {00000, 20210, 10120, 11001, 22002, 01211, 12212, 21121, 02122}
• Distance: 𝑑(𝐶) = 𝑤(𝐶) = 3
• Error-correcting capability: 𝑒 = 1

Find a generator matrix for 𝐶⟂.
Solution.

[2 0 2 1 0
1 1 0 0 1] → [1 0 1 2 0

0 1 2 1 1]

So,

𝐻 = ⎡⎢
⎣

2 1 1 0 0
1 2 0 1 0
0 2 0 0 1

⎤⎥
⎦

is a generator matrix for 𝐶⟂ which is a (5, 3)-code over Z3. 𝑀 = 33 = 27.
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THEOREM 3.3.3
Let 𝐶 be an (𝑛, 𝑘)-code over 𝐹 , and let 𝐻 be a PCM for 𝐶. Then 𝑑(𝐶) ⩾ 𝑠 if and only if every (𝑠 − 1)
columns of 𝐻 are linearly independent over 𝐹 .

Proof of Theorem 3.3.3
Let ℎ1, … , ℎ𝑛 be the columns of 𝐻.
( ⟸ ) Suppose 𝑑(𝐶) ⩽ 𝑠 − 1. By Theorem 3.1.5, we have that 𝑤(𝐶) ⩽ 𝑠 − 1. Let 𝒄 ∈ 𝐶, with
1 ⩽ 𝑤(𝑐) ⩽ 𝑠 − 1. WLOG, suppose 𝑐𝑗 = 0 for each 𝑗 ∈ [𝑠, 𝑛]. Since 𝒄 ∈ 𝐶, we have 𝐻𝒄⊤ = 0. Therefore,
𝑐1ℎ1 + ⋯ + 𝑐𝑠−1ℎ𝑠−1 = 0. Since 𝑤(𝐶) ⩾ 1, this is a non-trivial linear combination of ℎ1, … , ℎ𝑠−1 that
equal 0. So, ℎ1, … , ℎ𝑠−1 are linearly dependent over 𝐹 .
( ⟹ ) Suppose there are 𝑠 − 1 columns of 𝐻 that are linearly dependent over 𝐹 , say ℎ1, … , ℎ𝑠−1. So,
we can write

𝑐1ℎ1 + ⋯ + 𝑐𝑠−1ℎ𝑠−1

where 𝑐𝑗 ∈ 𝐹 not all zero for each 𝑗 ∈ [1, 𝑠 − 1]. Let 𝒄 = (𝑐1, … , 𝑐𝑠−1, 0, … , 0⏟
𝑛−𝑠+1

) ∈ 𝑉𝑛(𝐹). Then, 𝐻𝒄⊤ = 0.
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So, 𝒄 ∈ 𝐶 where 1 ⩽ 𝑤(𝒄) ⩽ 𝑠 − 1. Thus, 𝑑(𝐶) ⩽ 𝑠 − 1.

COROLLARY 3.3.4
Let 𝐶 be an (𝑛, 𝑘)-code over 𝐹 with PCM 𝐻. Then, 𝑑(𝐶) is the smallest number of columns of 𝐻 that are
linearly dependent over 𝐹 .

EXAMPLE 3.3.5
Recall, we found a PCM

𝐻 = ⎡⎢
⎣

2 1 1 0 0
1 2 0 1 0
0 2 0 0 1

⎤⎥
⎦

for a (5, 2)-code 𝐶 over Z3. Find 𝑑(𝐶).
Solution.

• No 0 column in 𝐻 ⟹ 𝑑(𝐶) ⩾ 2.
• No two linearly dependent columns in 𝐻 since there are no repeated columns, and no column is

a scalar multiple of another column ⟹ 𝑑(𝐶) ⩾ 3.
• Three columns are linearly dependent as seen in the following equation.

[ 2 1 0 ]⊤ = 2 [ 1 0 0 ]⊤ + [ 0 1 0 ]⊤

Thus, 𝑑(𝐶) = 3.

EXAMPLE 3.3.6
Let 𝐶 be a binary code with PCM 𝐻.

• 𝑑(𝐶) = 1 ⟺ 𝐻 has a 0 column.
• 𝑑(𝐶) = 2 ⟺ the columns of 𝐻 are non-zero and two are the same.
• 𝑑(𝐶) = 3 ⟺ the columns of 𝐻 are non-zero, distinct, and one column is the sum of two other

(distinct) columns.

3.4 Hamming Codes and Perfect Codes
EXAMPLE 3.4.1
Construct a (7, 4, 3)-binary code 𝐶.
Solution. Consider a PCM for 𝐶:

𝐻 = ⎡⎢
⎣

1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1

⎤⎥
⎦3×7

This is a Hamming Code of order 3 over 𝐺𝐹(2).

DEFINITION 3.4.2: Hamming bound

Let 𝐶 be an [𝑛, 𝑀]-code with distance 𝑑 over an alphabet 𝐴 of size 𝑞. Let 𝑒 = ⌊ 𝑑−1
2 ⌋. The sphere

packing bound or Hamming bound is:

𝑀
𝑒

∑
𝑖=0

(𝑛
𝑖)(𝑞 − 1)𝑖 ⩽ 𝑞𝑛
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DEFINITION 3.4.3: Perfect Code
Let 𝐶 be an [𝑛, 𝑀]-code over 𝐴 of distance 𝑑. Then, 𝐶 is a perfect code if

𝑀
𝑒

∑
𝑖=0

(𝑛
𝑖)(𝑞 − 1)𝑖 = 𝑞𝑛

Note: If 𝐶 is perfect, then IMLD=CMLD.

2020-02-03

For fixed 𝑛, 𝑞, 𝑑, a perfect code maximizes
𝑅 =

log𝑞(𝑀)
𝑛

EXAMPLE 3.4.4
• 𝐺𝐹(𝑞)𝑛 is a trivial perfect code with 𝑑 = 1.
• 𝐶 = {0 ⋯ 0⏟

𝑛
, 1 ⋯ 1⏟

𝑛
} over Z2 is a perfect code if and only if 𝑛 is odd.

EXERCISE 3.4.5
Prove that every perfect code must have odd distance (without referring to Theorem 3.4.6).

Proof of Exercise 3.4.5
Let 𝐶 be an even code of even distance 𝑑 = 2𝑡. Then, 𝑒 = ⌊(𝑑 − 1)/2⌋ = 𝑡 − 1. Let 𝒄 ∈ 𝐶 and 𝒓 be a
vector such that 𝑑(𝒄, 𝒓) = 𝑡. Note that 𝒓 is not in the sphere of radius 𝑒 centred at 𝒄. Now, if 𝒓 were in
the sphere of radius 𝑒 centred at some codeword 𝒄′ ≠ 𝒄, then we would have

𝑑(𝒄, 𝒄′) ⩽ 𝑑(𝒄, 𝒓) + 𝑑(𝒓, 𝒄′) ⩽ 𝑡 + 𝑒 < 𝑑

which is impossible since the distance of 𝐶 is 𝑑. Hence, 𝒓 is not contained in any of the radius-𝑒
spheres centred at codewords, and so 𝐶 is not a perfect code. It follows that a perfect code must have
odd distance.

THEOREM 3.4.6: Tietäväinen, 1973

The only perfect codes are:
(1) 𝑉𝑛(𝐺𝐹(𝑞)).
(2) The binary replication code of odd length.
(3) The (23, 12, 7)-binary Golay code and all codes equivalent to it.
(4) The (11, 6, 5)-ternary Golay code and all codes equivalent to it. A generator matrix for this code is:

𝐺 =

⎡
⎢
⎢
⎢
⎢
⎣

𝐼6

1 1 1 1 1
0 1 2 2 1
1 0 1 2 2
2 1 0 1 2
2 2 1 0 1
1 2 2 1 0

⎤
⎥
⎥
⎥
⎥
⎦6×11

(5) The Hamming codes and all codes of the same [𝑛, 𝑀, 𝑑] parameters as them with 𝑑 = 3.
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DEFINITION 3.4.7: Hamming code of order 𝒓 over 𝑮𝑭 (𝒒)

A Hamming code of order 𝒓 over 𝑮𝑭 (𝒒) is a linear code over 𝐺𝐹(𝑞) with 𝑛 = 𝑞𝑟 − 1
𝑞 − 1 , 𝑘 = 𝑛 − 𝑟 and

an 𝑟 × 𝑛 PCM matrix whose columns are non-zero, and no two columns are scalar multiples of each
other.

EXAMPLE 3.4.8
A Hamming code of order 𝑟 = 3 over 𝐺𝐹(3) is a (13, 10, 3)-code over 𝐺𝐹(3) with PCM:

𝐻 = ⎡⎢
⎣

𝐼3

1 0 1 2 2 0 2 1 2 1
1 1 0 1 0 1 2 2 1 1
0 1 1 0 1 2 1 2 2 1

⎤⎥
⎦3×13

Observations:
(i) For every non-zero vector 𝒗 ∈ 𝑉𝑟(𝐺𝐹(𝑞)), exactly one scalar multiple of 𝒗 must be a column of a PCM

(for the Hamming code of order 𝑟 over 𝐺𝐹(𝑞)).
(ii) The dimension of the code is indeed 𝑘 since rank(PCM) = 𝑟 = 𝑛 − 𝑘 since 𝜆𝑖𝑒𝑖 are columns of the PCM.
(iii) The Hamming codes have distance 3.

THEOREM 3.4.9
Hamming codes are perfect.

Proof of Theorem 3.4.9

Recall that Hamming codes have 𝑒 = 1 and 𝑛 = 𝑞𝑟−1
𝑞−1 with 𝑟 = 𝑛 − 𝑘.

𝑀
𝑒

∑
𝑖=0

(𝑛
𝑖)(𝑞 − 1)𝑖 = 𝑞𝑛−𝑟(1 + 𝑛(𝑞 − 1))

= 𝑞𝑛−𝑟 (1 + 𝑞𝑟 − 1
𝑞 − 1 (𝑞 − 1))

= 𝑞𝑛−𝑟(1 + 𝑞𝑟 − 1)
= 𝑞𝑛−𝑟𝑞𝑟

= 𝑞𝑛

DEFINITION 3.4.10: Error vector
Suppose 𝒄 ∈ 𝐶 is transmitted. Suppose 𝒓 ∈ 𝑉𝑛(𝐹) is received. Then, the error vector is 𝒆 = 𝒓 − 𝒄.

EXAMPLE 3.4.11: Error Vector
Over Z3, if 𝒄 = (120212) is sent, and 𝒓 = (122102) is received, then the error vector is 𝒆 = (002220).

2020-02-05
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3.5 Decoding Single-Error Correcting Codes
Let 𝐻 be a PCM for an (𝑛, 𝑘)-code 𝐶 over 𝐺𝐹(𝑞) with 𝑑 ⩾ 3.

𝐻𝒓⊤ = 𝐻(𝒄 + 𝒆)⊤

= 𝐻𝒄⊤ + 𝐻𝒆⊤

= 𝐻𝒆⊤ since 𝒄⊤ is in null space of 𝐻

DEFINITION 3.5.1: Syndrome

Let 𝐻 be a parity-check matrix for an (𝑛, 𝑘)-code. The syndrome 𝒔 of 𝒓 is defined to be 𝒔 = 𝐻𝒓⊤.

Notes:
(1) 𝒓 and 𝒆 have the same syndrome.
(2) If 𝒆 = 𝟎, then 𝐻𝒆⊤ = 𝟎.
(3) If 𝑤(𝒆) = 1, say 𝒆 = (0, … , 0, 𝛼, 0, … , 0) where 𝛼 is in the 𝑖th position with 𝛼 ≠ 0, then 𝐻𝒆⊤ = 𝛼ℎ𝑖

where ℎ𝑖 is the 𝑖th column of 𝐻.
(4) The converse of (2) and (3) are false.

Algorithm 1: Decoding Algorithm for Single-Error Correcting Codes
Input :Parity-check matrix 𝐻 = (𝒉1, … , 𝒉𝑛)⊤ and received vector 𝒓
Output :Decoded vector

1 𝒔 ← 𝐻𝒓⊤

2 if 𝑤(𝒔) = 0 then
3 return 𝒓
4 for 𝑖 ← 0 to 𝑛 do
5 if 𝒔 = 𝛼𝒉𝑖 with 𝛼 ≠ 0 then
6 return 𝒓 − 𝒆

7 return

REMARK 3.5.2
𝒉𝑖 are column vectors in the input for each 𝑖 ∈ [1, 𝑛].

Claim: If 𝑤(𝒆) ⩽ 1, then the decoding algorithm always makes the correct decision.
Note: If 𝐻 is a Hamming code and 𝑤(𝒆) ⩾ 2, then this decoding algorithm will always make the wrong
decision.

EXAMPLE 3.5.3: Single-Error Decoding

Consider the (7, 4, 3)-binary Hamming code with PCM

𝐻 = ⎡⎢
⎣

1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1

⎤⎥
⎦3×7

Decode 𝒓 = (0111110).
Solution.

1. 𝒔 = 𝐻𝒓⊤ = (011).
2. 𝒔 is the 6th column of 𝐻, so 𝒆 = (0000010).
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3. 𝒄 = 𝒓 − 𝒆 = (0111100).
Verify that 𝐻𝒄⊤ = 𝟎.

General Decoding Problem for Binary Linear Codes
Instance: An (𝑛 − 𝑘) × 𝑛 matrix 𝐻 over 𝐺𝐹(2) with rank(𝐻) = 𝑛 − 𝑘. 𝒓 ∈ 𝑉𝑛(𝐺𝐹(2)).
Find: A vector 𝒆 ∈ 𝑉𝑛(𝐺𝐹(2)) of minimum weight with 𝐻𝒓⊤ = 𝐻𝒆⊤.
Fact: This problem is NP-hard.

• P = problems solvable in polynomial time; that is, efficiently.
• NP = a certain class of problems including problems of strong practical interest which we do not know

how to solve efficiently.
• NP-hard = If any single problem in this class of problems can be solved efficiently, then so can all

problems in NP, in which case P=NP.

2020-02-07

3.6 Decoding Linear Codes
DEFINITION 3.6.1
Let 𝐶 be an (𝑛, 𝑘)-code over 𝐹 = 𝐺𝐹(𝑞) with PCM 𝐻. We write 𝒙 ≡ 𝒚 (mod 𝐶), where 𝒙, 𝒚 ∈ 𝑉𝑛(𝐹)
if (𝒙 − 𝒚) ∈ 𝐶.

Notes:
(1) Congruence is an equivalence relation. That is, it has the following three properties:

(i) Reflexivity
(ii) Symmetry
(iii) Transitivity

(2) The set of equivalence classes partitions 𝑉𝑛(𝐹).
(3) The equivalence classes containing 𝒙 ∈ 𝑉𝑛(𝐹) is called a coset of 𝑉𝑛(𝐹). This class is:

{𝒚 ∈ 𝑉𝑛(𝐹) ∶ 𝒚 ≡ 𝒙 (mod 𝐶)} = {𝒙 + 𝒄 ∶ 𝒄 ∈ 𝐶}
= 𝐶 + 𝒙

We call 𝐶 + 𝒙 the coset of 𝐶 represented by 𝒙.
EXAMPLE 3.6.2: Cosets
Consider a (5, 2)-binary code with generator matrix

𝐺 = [1 0 1 1 1
0 1 1 1 0]

2×5

with 𝑑(𝐶) = 3. Find all cosets of 𝐶.
Solution. The cosets of 𝐶 are:
(1) 𝐶 + 00000 = {00000, 10111, 01110, 11001} = {𝟎, 𝑅1, 𝑅2, 𝑅1 + 𝑅2} = 𝐶 + 10111 = 𝐶 + 01110 =

𝐶 + 11001
(2) 𝐶 + 10000 = {10000, 00111, 11110, 01001}
(3) 𝐶 + 01000 = {01000, 11111, 00000, 10001}



CHAPTER 3. LINEAR CODES 35

(4) 𝐶 + 00100 = {00100, 10011, 01010, 11101}
(5) 𝐶 + 00010 = {00010, 10101, 01100, 11011}
(6) 𝐶 + 00001 = {00001, 10110, 01111, 11000}
(7) 𝐶 + 00011 = {00011, 10100, 01101, 11010}
(8) 𝐶 + 11100 = {11100, 01011, 10010, 00101}

In total, there are 8 cosets.

Notes:
(1) 𝐶 + 𝟎 = 𝐶.
(2) If 𝒚 ∈ 𝐶 + 𝒙, then 𝐶 + 𝒚 = 𝐶 + 𝒙 by definition of equivalence relation—more specifically symmetry.
(3) The number of cosets is 𝑞𝑛/𝑞𝑘 = 𝑞𝑛−𝑘.

Recall: If 𝒙 ∈ 𝑉𝑛(𝐹), then it’s syndrome is

𝒔 = 𝐻𝒓⊤ ∈ 𝑉𝑛−𝑘(𝐹)

THEOREM 3.6.3
Let 𝒙, 𝒚 ∈ 𝑉𝑛(𝐹). Then 𝒙 ≡ 𝒚 (mod 𝐶) if and only if 𝐻𝒙⊤ = 𝐻𝒚⊤.

Proof of Theorem 3.6.3

𝒙 ≡ 𝒚 (mod 𝐶) ⟺ (𝒙 − 𝒚) ∈ 𝐶
⟺ 𝐻(𝒙 − 𝒚)⊤ = 𝟎
⟺ 𝐻𝒙⊤ = 𝐻𝒚⊤

So, cosets are characterized by their syndromes.
Decoding

• 𝒄 ∈ 𝐶 is sent.
• 𝒓 ∈ 𝑉𝑛(𝐹) is received.
• 𝒆 = (𝒓 − 𝒄) ∈ 𝑉𝑛(𝐹).
• 𝐻𝒓⊤ = 𝐻𝒆⊤.

So, 𝒓 and 𝒆 belong to the same coset of 𝐶.

CMLD
Given 𝒓, find a vector 𝒆 of smallest weight in 𝐶 + 𝒓 or equivalently, find a vector 𝒆 of smallest weight with the
same syndrome as 𝒓. Then, decode 𝒓 to 𝒄 = 𝒓 − 𝒆.

IMLD
Find the unique vector 𝒆 of smallest weight in 𝐶 + 𝒓 having the same syndrome as 𝒓. If no such 𝒆 exists, then
reject 𝒓. Otherwise, decode 𝒓 to 𝒄 = 𝒓 − 𝒆.
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3.7 Syndrome Decoding Algorithm
Given a PCM 𝐻 for an (𝑛, 𝑘)-code 𝐶 over 𝐹 = 𝐺𝐹(𝑞).

DEFINITION 3.7.1: Coset leader
A vector of smallest weight is a coset of 𝐶 is distinguished and called a coset leader (of that coset).

Algorithm 2: Syndrome Decoding Algorithm
Input :Table of cosets, parity-check matrix 𝐻, and received vector 𝒓
Output :Decoded vector

1 𝒔 ← 𝐻𝒓⊤

2 Look up the coset leader corresponding to 𝒔, say ℓ.
3 return 𝒓 − ℓ

EXAMPLE 3.7.2: Syndrome Decoding

𝐺 = [1 0 1 1 1
0 1 1 1 0]

2×5

𝐻 = ⎡⎢
⎣

1 1 1 0 0
1 1 0 1 0
1 0 0 0 1

⎤⎥
⎦3×5

Table 3.1: Table of Cosets

𝐶 + 00000 = {00000, 10111, 01110, 11001}
𝐶 + 10000 = {10000, 00111, 11110, 01001}
𝐶 + 01000 = {01000, 11111, 00000, 10001}
𝐶 + 00100 = {00100, 10011, 01010, 11101}

𝐶 + 00010 = {00010, 10101, 01100, 11011}
𝐶 + 00001 = {00001, 10110, 01111, 11000}
𝐶 + 00011 = {00011, 10100, 01101, 11010}
𝐶 + 11100 = {11100, 01011, 10010, 00101}

There are 𝑞𝑛−𝑘 = 25−2 = 23 = 8 cosets in total.

Coset Leaders Syndromes
00000 000
10000 111
01000 110
00100 100
00010 010
00001 001
00011 011
10010 101

Suppose 𝒓 = (10111) is received. Decode 𝒓.
Solution.
Compute 𝒔 = 𝐻𝒓⊤ = (000)⊤.
The closest leader corresponding to 𝒔 = (000) is ℓ = (00000).
Thus, we get the decoded vector 𝒓 − ℓ = (10111).
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REMARK 3.7.3
Syndrome decoding is not efficient in general since the syndrome table is exponentially large:
For an (𝑛, 𝑘)-binary code, the syndrome table has size

2𝑛−𝑘[𝑛 + (𝑛 − 𝑘)] = 2𝑛−𝑘(2𝑛 − 𝑘) bits

Actually, 2𝑛−𝑘𝑛 bits, since the table can be sorted by syndrome, and then the syndromes do not need
to be stored.
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DEFINITION 4.0.1: Self-orthogonal

A linear code 𝐶 is self-orthogonal if 𝐶 ⊆ 𝐶⟂.

DEFINITION 4.0.2: Self-dual

A linear code 𝐶 is self-dual if 𝐶 = 𝐶⟂.

For a binary (𝑛, 𝑘)-code 𝐶, the syndrome table has size 2𝑛−𝑘 × 𝑛 which is exponentially large.
Goal: Design decoding algorithm which require very little space.

EXAMPLE 4.0.3
Use only the PCM 𝐻 which is (𝑛 − 𝑘) × 𝑛 bits.

38
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4.1 The Binary Golay Code C23 (1949)
DEFINITION 4.1.1: 𝑪𝟐𝟑

Let

�̂� =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 1 1 1 1 1 1 1 1
1 1 0 1 1 1 0 0 0 1 0
1 0 1 1 1 0 0 0 1 0 1
0 1 1 1 0 0 0 1 0 1 1
1 1 1 0 0 0 1 0 1 1 0
1 1 0 0 0 1 0 1 1 0 1
1 0 0 0 1 0 1 1 0 1 1
0 0 0 1 0 1 1 0 1 1 1
0 0 1 0 1 1 0 1 1 1 0
0 1 0 1 1 0 1 1 1 0 0
1 0 1 1 0 1 1 1 0 0 0
0 1 1 0 1 1 1 0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦12×11

Then, ̂𝐺 = [ 𝐼12 �̂� ]12×23 is a generator matrix for a (23, 12)-binary code called 𝑪𝟐𝟑.

Note: In �̂�,
• 𝑅1 in only contains 1’s.
• 𝑅3 to 𝑅12 are left cyclic shifts of 𝑅2.
THEOREM 4.1.2
Facts:

1. 𝑑(𝐶23) = 7.
2. 𝐶23 is perfect.

Proof of Theorem 4.1.2

We know that 𝑒 = 3, so 212 [(23
0 ) + (23

1 ) + (23
2 ) + (23

3 )] = 223.

4.2 The Extended Golay Code C24
DEFINITION 4.2.1: 𝑪𝟐𝟒

Let
𝐵 = [ 0

𝟏 �̂� ]
12×12

where 𝟏 is the column vector (1, … , 1⏟
11 times

)⊤.

Then, 𝐺 = [ 𝐼12 𝐵 ]12×24 is a generator matrix for a (24, 12)-binary code called 𝑪𝟐𝟒.

Notes:
(1) 𝐶24 is a (24, 12, 8)-binary code.
(2) 𝐺𝐺⊤ = 0.
(3) 𝐶24 ⊆ 𝐶⟂

24, so 𝐶24 is a self-orthogonal code.
(4) dim𝐶24 = 12 = dim𝐶⟂

24, so 𝐶24 = 𝐶⟂
24, therefore 𝐶24 is a self-dual code.
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(5) 𝐵 is symmetric.
(6) A PCM for 𝐶24 is 𝐻 = [ −𝐵⊤ 𝐼12 ] = [ 𝐵 𝐼12 ].
(7) 𝐶24 = 𝐶⟂

24, thus 𝐻 is also a GM and PCM for 𝐶24.
(8) 𝐺 is also a GM and PCM for 𝐶⟂

24.

Decoding Algorithm for C24
Compute a syndrome of 𝒓. Find a vector 𝒆 with 𝑤(𝒆) ⩽ 3, that has the same syndrome as 𝒓. If no such 𝒆
exists, then reject 𝒓, otherwise decode 𝒓 to 𝒄 = 𝒓 − 𝒆.
Let 𝒓 = (𝒙, 𝒚) and 𝒆 = (𝒆1, 𝒆2). There are five (not mutually exclusive) cases to consider. In the event that
𝑤(𝒆) ⩽ 3,
(A) 𝑤(𝒆1) = 0, 𝑤(𝒆2) = 0
(B) 1 ⩽ 𝑤(𝒆1) ⩽ 3, 𝑤(𝒆2) = 0
(C) 𝑤(𝒆1) = 1 or 2, 𝑤(𝒆2) = 1
(D) 𝑤(𝒆1) = 0, 1 ⩽ 𝑤(𝒆2) ⩽ 3
(E) 𝑤(𝒆1) = 1, 𝑤(𝒆2) = 1 or 2
THEOREM 4.2.2

Let 𝐶 be an (𝑛, 𝑘, 𝑑)-code over 𝐺𝐹(𝑞). Let 𝒙 = 𝑉𝑛(𝐺𝐹(𝑞)) with 𝑤(𝒙) ⩽ ⌊ 𝑑−1
2 ⌋. Then 𝒙 is the unique

vector of minimum weight in the coset of 𝐶 containing 𝒙 (so, it must be a coset leader).

Proof of Theorem 4.2.2
Suppose for a contradiction that 𝒚 is a vector in the same coset of 𝐶 as 𝒙 with 𝒚 ≠ 𝒙 and

𝑤(𝒚) ⩽ 𝑤(𝒙) ⩽ ⌊𝑑 − 1
2 ⌋

Then, 𝒚 − 𝒙 ≠ 𝟎, 𝒙 ≡ 𝒚 (mod 𝐶) ⟺ (𝒙 − 𝒚) ∈ 𝐶. Now,

𝑤(𝒙 − 𝒚) = 𝑤(𝒙 + (−𝒚)) ⩽ 𝑤(𝒙) + 𝑤(−𝒚)
= 𝑤(𝒙) + 𝑤(𝒚)

⩽ ⌊𝑑 − 1
2 ⌋ + ⌊𝑑 − 1

2 ⌋

⩽ 𝑑 − 1

contradicting 𝑑(𝐶) = 𝑑.

2020-02-12
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Algorithm 3: Decoding Algorithm for 𝐶24

Input :𝐺 = [ 𝐼12 𝐵 ] = (𝒈1, … , 𝒈24)⊤, and ̃𝐺 = [ 𝐵 𝐼12 ] = ( ̃𝒈1, … , ̃𝒈24)⊤, and received vector
𝒓 = (𝒙, 𝒚)

Output :Decoded vector
1 𝒔1 ← 𝐺𝒓⊤

2 if 𝒔1 = 𝟎 then
3 return 𝒓
4 if 𝑤(𝒔1) ⩽ 3 then
5 for 𝑖 to 12 do
6 𝒙′ ← corrected 𝒙 in each position corresponding to 1’s in 𝒔1
7 return (𝒙′, 𝒚)

8 for 𝑖 ← 0 to 24 do
9 if 𝒈𝑖 differs in position 𝑗 or positions 𝑗 and 𝑘 from 𝒔1 then

10 𝒙′ ← (𝑥1, … , 𝑥12) where 𝑥𝑗 ← 𝑥𝑗 or 𝑥𝑗 ← 𝑥𝑗 and 𝑥𝑘 ← 𝑥𝑘
11 𝒚′ ← (𝑦1, … , 𝑦12) where 𝑦𝑖 ← 𝑦𝑖
12 return (𝒙′, 𝒚′)

13 𝒔2 ← ̃𝐺𝒓⊤

14 if 𝑤(𝒔2) ⩽ 3 then
15 𝒚′ ← corrected 𝒚 in each position corresponding to 1’s in 𝒔2
16 return (𝒙, 𝒚′)
17 for 𝑖 ← 0 to 24 do
18 if ̃𝒈𝑖 differs in position 𝑗 or positions 𝑗 and 𝑘 from 𝒔2 then
19 𝒚′ ← (𝑦1, … , 𝑦12) where 𝑦𝑗 ← 𝑦𝑗 or 𝑦𝑗 ← 𝑦𝑗 and 𝑦𝑘 ← 𝑦𝑘
20 𝒙′ ← (𝑥1, … , 𝑥12) where 𝑥𝑖 ← 𝑥𝑖
21 return (𝒙′, 𝒚′)

22 return

EXAMPLE 4.2.3: Decoding Algorithm for C24

1. Decode 𝒓 = (1000 1000 0000 1001 0001 1101).
Solution. Compute 𝒔1 = [ 𝐼12 𝐵 ] 𝒓⊤ = (0100 1000 0000). Since 𝑤(𝒔1) ⩽ 3, we set 𝒆 = (𝒔1, 0)
and decode 𝒓 to

𝒄 = 𝒓 − 𝒆 = (1100 0000 0000 1001 0001 1101)
2. Decode 𝒓 = (1000 0010 0000 1000 1101 0010).

Solution. Compute 𝒔1 = [ 𝐼12 𝐵 ] 𝒓⊤ = (1011 1110 1011). Note that 𝑤(𝒔1) > 3. Comparing 𝒔1
with the rows of 𝐵, we see that 𝒔1 differs in positions 6 and 7 from row 4 of 𝐵. Hence, we set
𝒆 = (0000 0110 0000 0001 0000 0000) and decode 𝒓 to

𝒄 = 𝒓 − 𝒆 = (1000 0100 0000 1001 1101 0010)

Note: In both examples we should check out answers by verifying that 𝐻𝒄⊤ = 𝟎 (i.e., 𝒄 is indeed a
codeword).

Note:
(1) If 𝑤(𝒆) ⩽ 3, then the algorithm makes the correct decision.
(2) No storage is needed:

𝒔1 = [ 𝐼12 𝐵 ] 𝒓⊤ = [ 𝐼12 𝐵 ] [𝒙
𝒚] = 𝒙 + 𝐵𝒚
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where 𝐵 is a left cyclic shift of the first row.
(3) The algorithm is very simple and efficient for hardware.

Reliability of C24
• 𝑝 = symbol error probability.
• 𝐶 = {𝒄1, … , 𝒄𝑀}.
• 𝑤𝑖 = probability that the decoding algorithm makes an incorrect decision if 𝒄𝑖 is sent.

• 𝑃𝐶 = 1
𝑀

𝑀
∑
𝑖=1

𝑤𝑖 error probability of 𝐶.

• 1 − 𝑃𝐶 = reliability of 𝐶 (correct decision).

𝑝 (1 − 𝑝)12 1 − 𝑃𝐶24
1 − 𝑃𝑇 1 − 𝑃𝐻

0.1 0.28243 0.785738 0.71121 0.549043
0.01 0.886385 0.999909 0.99643 0.99037
0.001 0.988066 ≈ 1 0.999964 0.999896
Rate 1 1/2 = 0.5 1/3 = 0.33 11/15 = 0.73

(1) If no source is used, then the reliability for 12-bit messages is

(1 − 𝑝)12

(2) 𝐶24

1 − 𝑃𝐶24
= [(1 − 𝑝)24 + (24

1 )𝑝(1 − 𝑝)23 + (24
2 )𝑝2(1 − 𝑝)22 + (24

3 )𝑝3(1 − 𝑝)21]

(3) Triplication Code 𝑇
1 − 𝑃𝑇 = [(1 − 𝑝)3 + 3𝑝(1 − 𝑝)2]12

(4) (15, 11)-binary Hamming Code

1 − 𝑃𝐻 = (1 − 𝑝)15 + 15𝑝(1 − 𝑝)14
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5.1 Introduction
DEFINITION 5.1.1: Cyclic subspace

A subspace 𝑆 of 𝑉𝑛(𝐹) is a cyclic subspace if (𝑎0, 𝑎1, … , 𝑎𝑛−1) ∈ 𝑆 ⟹ (𝑎𝑛−1, 𝑎0, … , 𝑎𝑛−2) ∈ 𝑆.

DEFINITION 5.1.2: Cyclic code

A cyclic code is a cyclic subspace of 𝑉𝑛(𝐹).

5.2 Rings and Ideals
Let 𝑅 = 𝐹[𝑥]/(𝑥𝑛 − 1). We write

(𝑎0, 𝑎1, … , 𝑎𝑛−1)⏟⏟⏟⏟⏟⏟⏟
∈𝑉𝑛(𝐹)

⟷ 𝑎0 + 𝑎1𝑥 + ⋯ + 𝑎𝑛−1𝑥𝑛−1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
∈𝑅

That is, there is an isomorphism between 𝑉𝑛(𝐹) and 𝑅.
• Addition is preserved: 𝒂 + 𝒃 ⟷ 𝑎(𝑥) + 𝑏(𝑥)
• Scalar multiplication is preserved: 𝜆𝒂 ⟷ 𝜆𝑎(𝑥)

Why choose 𝑥𝑛 − 1?
Let 𝒂 = (𝑎0, … , 𝑎𝑛−1) ∈ 𝑉𝑛(𝐹). Let 𝑎(𝑥) be the associated polynomial in 𝑅. Then,

𝑥 ⋅ 𝑎(𝑥) = 𝑎0𝑥 + 𝑎1𝑥2 + ⋯ + 𝑎𝑛−2𝑥𝑛−1 + 𝑎𝑛−1𝑥𝑛

≡ 𝑎𝑛−1 + 𝑎0𝑥 + ⋯ + 𝑎𝑛−2𝑥𝑛−1 (mod 𝑥𝑛 − 1)
⟷ (𝑎𝑛−1, 𝑎0, … , 𝑎𝑛−2)

So, multiplying a polynomial in 𝑅 by 𝑥 corresponds to a right cyclic shift of the associated vector.
We’ll define ⋅ ∶ 𝑉𝑛(𝐹) × 𝑉𝑛(𝐹) → 𝑉𝑛(𝐹) by

𝑎 ⋅ 𝑏 ⟷ 𝑎(𝑥)𝑏(𝑥) (mod 𝑥𝑛 − 1)

43
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DEFINITION 5.2.1: Ideal
Let 𝑅 be a commutative finite ring. Then, the non-empty subset 𝐼 of 𝑅 is an ideal of 𝑅 if
(1) For all 𝑎, 𝑏 ∈ 𝐼 , 𝑎 + 𝑏 ∈ 𝐼
(2) For all 𝑎 ∈ 𝐼 , 𝑏 ∈ 𝑅, 𝑎𝑏 ∈ 𝐼

{0} and 𝑅 are defined to be trivial ideals of 𝑅.

THEOREM 5.2.2
Let 𝑆 ⊆ 𝑉𝑛(𝐹) be non-empty. Let 𝐼 be the associated polynomials. Then 𝑆 is a cyclic subspace of 𝑉𝑛(𝐹) if
and only if 𝐼 is an ideal of 𝑅 = 𝐹[𝑥]/(𝑥𝑛 − 1).

Proof of Theorem 5.2.2
( ⟹ ) Suppose 𝑆 is a cyclic subspace of 𝑉𝑛(𝐹). Since 𝑆 is closed under addition, so is 𝐼 . Let 𝑎(𝑥) ∈ 𝐼 ,
𝑏(𝑥) = 𝑏0 + ⋯ + 𝑏𝑛−1𝑥𝑛−1 ∈ 𝑅. Then 𝑥𝑎(𝑥) ∈ 𝐼 since 𝑆 is a cyclic subspace. So, 𝑥𝑖𝑎(𝑥) ∈ 𝐼 for each
𝑖 ∈ [0, 𝑛 − 1]. Also, 𝑏𝑖𝑥𝑖𝑎(𝑥) ∈ 𝐼 since 𝑆 is closed under scalar multiplication. Finally, 𝑎(𝑥)𝑏(𝑥) =
𝑎(𝑥)(𝑏0 + ⋯ + 𝑏𝑛−1𝑥𝑛−1) which is in 𝐼 since 𝐼 is closed under addition. Thus, 𝐼 is an ideal.
( ⟸ ) Suppose 𝐼 is an ideal of 𝑅. Since 𝐼 is closed under addition, so is 𝑆. Since 𝐼 is closed under
multiplication by constant polynomials, 𝑆 is closed under scalar multiplication. Since 𝐼 is closed under
multiplication by 𝑥, 𝑆 is closed under (right) cyclic shifts. Thus, 𝑆 is a cyclic subspace.

DEFINITION 5.2.3: Ideal generated by 𝒈(𝒙)

Let 𝑔(𝑥) ∈ 𝑅. Then ⟨𝑔(𝑥)⟩ = {𝑔(𝑥)𝑎(𝑥) ∶ 𝑎(𝑥) ∈ 𝑅} is an ideal of 𝑅 called the ideal generated by
𝒈(𝒙). If 𝐼 is an ideal of 𝑅, then 𝐼 is a principal ideal if there exists a 𝑔(𝑥) ∈ 𝐼 such that 𝐼 = ⟨𝑔(𝑥)⟩. 𝑅
is called the principal ideal ring if every ideal ring of 𝑅 is principal.

THEOREM 5.2.4
𝑅 = 𝐹[𝑥]/(𝑥𝑛 − 1) is a principal ideal ring.

Proof of Theorem 5.2.4
Let 𝐼 be an ideal of 𝑅.
Suppose 𝐼 = {0}, then 𝐼 = ⟨0⟩ is principal.
Suppose 𝐼 ≠ 0. Let 𝑔(𝑥) be a polynomial of smallest degree in 𝐼 . Let 𝑎(𝑥) ∈ 𝐼 . Long division gives

𝑎(𝑥) = ℓ(𝑥)𝑔(𝑥) + 𝑟(𝑥)

where ℓ, 𝑟 ∈ 𝐹 [𝑥] and deg(𝑟) < deg(𝑔), but ℓ(𝑥)𝑔(𝑥) ∈ 𝐼 since 𝐼 is closed under multiplication by 𝑅
and 𝑎(𝑥) = ℓ(𝑥)𝑔(𝑥) ∈ 𝐼 . Therefore, 𝑟(𝑥) ∈ 𝐼 . Since deg(𝑟) < deg(𝑔), we must have 𝑟(𝑥) = 0 (since
we define deg(0) = −∞). Hence, 𝑎(𝑥) = ℓ(𝑥)𝑔(𝑥). Therefore, 𝐼 = ⟨𝑔(𝑥)⟩. Thus, 𝑅 is a principal ideal
ring.

2020-02-24
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5.3 Ideals and Cyclic Subspaces
DEFINITION 5.3.1: Monic polynomial

Amonic polynomial 𝑔(𝑥) is a single-variable polynomial in which the non-zero coefficient of the highest
degree of 𝑥 is 1. That is,

𝑔(𝑥) = 𝑐0 + ⋯ + 𝑐ℓ−1𝑥ℓ−1 + 𝑥ℓ

for some constants 𝑐𝑖 where 𝑖 ∈ [ℓ − 1, 1].

If 𝐼 ≠ {0}, then we took 𝑔(𝑥) = 𝑎 non-zero polynomial of smallest degree in 𝐼 . Note, we can take 𝑔(𝑥) to be
monic. If 𝑔(𝑥) is not monic, say

𝑔(𝑥) = 𝑐0 + ⋯ + 𝑐ℓ𝑥ℓ

where 𝑐ℓ ≠ 0, 1, then
𝑐−1

ℓ 𝑔(𝑥) = 𝑐−1
ℓ 𝑔0 + ⋯ 𝑥ℓ

is monic and is also in 𝐼 . We’ll call this process making 𝒈(𝒙) monic.
DEFINITION 5.3.2: Generator polynomial of 𝑰

Let 𝐼 be an ideal in 𝑅 = 𝐹[𝑥]/(𝑥𝑛 − 1).
The generator polynomial of 𝑰 is:
(1) 𝑥𝑛 − 1 since 𝑥𝑛 − 1 ≡ 0 (mod 𝑥𝑛 − 1) when 𝐼 = {0}.
(2) The monic polynomial of least degree in 𝐼 when 𝐼 ≠ {0}.

THEOREM 5.3.3
Let 𝐼 be a non-zero ideal in 𝑅 = 𝐹[𝑥]/(𝑥𝑛 − 1).
(1) There is a unique monic polynomial g(x) of smallest degree in 𝐼 .
(2) 𝑔(𝑥) ∣ (𝑥𝑛 − 1).

Proof of Theorem 5.3.3
(1) Suppose there exists two monic polynomials 𝑔(𝑥) and ℎ(𝑥) of the same smallest degree in 𝐼 . Then,
𝑔(𝑥) − ℎ(𝑥) ∈ 𝐼 and deg(𝑔 − ℎ) < deg(𝑔). Hence, we must have 𝑔 − ℎ = 0, so 𝑔 = ℎ.
(2) We can write

𝑥𝑛 − 1 = ℓ(𝑥)𝑔(𝑥) + 𝑟(𝑥)
where ℓ, 𝑟 ∈ 𝐹 [𝑥] and deg(𝑟) < deg(𝑔). Then,

0 ≡ ℓ(𝑥)𝑔(𝑥) + 𝑟(𝑥) (mod 𝑥𝑛 − 1) ⟺ 𝑟(𝑥) ≡ −ℓ(𝑥)𝑔(𝑥) (mod 𝑥𝑛 − 1)

Since ⟨𝑔(𝑥)⟩ = 𝐼 , we must have 𝑟(𝑥) ∈ 𝐼 . Hence, deg(𝑟) < deg(𝑔) so we must have 𝑟(𝑥) = 0. Thus,

𝑔(𝑥) ∣ (𝑥𝑛 − 1)

THEOREM 5.3.4
Let ℎ(𝑥) be a monic divisor of 𝑥𝑛 − 1 in 𝐹[𝑥]. Then, the generator polynomial of ⟨ℎ(𝑥)⟩ is ℎ(𝑥).

Proof of Theorem 5.3.4
If ℎ(𝑥) = 𝑥𝑛 − 1, then 𝐼 = {0} and by definition, its generator polynomial is 𝑥𝑛 − 1.
If deg(ℎ) < 𝑛, then 𝐼 ≠ {0}. Let 𝑔(𝑥) be the monic polynomial of smallest degree in 𝐼 . Since 𝑔 is a
generator of 𝐼 , we can write

𝑔(𝑥) ≡ 𝑎(𝑥)ℎ(𝑥) (mod 𝑥𝑛 − 1) ⟹ 𝑔(𝑥) = 𝑎(𝑥)ℎ(𝑥) + ℓ(𝑥)(𝑥𝑛 − 1)
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for some ℓ ∈ 𝐹 [𝑥]. Since ℎ ∣ (𝑥𝑛 − 1), and ℎ ∣ 𝑎ℎ, we have ℎ ∣ 𝑔. So, deg(ℎ) ⩽ deg(𝑔) since 𝑔 is a monic
polynomial of smallest degree in 𝐼 , we must have deg(𝑔) ⩽ deg(ℎ), so deg(𝑔) = deg(ℎ). Since 𝑔 and ℎ
are both monic, we have 𝑔 = ℎ.

COROLLARY 5.3.5
There is a 1–1 correspondence between monic divisors of 𝑥𝑛 − 1 in 𝐹[𝑥] and ideals in 𝑅. There is a 1–1
correspondence between monic divisors of 𝑥𝑛 − 1 in 𝐹[𝑥] and cyclic subspaces of 𝑉𝑛(𝐹).

EXAMPLE 5.3.6
Find all cyclic subspaces of 𝑉3(Z2).
Solution. The complete factorization of 𝑥3 − 1 over Z2 is

𝑥3 − 1 = (1 + 𝑥)(1 + 𝑥 + 𝑥2)

Monic divisor of 𝑥3 − 1 ⟨𝑔𝑖(𝑥)⟩ dim⟨𝑔𝑖(𝑥)⟩
𝑔1(𝑥) = 1 {000, 001, … , 111} 3

𝑔2(𝑥) = 1 + 𝑥 {000, 110, 001, 101} 2
𝑔3(𝑥) = 1 + 𝑥 + 𝑥2 {000, 111} 1

𝑔4(𝑥) = 1 + 𝑥3 {0} 0

2020-02-26

Midterm review session.

2020-02-28

𝑉𝑛(𝐹) ⟷ 𝑅 = 𝐹[𝑥]/(𝑥𝑛 − 1)
𝒂 = (𝑎0, 𝑎1 … , 𝑎𝑛−1) ∈ 𝑉𝑛(𝐹) ⟷ 𝑎0 + 𝑎1𝑥 + ⋯ + 𝑎𝑛−1𝑥𝑛−1 ∈ 𝑅

𝐶 ∶ cyclic subspace, with dim(𝐶) = 𝑘 ⟷ 𝐼 ∶ ideal in 𝑅
𝑔(𝑥) with deg(𝑔) = 𝑛 − 𝑘, if GM for 𝐶 in terms of 𝑔(𝑥)

Encoding: 𝒎𝐺 ⟷ 𝑚(𝑥)𝑔(𝑥)
𝐶⟂ ⟷ ℎ∗(𝑥)

PCM for 𝐶 ∶ 𝐻 ⟷ 𝑠(𝑥) ≡ 𝑟(𝑥) (mod 𝑔(𝑥))

To find ℎ∗(𝑥), we need ℎ(𝑥) = (𝑥𝑛 − 1)/(𝑔(𝑥)) where deg(ℎ) = 𝑘. Then, we find the reciprocal polynomial
ℎ𝑅(𝑥), and we make it monic to obtain ℎ∗(𝑥).
Note: We do not know the distance of 𝐶, but we can use a BCH code and specifically select 𝑔(𝑥) to give a
lower bound on 𝑑(𝐶).

LEMMA 5.3.7
Let 𝑔(𝑥) be a monic divisor with deg(𝑔) = 𝑛 − 𝑘 of 𝑥𝑛 − 1 in 𝐹[𝑥]. In fact,

⟨𝑔(𝑥)⟩ = {𝑔(𝑥)𝑎(𝑥) ∶ deg(𝑎) < 𝑘}
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Proof of Lemma 5.3.7
Let ℎ(𝑥) = 𝑔(𝑥)𝑎(𝑥) (mod 𝑥𝑛 − 1) for some 𝑎(𝑥) where deg(𝑎) < 𝑛. So,

ℎ(𝑥) − 𝑔(𝑥)𝑎(𝑥) = ℓ(𝑥)(𝑥𝑛 − 1)

for some ℓ ∈ 𝐹 [𝑥]. Therefore, 𝑔 ∣ ℎ. So, ℎ(𝑥) = 𝑔(𝑥)𝑎(𝑥), for some 𝑎 ∈ 𝐹[𝑥] with deg(𝑎) ⩽ 𝑘 − 1.

THEOREM 5.3.8
Let 𝑔(𝑥) be a monic divisor of 𝑥𝑛 − 1 with deg(𝑔) = 𝑛 − 𝑘 of 𝑥𝑛 − 1 in 𝐹[𝑥]. Then, the cyclic code 𝐶
generated by 𝑔(𝑥) has dimension 𝑘.

Proof of Theorem 5.3.8
We’ll show that

𝐵 = {𝑔(𝑥), 𝑥𝑔(𝑥), … , 𝑥𝑘−1𝑔(𝑥)}
is a basis of 𝐶.
We first show 𝐵 is linearly independent. Suppose

𝜆0𝑔(𝑥) + 𝜆1𝑥𝑔(𝑥) + ⋯ + 𝜆𝑘−1𝑥𝑘−1𝑔(𝑥) = 0

where 𝜆𝑖 ∈ 𝐹 for each 𝑖 ∈ [0, 𝑘 − 1]. The coefficient 𝑥𝑛−1 in the LHS is 𝜆𝑘−1. The coefficient of 𝑥𝑛−1 in
the RHS is 0. Hence, 𝜆𝑘−1 = 0. Similarly,

𝜆0 = 𝜆1 = ⋯ = 𝜆𝑘−2 = 0

Thus, 𝐵 is linearly independent.
We now show 𝐵 spans 𝐶. Let ℎ(𝑥) ∈ ⟨𝑔(𝑥)⟩. By Lemma, we can write

ℎ(𝑥) = 𝑔(𝑥)𝑎(𝑥)

for some 𝑎 ∈ 𝐹[𝑥] where deg(𝑔) = 𝑛 − 𝑘 and deg(𝑎) ⩽ 𝑘 − 1. Let

𝑎(𝑥) =
𝑘−1
∑
𝑖=0

𝑎𝑖𝑥𝑖

where 𝑎𝑖 ∈ 𝐹 for each 𝑖 ∈ [0, 𝑘 − 1]. Then,

ℎ(𝑥) = 𝑔(𝑥)𝑎(𝑥) = 𝑔(𝑥)
𝑘−1
∑
𝑖=0

𝑎𝑖𝑥𝑖 =
𝑘−1
∑
𝑖=0

𝑎𝑖𝑥𝑖𝑔(𝑥)

Thus, dim(𝐶) = 𝑘.

5.4 Generator Matrices and Parity-Check Matrices
Therefore, a generator matrix for 𝐶 is:

𝐺 =
⎡
⎢⎢
⎣

𝑔(𝑥)
𝑥𝑔(𝑥)

⋮
𝑥𝑘−1𝑔(𝑥)

⎤
⎥⎥
⎦𝑘×𝑛

=
⎡
⎢
⎢
⎢
⎣

𝑔(𝑥) 0 ⋯ 0 0
0 𝑥𝑔(𝑥) 0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0 𝑥𝑘−2𝑔(𝑥) 0
0 0 ⋯ 0 𝑥𝑘−1𝑔(𝑥)

⎤
⎥
⎥
⎥
⎦𝑘×𝑛

Note: 𝐺 is a non-systematic generator matrix for 𝐶.
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Encoding

𝒄 = 𝒎𝐺

= (𝑚0, … , 𝑚𝑘−1)
⎡
⎢⎢
⎣

𝑔(𝑥)
𝑥𝑔(𝑥)

⋮
𝑥𝑘−1𝑔(𝑥)

⎤
⎥⎥
⎦

= 𝑚0𝑔(𝑥) + 𝑚𝑘−1𝑥𝑘−1𝑔(𝑥)
= 𝑔(𝑥)(𝑚0 + ⋯ + 𝑚𝑘−1𝑥𝑘−1)
⟹ 𝑐(𝑥) = 𝑚(𝑥)𝑔(𝑥)

EXAMPLE 5.4.1
Construct a cyclic (7, 4)-code over Z2.
Solution. We need a monic divisor of degree 3 of 𝑥7 − 1 in Z2[𝑥]. Using Table 3 on page 157:

(𝑥7 − 1) = (1 + 𝑥)(1 + 𝑥 + 𝑥3)(1 + 𝑥2 + 𝑥3)

Let’s take 𝑔(𝑥) = 1 + 𝑥 + 𝑥3. Then, ⟨𝑔(𝑥)⟩ is a (7, 4)-cyclic code over Z2. A generator matrix for 𝐶 is:

𝐺 =
⎡
⎢⎢
⎣

1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1

⎤
⎥⎥
⎦4×7

Encode 𝒎 = (1011).
Solution.

𝒄 = 𝒎𝐺 = (1111111)
⟹ 𝑐(𝑥) = 𝑚(𝑥)𝑔(𝑥) = (1 + 𝑥 + 𝑥3)(1 + 𝑥 + 𝑥3) = (1 + 𝑥 + ⋯ + 𝑥6) = 𝒄

2020-03-02

Let 𝐶 be an (𝑛, 𝑘)-cyclic cover over 𝐹 with generator polynomial 𝑔(𝑥). Let

𝑔(𝑥) = 𝑔0⏟
≠0

+𝑔1𝑥 + ⋯ + 𝑔𝑛−𝑘𝑥𝑛−𝑘⏟⏟⏟⏟⏟
=1

+ 𝑔𝑛−𝑘+1𝑥𝑛−𝑘+1 + ⋯ + 𝑔𝑛−1𝑥𝑛−1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=0

Let
ℎ(𝑥) = (𝑥𝑛 − 1)/(𝑔(𝑥)) = ℎ0 + ℎ1𝑥 + ⋯ + ℎ𝑘−1𝑥𝑘−1 + ℎ𝑘𝑥𝑘 + ⋯ + ℎ𝑛−1𝑥𝑛+0

Let 𝑎(𝑥) = 𝑎0 + 𝑎1𝑥 + ⋯ + 𝑎𝑛−1𝑥𝑛−1. We know that

𝑎(𝑥) = 𝑔(𝑥)ℎ(𝑥) (mod 𝑥𝑛 − 1) (⋆)

Note: 𝑎(𝑥) = 0. Equating coefficients of 𝑥𝑖 for each 𝑖 ∈ [0, 𝑛 − 1] of (⋆):

𝑎𝑖 = 0 = 𝑔0ℎ𝑖 + 𝑔1ℎ𝑖−1 + ⋯ + 𝑔𝑖ℎ0 + 𝑔𝑖+1ℎ𝑛−1 + 𝑔𝑖+1ℎ𝑛−2 + ⋯ + 𝑔𝑛−1ℎ𝑖−1

Let 𝑔 = (𝑔0, … , 𝑔𝑛−1), ℎ = (ℎ𝑛−1, … , ℎ0). Then, 𝑔 is orthogonal to ℎ and all the cyclic shifts of ℎ. Every cyclic
shift of 𝑔 is orthogonal to every click shift of ℎ.
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Recall: A generator matrix for 𝐶 is:

𝐺 =
⎡
⎢⎢
⎣

𝑔0 𝑔1 ⋯ 𝑔𝑛−𝑘 0 0 ⋯ 0
0 𝑔0 ⋯ 𝑔𝑛−𝑘−1 𝑔𝑛−𝑘 0 ⋯ 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
0 ⋯ 0 𝑔0 𝑔1 𝑔2 ⋯ 𝑔𝑛−𝑘

⎤
⎥⎥
⎦𝑘×𝑛

Consider

𝐻 =
⎡
⎢⎢
⎣

ℎ𝑘 ℎ𝑘−1 ⋯ ℎ0 0 0 ⋯ 0 0
0 ℎ𝑘 ⋯ ℎ1 ℎ0 0 ⋯ 0 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
0 ⋯ 0 ℎ𝑘 ℎ𝑘−1 ℎ𝑘−2 ⋯ ℎ1 ℎ0

⎤
⎥⎥
⎦(𝑛−𝑘)×𝑛

We have observed 𝐺𝐻⊤ = 0. Let 𝐶′ be the code spanned by the rows of 𝐻. Then, 𝐶′ ⊆ 𝐶⟂. But, rank(𝐻) =
𝑛 − 𝑘 (since ℎ𝑘 = 1). So, dim(𝐶′) = 𝑛 − 𝑘, hence we have 𝐶′ = 𝐶⟂. Thus, 𝐻 is a PCM for 𝐶.

DEFINITION 5.4.2: Reciprocal of 𝒉

Let ℎ(𝑥) = ℎ(𝑥) = ℎ0 + ℎ1𝑥 + ⋯ ℎ𝑘𝑥𝑘 be a degree 𝑘 polynomial. The reciprocal of 𝒉 is

ℎ𝑅(𝑥) = ℎ𝑘𝑥0 + ⋯ + ℎ1𝑥𝑘−1 + ℎ0𝑥𝑘

Note:
• ℎ𝑅(𝑥) = 𝑥𝑘ℎ ( 1

𝑥 )
• If ℎ0 ≠ 0, then ℎ∗(𝑥) = ℎ−1

0 ℎ𝑅(𝑥).
THEOREM 5.4.3

If 𝐶 is an (𝑛, 𝑘)-cyclic code, then 𝐶⟂ is an (𝑛, 𝑛 − 𝑘) cyclic code.

Proof of Theorem 5.4.3

𝑔(𝑥)ℎ(𝑥) = 𝑥𝑛 − 1

⟹ 𝑔 ( 1
𝑥) ℎ ( 1

𝑥) = ( 1
𝑥𝑛 − 1)

⟹ 𝑥𝑛−𝑘𝑔 ( 1
𝑥) (𝑥𝑘ℎ ( 1

𝑥)) = (1 − 𝑥𝑛)

⟹ 𝑔𝑅(𝑥)ℎ𝑅(𝑥) = −(𝑥𝑛 − 1)
⟹ ℎ𝑅(𝑥) ∣ (𝑥𝑛 − 1)

So, ℎ𝑅(𝑥) is a degree 𝑘 divisor of 𝑥𝑛 − 1. Hence, the matrix 𝐻 is a generator matrix for the cyclic code
generated by ℎ∗(𝑥). Thus, 𝐶⟂ is cyclic with generator polynomial ℎ∗(𝑥).

5.5 Syndromes and Simple Decoding Procedures
𝑠 = 𝐻𝒓⊤. Let’s find a more convenient PCM for 𝐶.
(i) Find a generator matrix for 𝐶 of the form [ 𝑅 𝐼𝑘 ]𝑘×𝑛 is (essentially systematic). For each 𝑖 ∈ [0, 𝑘 − 1],

long division gives:
𝑥𝑛−𝑘+𝑖 = ℓ𝑖(𝑥)𝑔(𝑥)⏟

deg=𝑛−𝑘
+ 𝑟𝑖(𝑥)⏟

deg⩽𝑛−𝑘−1



CHAPTER 5. CYCLIC CODES 50

Then, −𝑟𝑖(𝑥) + 𝑥𝑛−𝑘+𝑖 = ℓ𝑖(𝑥)𝑔(𝑥) ∈ 𝐶. Let

𝐺 =
⎡
⎢⎢
⎣

−𝑟0(𝑥) + 𝑥𝑛−𝑘

−𝑟1(𝑥) + 𝑥𝑛−𝑘+1

⋮
−𝑟𝑘−1(𝑥) + 𝑥𝑛−1

⎤
⎥⎥
⎦

= [ 𝑅 𝐼𝑘 ]𝑘×𝑛

𝐺 has rank = 𝑘, so 𝐺 is a GM for 𝐶.
(ii) Construct a PCM for 𝐶.

This is 𝐻 = [ 𝐼𝑛−𝑘 −𝑅⊤ ](𝑛−𝑘)×𝑛. Then, 𝐻𝒓⊤ = 𝑟(𝑥) (mod 𝑔(𝑥)).

2020-03-04

Recall: Let 𝐶 be an (𝑛, 𝑘)-cyclic code over 𝐺𝐹(𝑞) with generator polynomial 𝑔(𝑥). One generator matrix for
𝐶 is:

⎡
⎢⎢
⎣

𝑔(𝑥)
𝑥𝑔(𝑥)

⋮
𝑥𝑘−1𝑔(𝑥)

⎤
⎥⎥
⎦𝑘×𝑛

One PCM for 𝐶 is:

𝐻 =
⎡
⎢⎢
⎣

ℎ∗(𝑥)
𝑥ℎ∗(𝑥)

⋮
𝑥𝑛−𝑘−1ℎ∗(𝑥)

⎤
⎥⎥
⎦(𝑛−𝑘)×𝑛

Another generator matrix for 𝐶 is:

𝐺 = [ 𝑅 𝐼𝑘 ] =
⎡
⎢
⎢
⎢
⎣

−𝑟0(𝑥)
−𝑟1(𝑥)

⋮
−𝑟𝑘−2(𝑥)
−𝑟𝑘−1(𝑥)

𝐼𝑘

⎤
⎥
⎥
⎥
⎦

where 𝑥𝑛−𝑘+𝑖 = ℓ𝑖(𝑥)𝑔(𝑥) + 𝑟𝑖(𝑥) ⟹ −𝑟𝑖(𝑥) + 𝑥𝑛−𝑘+𝑖 = ℓ𝑖(𝑥)𝑔(𝑥) for each 𝑖 ∈ [0, 𝑘 − 1]. Then, another
PCM for 𝐶 is: 𝐻 = [ 𝐼𝑛−𝑘 ∣ −𝑅⊤ ](𝑛−𝑘)×𝑛. So,

𝐻⊤ = [ 𝐼𝑛−𝑘
−𝑅 ]

𝑛×(𝑛−𝑘)
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑥0 (mod 𝑔(𝑥))
𝑥 (mod 𝑔(𝑥))

⋮
𝑥𝑛−𝑘−1 (mod 𝑔(𝑥))
𝑥𝑛−𝑘 (mod 𝑔(𝑥))

𝑥𝑛−𝑘+1 (mod 𝑔(𝑥))
𝑥𝑛−1 (mod 𝑔(𝑥))

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Hence, if 𝒓 = (𝑟0, 𝑟1, … , 𝑟𝑛−1) ∈ 𝑉𝑛−1(𝐹), then

𝒔 = 𝐻𝒓⊤

= (𝑟0𝑥0 (mod 𝑔(𝑥))) + ⋯ + (𝑟𝑛−1𝑥𝑛−1 (mod 𝑔(𝑥)))
= (𝑟0𝑥0 + 𝑟1𝑥 + ⋯ + 𝑟𝑛−1𝑥𝑛−1) (mod 𝑔(𝑥))
= 𝑟(𝑥) (mod 𝑔(𝑥))
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THEOREM 5.5.1
Let 𝐶 be a cyclic code with generator polynomial 𝑔(𝑥), and 𝒓 ∈ 𝑉𝑛(𝐹). Then, the syndrome of 𝒓 with
respect to the previous PCM is:

𝑠(𝑥) = 𝑟(𝑥) (mod 𝑔(𝑥))

EXAMPLE 5.5.2
𝑔(𝑥) = 1 + 𝑥 + 𝑥2 + 𝑥3 + 𝑥6 is the generator polynomial for a (15, 9)-binary cyclic code. Check
𝑔(𝑥) ∣ (𝑥15 − 1) over 𝐺𝐹(2). Compute the syndrome of 𝒓 = (1110 1110 1100 000).
Solution. Long division of (𝑥9 +𝑥8 +𝑥6 +𝑥5 +𝑥4 +𝑥2 +𝑥+1)/(𝑥6 +𝑥3 +𝑥2 +𝑥+1) gives 𝑥5 +𝑥4 +𝑥+1
as the remainder. Thus,

𝑠(𝑥) = 1 + 𝑥 + 𝑥4 + 𝑥5 ⟹ 𝒔 = (110011)

REMARK 5.5.3
Given the syndrome 𝒔 of 𝒓, the syndromes of cyclic shifts of 𝒓 can be easily computed.

THEOREM 5.5.4

Let 𝒓 ∈ 𝑉𝑛(𝐹), and 𝑠(𝑥) ≡ 𝑟(𝑥) (mod 𝑔(𝑥)) where 𝑠(𝑥) = 𝑠0 + 𝑥𝑠1 + ⋯ + 𝑠𝑛−𝑘−1𝑥𝑛−𝑘−1. Then the
syndrome of 𝑥𝑟(𝑥) is:
(i) 𝑥𝑠(𝑥), if 𝑠𝑛−𝑘−1 = 0.
(ii) 𝑥𝑠(𝑥) − 𝑠𝑛−𝑘−1𝑔(𝑥), if 𝑠𝑛−𝑘−1 ≠ 0.

Proof of Theorem 5.5.4
We have

𝑟(𝑥) = ℓ(𝑥)𝑔(𝑥) + 𝑠(𝑥)
Multiply by 𝑥,

𝑥𝑟(𝑥) = 𝑥ℓ(𝑥)𝑔(𝑥) + 𝑥𝑠(𝑥)
• Case 1: If 𝑠𝑛−𝑘−1 = 0, then deg(𝑠) ⩽ 𝑛 − 𝑘 − 2, so deg(𝑥𝑠(𝑥)) ⩽ 𝑛 − 𝑘 − 1. So, 𝑥𝑠(𝑥) is the

remainder upon dividing 𝑥𝑟(𝑥) by 𝑔(𝑥). So, 𝑥𝑠(𝑥) is the syndrome of 𝑟(𝑥).
• Case 2: If 𝑠𝑛−𝑘−1 ≠ 0, then deg(𝑠) = 𝑛 − 𝑘 − 1. Then

𝑥𝑟(𝑥) = 𝑥ℓ(𝑥)𝑔(𝑥) + 𝑥𝑠(𝑥) + 𝑠𝑛−𝑘−1𝑔(𝑥) − 𝑠𝑛−𝑘−1𝑔(𝑥)

⟹ 𝑥𝑟(𝑥) = (𝑥ℓ(𝑥) + 𝑠𝑛−𝑘−1)𝑔(𝑥) + (𝑥𝑠(𝑥) − 𝑠𝑛−𝑘−1𝑔(𝑥))
Now,

𝑥𝑠(𝑥) − 𝑠𝑛−𝑘−1 = (𝑠0 + ⋯ + 𝑠𝑛−𝑘−1𝑥𝑛−𝑘) − (⋯ + 𝑠𝑛−𝑘−1𝑥𝑛−𝑘) = 𝑥𝑟(𝑥)
So, 𝑥𝑠(𝑥) − 𝑠𝑛−𝑘−1𝑔(𝑥) is the syndrome of 𝑥𝑟(𝑥).
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5.6 Burst Error Correcting
“Cyclic codes are good for (cyclic) burst error correcting”
Suppose we have a 𝐶 ∶ (𝑛, 𝑘, 𝑑) code, with 𝑒 = ⌊ 𝑑−1

2 ⌋ = 5. In practice, errors typically happen in bursts (not
spread out). We expect typically one burst per codeword, or bursts to carry through two codewords.
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DEFINITION 5.6.1: Cyclic burst of length 𝒆

Let 𝒆 ∈ 𝑉𝑛(𝐹). The cyclic burst of length 𝒆 is the length of the smallest cyclic block that contain all
the non-zero entries of 𝒆.

EXAMPLE 5.6.2
𝒆 = 𝟎𝟏𝟏00000𝟏 has cyclic burst length 4.

DEFINITION 5.6.3: Cyclic burst error of length 𝒕

We say 𝒆 is a cyclic burst error of length 𝒕 if its cyclic burst length is 𝑡.

DEFINITION 5.6.4: 𝒕-cyclic burst error correcting code

A linear code 𝐶 is a 𝒕-cyclic burst error correcting code if every cyclic burst error of length at most 𝑡
lies in a unique coset of 𝐶. The largest such 𝑡 is called the cyclic burst error capability of 𝑪.

EXAMPLE 5.6.5
𝑔(𝑥) = 1+𝑥+𝑥2+𝑥3+𝑥6 generates a (15, 9)-binary cyclic code 𝐶 that is a 3-cyclic burst error correcting
code.

𝑑(𝐶) ⩽ 5, so 𝑒 ⩽ 2. We verify this by checking that each cyclic burst of length ⩽ 3 has a unique syn-
drome.
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Cyclic burst errors Syndromes Notes

0 000000
𝑥0 100000
𝑥1 010000
𝑥2 001000
𝑥3 000100
𝑥4 000010
𝑥5 000001
𝑥6 111100 𝑥6 + 𝑔(𝑥) ⟺

(0000001) + (1111001)
𝑥7 011110
𝑥8 001111
𝑥9 111011 𝑥9 + 𝑔(𝑥) ⟺

(0001111) + (1111001)
𝑥10 100001 𝑥10 + 𝑔(𝑥) ⟺

(0111011) + (1111001)
𝑥11 101100 𝑥11 + 𝑔(𝑥) ⟺

(0100001) + (1111001)
𝑥12 010110
𝑥13 001011
𝑥14 111001 𝑥14 + 𝑔(𝑥) ⟺

(0001011) + (1111001)
1 + 𝑥 110000

𝑥(1 + 𝑥) 011000
⋮ ⋮

𝑥14(1 + 𝑥) 011001
1 + 𝑥 + 𝑥2 111000

𝑥(1 + 𝑥 + 𝑥2) 011100
⋮ ⋮

𝑥14(1 + 𝑥 + 𝑥2) 001001
1 + 𝑥2 101000

𝑥(1 + 𝑥2) 010100
⋮ ⋮

𝑥14(1 + 𝑥2) 101001

The number of cyclic bursts of length ⩽ 3 is 61. The number of syndromes is 64.
EXAMPLE 5.6.6
𝑔(𝑥) = 1 + 𝑥4 + 𝑥6 + 𝑥7 + 𝑥8 generates a (15, 7)-binary cyclic code that is 4-cyclic burst error correcting.
Distance ⩽ 5 so 𝑒 ⩽ 2.

Question: How to construct codes with high cyclic burst error correcting capability?
(1) Use a computer search.
(2) RS Codes.
(3) Interleaving.
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THEOREM 5.6.7
Let 𝐶 be an (𝑛, 𝑘, 𝑑)-code over 𝐺𝐹(𝑞). Let 𝑡 be its cyclic burst error correcting capability.

⌊𝑑 − 1
2 ⌋ ⩽ 𝑡 ⩽ 𝑛 − 𝑘

Proof of Theorem 5.6.7

Every cyclic burst of length ⩽ 𝑡 has weight ⩽ 𝑡. Since every vector of weight ⩽ ⌊ 𝑑−1
2 ⌋ has a unique

syndrome, we have ⌊ 𝑑−1
2 ⌋ ⩽ 𝑡.

The number of cyclic burst errors where all the non-zero entries lie in the first 𝑡 coordinate positions is
𝑞𝑡. Each of them has a unique coset and the total number of cosets is 𝑞𝑛−𝑘. Thus,

𝑞𝑡 ⩽ 𝑞𝑛−𝑘 ⟹ 𝑡 ⩽ 𝑛 − 𝑘

EXERCISE 5.6.8

Prove that 𝑡 ⩽ 𝑛 − 𝑘
2 .

5.7 Decoding Cyclic Burst Errors
Let 𝐶 be a 𝑡-cyclic burst error correcting code generated by 𝑔(𝑥) which is a degree-𝑘 monic divisor of 𝑥𝑛 − 1
over 𝐺𝐹(𝑞).
Recall: A PCM for 𝐶 is:

𝐻 = [ 𝐼𝑛−𝑘 −𝑅⊤ ]
whose columns are 𝑥0 (mod 𝑔(𝑥)), … , 𝑥𝑛−1 (mod 𝑔(𝑥)).
The syndrome of 𝑟(𝑥) is 𝑠(𝑥) ≡ 𝑟(𝑥) (mod 𝑔(𝑥)).
Idea: Suppose 𝒆 is a cyclic burst of length ⩽ 𝑡.
Compute 𝒔 = 𝐻𝒓⊤ ≡ 𝑟(𝑥) (mod 𝑔(𝑥)).
Suppose 𝒆 = x o ⋯ o x x x . We multiply 𝑥3 by 𝒆, so we get x x x x o ⋯ o .
𝒔 = 𝐻𝒓⊤ = 𝐻𝒆⊤.
𝒔1 = 𝐻(𝑥𝒓)⊤ = 𝐻(𝑥𝒆)⊤

𝒔2 = 𝐻(𝑥2𝒓)⊤ = 𝐻(𝑥2𝒆)⊤

𝒔3 = 𝐻(𝑥3𝒓)⊤ = 𝐻(𝑥3𝒆)⊤

2020-03-09

Recall: Let 𝐶 be an (𝑛, 𝑘) code with generator polynomial 𝑔(𝑥). Suppose 𝐶 is a 𝑡-c.b.e.c.c. So, 𝑡 ⩽ 𝑛−𝑘.

𝐻 = [ 𝐼𝑛−𝑘 −𝑅⊤ ]

is a PCM for 𝐶; 𝑠(𝑥) = 𝑟(𝑥) (mod 𝑔(𝑥)).
Idea: Suppose 𝑒 is a cyclic burst of length at most 𝑡. Compute shifts of 𝑒, say 𝑒𝑖 = 𝑥𝑖𝑒 has all its non-zero
entries in the first (𝑛 − 𝑘) positions. Then,

𝑠𝑖(𝑥) = 𝑒𝑖(𝑥) (mod 𝑔𝑖(𝑥))
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and we can recognize such an 𝑠𝑖(𝑥) since it is a non-cyclic burst of length at most 𝑡. Then, 𝑒 = 𝑥𝑛−𝑖𝑒𝑖. How
do we compute 𝑠𝑖(𝑥)? Recall, 𝒓 = 𝒄 + 𝒆. So, 𝑥𝑖𝒓 = 𝑥𝑖𝒄 + 𝑥𝑖𝒆, so 𝑥𝑖𝒓 and 𝑥𝑖𝒆 have the same syndrome.

5.8 Error Trapping Decoding (For Cyclic Burst Errors)
Let 𝑟(𝑥) = received polynomial. Let 𝑠𝑖(𝑥) = syndrome of 𝑥𝑖𝑟(𝑥) for each 𝑖 ∈ [1, 𝑛 − 1] where 𝑠0 = 𝑟(𝑥)
(mod 𝑔(𝑥)).

Algorithm 4: Error Trapping
1 for 𝑖 = 0 to 𝑛 − 1 do
2 Compute 𝑠𝑖(𝑥) with Theorem 5.5.4.
3 if 𝑠𝑖(𝑥) is a non-cyclic burst of length at most 𝑡 then
4 𝑒𝑖(𝑥) ← (𝑠𝑖(𝑥), 0)
5 𝑒(𝑥) ← 𝑥𝑛−𝑖𝑒𝑖(𝑥)
6 return 𝑟(𝑥) − 𝑒(𝑥)

7 return

EXAMPLE 5.8.1
𝑔(𝑥) = 1 + 𝑥 + 𝑥2 + 𝑥3 + 𝑥6 is the generator polynomial for (15, 9)-binary cyclic code with c.b.e.c.c 3.
Decode 𝑟 = (1110 1110 1100 000).
Solution. Compute 𝑠0(𝑥) = 𝑟(𝑥) (mod 𝑔(𝑥)) = 𝑥5 + 𝑥4 + 𝑥 + 1.

Iteration (𝑖) Syndrome [𝑠𝑖(𝑥)]
0 110011
1 100101
2 101110
3 010111
4 110111
5 100111
6 101111
7 101011
8 101001
9 101000

⟹ 𝒆9 = (101000 000000000)
⟹ 𝒆 = 𝑥6𝒆9 = (000000 101000 000)
⟹ 𝒄 = 𝒓 − 𝒆 = (1110 1100 0100 000)

Check: 𝐻𝒄⊤ = 𝟎 (bad) OR 𝑔(𝑥) ∣ 𝑐(𝑥) via long division.

5.9 Interleaving
Goal: Improve the c.b.e.c.c of a code.
Suppose 𝐶 is an (𝑛, 𝑘)-code with c.b.e.c.c 𝑡.
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Suppose the following codewords are transmitted:

𝑣1 = (𝑣11, 𝑣12, … , 𝑣1𝑛) ∈ 𝐶
𝑣2 = (𝑣21, 𝑣22, … , 𝑣2𝑛) ∈ 𝐶

⋮
𝑣𝑠 = (𝑣𝑠1, 𝑣𝑠2, … , 𝑣𝑠𝑛) ∈ 𝐶

Suppose 𝑣1, … , 𝑣𝑠 are transmitted in that order. If a cyclic burst error of length at most 𝑡 occurs in any
codeword, that error can be corrected.
Instead, we transmit: the columns in order:

[𝑣11, 𝑣21, … , 𝑣𝑠1, … , 𝑣1𝑛, 𝑣2𝑛, … , 𝑣𝑠𝑛]

Now, if a cyclic burst error of length at most 𝑠𝑡 occurs in this (fat) codeword, this means that each original
codeword suffered a cyclic error burst of length at most 𝑡.

THEOREM 5.9.1
Suppose 𝐶 is an (𝑛, 𝑘)-cyclic code with generator polynomial 𝑔(𝑥) and cyclic burst error correcting capa-
bility 𝑡. 𝐶∗, the code obtained by interleaving 𝐶 to a depth 𝑠 is an (𝑛𝑠, 𝑘𝑠)-cyclic code with generator
polynomial 𝑔∗(𝑥) = 𝑔(𝑥𝑠).

2020-03-11

5.10 Minimal Polynomials
Recall that if 𝐹 = 𝐺𝐹(𝑝𝑚) is a finite field of characteristic 𝑝, then Z𝑝 is a subfield of 𝐹 , and we can view
𝐹 as an 𝑚-dimensional vector space over Z𝑝. More generally, for any prime power 𝑞, 𝐺𝐹(𝑞) is a subfield of
𝐺𝐹(𝑞𝑚), and we can view 𝐺𝐹(𝑞𝑚) as an 𝑚-dimensional vector space over 𝐺𝐹(𝑞).

EXAMPLE 5.10.1
𝐺𝐹(216) is:

• a 16-dimensional vector space over 𝐺𝐹(2),
• an 8-dimensional vector space over 𝐺𝐹(22),
• a 4-dimensional vector space over 𝐺𝐹(24),
• a 2-dimensional vector space over 𝐺𝐹(28), and
• a 1-dimensional vector space over 𝐺𝐹(216).

We call 𝐺𝐹(𝑞𝑚) the extension field, and 𝐺𝐹(𝑞) the subfield. Informally, 𝐺𝐹(𝑞𝑚) is the “big field,” and
𝐺𝐹(𝑞) is the “small field.”
Here is the main definition in this section:

DEFINITION 5.10.2: Minimal polynomial

Let 𝛼 ∈ 𝐺𝐹(𝑞𝑚). The minimal polynomial of 𝜶 over 𝑮𝑭 (𝒒), denoted 𝑚𝛼(𝑥), is the monic polynomial
of smallest degree in 𝐺𝐹(𝑞)[𝑥] that has 𝛼 as a root; that is, 𝑚𝛼(𝛼) = 0.
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REMARK 5.10.3
(1) If 𝑚𝛼(𝑥) ∈ 𝐺𝐹(𝑞)[𝑥] is a non-zero polynomial with 𝑚𝛼(𝛼) and 𝑐 is the leading coefficient of

𝑚𝛼(𝑥), then 𝑚′
𝛼(𝑥) = 𝑐−1𝑚𝛼(𝑥) is a monic polynomial in 𝐺𝐹(𝑞)[𝑥] with 𝑚′

𝛼(𝛼) = 0.
(2) More generally, multiplying a polynomial by a non-zero constant does not change the roots of

the polynomial.
(3) We have 𝑚0(𝑥) = 𝑥.
(4) If 𝛼 ≠ 0, let 𝑡 be the order of 𝛼 (recall that 𝑡 ∣ (𝑞𝑚 − 1)). Then, 𝛼 is a root of 𝑥𝑡 − 1 ∈ 𝐺𝐹(𝑞)[𝑥].

It follows that there does indeed exist a monic polynomial of smallest degree in 𝐺𝐹(𝑞)[𝑥] having
𝛼 as a root.

EXAMPLE 5.10.4
We found the minimal polynomial of elements in 𝐺𝐹(22) = Z2[𝑥]/(𝑥2 + 𝑥 + 1) over 𝐺𝐹(2) by trial and
error:

• 𝑚0(𝑦) = 𝑦.
• 𝑚1(𝑦) = 𝑦 + 1.
• 𝑚𝑥(𝑦) = 𝑦2 + 𝑦 + 1.
• 𝑚𝑥+1(𝑦) = 𝑦2 + 𝑦 + 1.

THEOREM 5.10.5
Let 𝛼 ∈ 𝐺𝐹(𝑞𝑚).
(1) The minimal polynomial, 𝑚𝛼(𝑥) of 𝛼 over 𝐺𝐹(𝑞) is unique.
(2) 𝑚𝛼(𝑥) is irreducible over 𝐺𝐹(𝑞).
(3) deg(𝑚𝛼) ⩽ 𝑚.
(4) If 𝑓(𝑥) ∈ 𝐺𝐹(𝑞)[𝑥], then, 𝑓(𝛼) = 0 if and only if 𝑚𝛼(𝑥) ∣ 𝑓(𝑥).

Proof of Theorem 5.10.5 (1) to (3)

(1) Suppose there are two monic polynomials, 𝑚1(𝑥) and 𝑚2(𝑥), of (the same) smallest degree in
𝐺𝐹(𝑞)[𝑥] that have 𝛼 as a root. Consider 𝑟(𝑥) = 𝑚1(𝑥) − 𝑚2(𝑥). Then,

𝑟(𝛼) = 𝑚1(𝛼) − 𝑚2(𝛼) = 0 − 0 = 0

But, deg(𝑟) < deg(𝑚1), and so we conclude that 𝑟(𝑥) = 0. Hence, 𝑚1(𝑥) = 𝑚2(𝑥).
(2) Suppose that 𝑚𝛼 is reducible over 𝐺𝐹(𝑞). Then, we can write

𝑚𝛼(𝑥) = 𝑠(𝑥)𝑡(𝑥)

for some 𝑠, 𝑡 ∈ 𝐺𝐹(𝑞)[𝑥] with deg(𝑠),deg(𝑡) < deg(𝑚𝛼). Then,

𝑚𝛼(𝛼) = 0 = 𝑠(𝛼)𝑡(𝛼),

and hence either of 𝑠(𝛼) = 0 or 𝑡(𝛼) = 0. In either case, we have a contradiction of the minimality of
deg(𝑚𝛼). We conclude that 𝑚𝛼 is irreducible over 𝐺𝐹(𝑞).
(3) Recall that 𝐺𝐹(𝑞𝑚) can be viewed as an 𝑚-dimensional vector space over 𝐺𝐹(𝑞). Thus, the 𝑚 + 1
field elements 1, 𝛼, 𝛼2, … , 𝛼𝑚 are linearly dependent over 𝐺𝐹(𝑞). Thus, we can write

𝑎0 + 𝑎1𝛼 + ⋯ + 𝑎𝑚𝛼𝑚 = 0,

where 𝑎0, 𝑎1, … , 𝑎𝑚 ∈ 𝐺𝐹(𝑞), and not all are 0. Hence, 𝛼 is a root of the non-zero polynomial

𝑎0 + 𝑎1𝑥 + ⋯ + 𝑎𝑚𝑥𝑚 ∈ 𝐺𝐹(𝑞)[𝑥]

having degree ⩽ 𝑚. It follows that deg(𝑚𝛼) ⩽ 𝑚.
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Proof of Theorem 5.10.5 (4)

Let 𝑓 ∈ 𝐺𝐹(𝑞)[𝑥]. Using the division algorithm for polynomials, we can write

𝑓(𝑥) = ℓ(𝑥)𝑚𝛼(𝑥) + 𝑟(𝑥)

where ℓ, 𝑟 ∈ 𝐺𝐹(𝑞)[𝑥] and deg(𝑟) < deg(𝑚𝛼). Now,

𝑓(𝛼) = ℓ(𝛼)𝑚𝛼(𝛼) + 𝑟(𝛼) = 𝑟(𝛼)

Hence,

𝑓(𝛼) = 0 ⟺ 𝑟(𝛼) = 0 ⟺ 𝑟(𝑥) = 0 since deg(𝑟) < deg(𝑚𝛼) ⟺ 𝑚𝛼(𝑥) ∣ 𝑓(𝑥).

THEOREM 5.10.6
Let 𝛼 ∈ 𝐺𝐹(𝑞𝑚). Then, 𝛼 ∈ 𝐺𝐹(𝑞) if and only if 𝛼𝑞 = 𝛼.

Proof of Theorem 5.10.6
Since 𝛼𝑞 = 𝛼 for all 𝛼 ∈ 𝐺𝐹(𝑞), the elements of 𝐺𝐹(𝑞) are roots of the polynomial 𝑋𝑞 − 𝑋. Since
this polynomial has degree 𝑞, it can’t have any other roots in 𝐺𝐹(𝑞𝑚). Thus, 𝛼 ∈ 𝐺𝐹(𝑞) if and only if
𝛼𝑞 = 𝛼.

DEFINITION 5.10.7: Set of conjugates of 𝜶 with respect to 𝑮𝑭 (𝒒)

Let 𝛼 ∈ 𝐺𝐹(𝑞𝑚). Let 𝑡 be the smallest positive integer such that 𝛼𝑞𝑡 = 𝛼 (note that 𝑡 ⩽ 𝑚). Then, the
set of conjugates of 𝜶 with respect to 𝑮𝑭 (𝒒) is

𝐶(𝛼) = {𝛼, 𝛼𝑞, 𝛼𝑞2 , … , 𝛼𝑞𝑡−1}

Note that the elements of 𝐶(𝛼) are distinct.

THEOREM 5.10.8
Let 𝛼 ∈ 𝐺𝐹(𝑞𝑚). Then the minimal polynomial of 𝛼 over 𝐺𝐹(𝑞) is

𝑚𝛼(𝑥) = ∏
𝛽∈𝐶(𝛼)

(𝑥 − 𝛽)

= (𝑥 − 𝛼)(𝑥 − 𝛼𝑞)(𝑥 − 𝛼𝑞2) ⋯ (𝑥 − 𝛼𝑞𝑡−1).

Proof of Theorem 5.10.8
(i) Clearly, 𝑚𝛼(𝑥) is monic.
(ii) Clearly, 𝑚𝛼(𝛼) = 0.
(iii) † Let 𝑚𝛼(𝑥) =

𝑡
∑
𝑖=0

𝑚𝑖𝑥𝑖. The coefficients 𝑚𝑖 are in 𝐺𝐹(𝑞𝑚). We need to prove that 𝑚𝛼(𝑥) ∈
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𝐺𝐹(𝑞). Now,
𝑚𝛼(𝑥)𝑞 = ∏

𝛽∈𝐶(𝛼)
(𝑥 − 𝛽)𝑞

= ∏
𝛽∈𝐶(𝛼)

(𝑥𝑞 − 𝛽𝑞)

= ∏
𝛽∈𝐶(𝛼)

(𝑥𝑞 − 𝛽), since 𝐶(𝛼) = {𝐵𝑞 ∶ 𝛽 ∈ 𝐶(𝛼)}

= 𝑚𝛼(𝑥𝑞)

=
𝑡

∑
𝑖=0

𝑚𝑖𝑥𝑖𝑞.

(1)

Also,
𝑚𝛼(𝑥)𝑞 = (

𝑡
∑
𝑖=0

𝑚𝑖𝑥𝑖)
𝑞

=
𝑡

∑
𝑖=0

𝑚𝑞
𝑖 𝑥𝑖𝑞

(2)

Comparing coefficients of 𝑥𝑖𝑞 in (1) and (2) gives 𝑚𝑖 = 𝑚𝑞
𝑖 for all 𝑖 ∈ [0, 𝑡]. Hence, 𝑚𝑖 ∈ 𝐺𝐹(𝑞).

Thus, 𝑚𝛼(𝑥) ∈ 𝐺𝐹(𝑞)[𝑥].
(iv) † Let 𝑓 ∈ 𝐺𝐹(𝑞)[𝑥] with 𝑓(𝑥) ≠ 0, and assume 𝑓(𝛼) = 0. Let 𝑓(𝑥) =

𝑑
∑
𝑖=0

𝑓𝑖𝑥𝑖. Then,

𝑓(𝛼𝑞) =
𝑑

∑
𝑖=0

𝑓𝑖𝛼𝑖𝑞 = (
𝑑

∑
𝑖=0

𝑓𝑖𝛼𝑖)
𝑞

= 𝑓(𝛼)𝑞 = 0.

Hence, the elements of 𝐶(𝛼) are the roots of 𝑓(𝑥). Since the roots of 𝑚𝛼(𝑥) are precisely the
elements of 𝐶(𝛼), we conclude that 𝑚𝛼(𝑥) is the monic polynomial of smallest degree in 𝐺𝐹(𝑞)[𝑥]
that has 𝛼 as a root.

EXAMPLE 5.10.9: Finding the Minimal Polynomial

Consider 𝐺𝐹(24) = Z2[𝑥]/(𝑥4 + 𝑥 + 1). Find the minimal polynomial of 𝛽 = 𝑥2 + 𝑥3 over Z2. (In this
example, we have 𝑞 = 2 and 𝑚 = 4)
Solution. When doing computations by hand, it will help to have a generator 𝛼 of 𝐺𝐹(24)∗, and a
table of powers of 𝛼. It turns out that 𝛼 = 𝑥 is a generator as the following table shows.

𝛼0 = 1
𝛼1 = 𝛼
𝛼2 = 𝛼2

𝛼3 = 𝛼3

𝛼4 = 1 + 𝛼
𝛼5 = 𝛼 + 𝛼2

𝛼6 = 𝛼2 + 𝛼3

𝛼7 = 1 + 𝛼 + 𝛼3

𝛼8 = 1 + 𝛼2

𝛼9 = 𝛼 + 𝛼3

𝛼10 = 1 + 𝛼 + 𝛼2

𝛼11 = 𝛼 + 𝛼2 + 𝛼3

𝛼12 = 1 + 𝛼 + 𝛼2 + 𝛼3

𝛼13 = 1 + 𝛼2 + 𝛼3

𝛼14 = 1 + 𝛼3

𝛼15 = 1

Now, 𝛽 = 𝛼6. Hence, 𝐶(𝛽) = 𝐶(𝛼6) = {𝛼6, 𝛼12, 𝛼9 = 𝛼24, 𝛼3 = 𝛼18}. Therefore,

𝑚𝛽(𝑦) = (𝑦 − 𝛼6)(𝑦 − 𝛼12)(𝑦 − 𝛼9)(𝑦 − 𝛼3)
= [(𝑦 − 𝛼6)(𝑦 − 𝛼12)][(𝑦 − 𝛼9)(𝑦 − 𝛼3)]
= [𝑦2 + (𝛼6 + 𝛼12)𝑦 + 𝛼3][𝑦2 + (𝛼9 + 𝛼3)𝑦 + 𝛼12]
= [𝑦2 + 𝛼4𝑦 + 𝛼3][𝑦2 + 𝛼𝑦 + 𝛼12]
= 𝑦4 + (𝛼 + 𝛼4)𝑦3 + (𝛼12 + 𝛼3 + 𝛼5)𝑦2 + (𝛼16 + 𝛼4)𝑦 + 1
= 𝑦4 + 𝑦3 + 𝑦2 + 𝑦 + 1 ∈ Z2[𝑦]
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Note that the coefficients of 𝑚𝛽(𝑦) are indeed in 𝐺𝐹(2).
Note also that we simplified terms such as 𝛼3 + 𝛼6 to 𝛼2 by using the table powers of 𝛼.

2020-03-23

5.11 Finite Fields and Factoring 𝑥𝑛 − 1 over 𝐺𝐹(𝑞)
Goal: Describe the factorization of 𝑥𝑛 − 1 over 𝐺𝐹(𝑞). Using this, we will see how generator polynomials
𝑔(𝑥) can be selected so that we have a lower bound on the distance of the cyclic code generated by 𝑔(𝑥); these
codes are called BCH codes.
Let 𝑝 = char(𝐺𝐹(𝑞)). If gcd(𝑛, 𝑞) ≠ 1, then write 𝑛 = 𝑛𝑝ℓ, where ℓ ⩾ 1 and gcd(𝑛, 𝑝) = 1. Then, 𝑥𝑛 − 1 =
(𝑥𝑛−1)𝑝ℓ . Without loss of generality, we shall assume that gcd(𝑛, 𝑞) = 1.
Now, let 𝑚 be the smallest positive integer such that 𝑞𝑚 ≡ 1 (mod 𝑛); that is, 𝑛 ∣ (𝑞𝑚 − 1).
Fact: 𝑚 exists (beyond the scope of this course). Let 𝛼 be a generator of 𝐺𝐹(𝑞𝑚)∗. Let 𝛽 = 𝛼(𝑞𝑚 − 1)/𝑛 ∈ 𝐺𝐹(𝑞𝑚).
Then, ord(𝛽) = 𝑛, and the elements

1, 𝛽, 𝛽2, … , 𝛽𝑛−1

are distinct. Furthermore,
(𝛽𝑖)𝑛 = (𝛽𝑛)𝑖 = 1𝑖 = 1

for each 𝑖 ∈ [0, 𝑛 − 1]. Hence,
1, 𝛽, 𝛽2, … , 𝛽𝑛−1

are roots of 𝑥𝑛 − 1; and there aren’t any other roots. So,

𝑥𝑛 − 1 = (𝑥 − 1)(𝑥 − 𝛽)(𝑥 − 𝛽2) ⋯ (𝑥 − 𝛽𝑛−1)

is the complete factorization of 𝑥𝑛 − 1 over 𝐺𝐹(𝑞𝑚). However, we wanted the factorization of 𝑥𝑛 − 1 over
𝐺𝐹(𝑞).
Consider 𝛽𝑖 for a fixed integer 𝑖 ∈ [0, 𝑛 − 1]. Since 𝛽𝑖 is a root of 𝑥𝑛 − 1, we have 𝑚𝛽𝑖(𝑥) ∣ (𝑥𝑛 − 1). Also, the
roots of 𝑚𝛽𝑖(𝑥) are

𝐶(𝛽𝑖) = {𝛽𝑖, 𝛽𝑖𝑞, 𝛽𝑖𝑞2 , … , 𝛽𝑖𝑞𝑡−1}
where 𝑡 is the smallest positive integer such that 𝑖𝑞𝑡 ≡ 𝑖 (mod 𝑛).
This motivates the following definition.

DEFINITION 5.11.1: Cyclotomic coset, Set of cyclotomic cosets

Let gcd(𝑛, 𝑞) = 1 and a fixed integer 𝑖 ∈ [0, 𝑛 − 1]. The cyclotomic coset of 𝒒 (mod 𝒏) containing 𝒊 is

𝐶𝑖 = {𝑖, 𝑖𝑞 (mod 𝑛), 𝑖𝑞2 (mod 𝑛), … , 𝑖𝑞𝑡−1 (mod 𝑛)}

where 𝑡 is the smallest positive integer such that 𝑖𝑞𝑡 ≡ 𝑖 (mod 𝑛). Also,

𝐶 = {𝐶𝑖 ∶ 0 ⩽ 𝑖 ⩽ 𝑛 − 1}

is the set of cyclotomic cosets of 𝒒 (mod 𝑛).
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EXAMPLE 5.11.2
The cyclotomic cosets of 2 modulo 15 (𝑞 = 2, 𝑛 = 15) are:

𝐶0 = {0}
𝐶1 = {1, 2, 4, 8} = 𝐶2 = 𝐶4 = 𝐶8
𝐶3 = {3, 6, 12, 9} = 𝐶6 = 𝐶12 = 𝐶9
𝐶5 = {5, 10} = 𝐶10
𝐶7 = {7, 14, 13, 11} = 𝐶14 = 𝐶13 = 𝐶11

As the example suggests, if 𝑗 ∈ 𝐶𝑖, then 𝐶𝑗 = 𝐶𝑖.
Note:

𝑚𝛽𝑖(𝑥) = (𝑥 − 𝛽𝑖)(𝑥 − 𝛽𝑖𝑞)(𝑥 − 𝛽𝑖𝑞2) ⋯ (𝑥 − 𝛽𝑖𝑞𝑡−1)
= ∏

𝑗∈𝐶𝑖

(𝑥 − 𝛽𝑖)

is an irreducible factor of 𝑥𝑛 − 1 over 𝐺𝐹(𝑞) of degree |𝐶𝑖|.
THEOREM 5.11.3
Suppose gcd(𝑛, 𝑞) = 1.
(i) The number of irreducible factors of 𝑥𝑛 −1 over 𝐺𝐹(𝑞) is equal to the number of (distinct) cyclotomic

cosets of 𝑞 (mod 𝑛).
(ii) The number of irreducible factors of degree 𝑑 is equal to the number of (distinct) cyclotomic cosets of

𝑞 (mod 𝑛) of size 𝑑.

Alternatively,
THEOREM 5.11.4
Suppose gcd(𝑛, 𝑞) = 1. Let 𝛽 ∈ 𝐺𝐹(𝑞𝑚) have order 𝑛, where 𝑚 is the smallest positive integer such that
𝑞𝑚 ≡ 1 (mod 𝑛). Then, the irreducible factors of 𝑥𝑛 − 1 over 𝐺𝐹(𝑞) are

{𝑚𝛽𝑖(𝑥) ∶ 0 ⩽ 𝑖 ⩽ 𝑛 − 1}

where
𝑚𝛽𝑖(𝑥) = ∏

𝑗∈𝐶𝑖

(𝑥 − 𝛽𝑗)

Note: If 𝑗 ∈ 𝐶𝑖, then 𝑚𝛽𝑖(𝑥) = 𝑚𝛽𝑗(𝑥).
EXAMPLE 5.11.5
Factor 𝑥15 − 1 over 𝐺𝐹(2) (𝑞 = 2, 𝑛 = 15).
Solution. We know from the cyclotomic cosets of 2 (mod 15) that 𝑥15 −1 has 5 irreducible factors over
𝐺𝐹(2).

• 1 of degree 1
• 1 of degree 2
• 3 of degree 4

Let’s find them. The smallest 𝑚 such that 2𝑚 ≡ 1 (mod 15) is 𝑚 = 4. We need an element 𝛽 of
order 15 in 𝐺𝐹(24); we can take 𝛽 = 𝛼 where 𝛼 = 𝑥 is a generator of 𝐺𝐹(24)∗, where 𝐺𝐹(24) =
Z2[𝑥]/(𝑥4 + 𝑥 + 1). In Example 5.10.9, we listed the powers of 𝛼 = 𝑥, and we computed

𝑚𝛼6(𝑥) = 1 + 𝑥 + 𝑥2 + 𝑥3 + 𝑥4
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Similarly (left as an exercise), we can compute:

𝑚𝛼0(𝑥) = 1 + 𝑥
𝑚𝛼1(𝑥) = 1 + 𝑥 + 𝑥4

𝑚𝛼3(𝑥) = 1 + 𝑥 + 𝑥2 + 𝑥3 + 𝑥4

𝑚𝛼5(𝑥) = (𝑥 − 𝛼5)(𝑥 − 𝛼10) = 1 + 𝑥 + 𝑥2

𝑚𝛼7(𝑥) = 1 + 𝑥3 + 𝑥4

Thus,
𝑥15 − 1 = (1 + 𝑥)(1 + 𝑥 + 𝑥4)(1 + 𝑥 + 𝑥2 + 𝑥3 + 𝑥4)(1 + 𝑥 + 𝑥2)(1 + 𝑥3 + 𝑥4)

EXAMPLE 5.11.6
Determine the number of cyclic subspaces of 𝑉90(Z3).
Solution. First, observe that 𝑥90 − 1 = (𝑥10 − 1)9. To determine the factorization pattern of 𝑥10 − 1
over Z3, we need to find the cyclotomic cosets of 𝑞 = 3 (mod 𝑛 = 10):

𝐶0 = {0}
𝐶1 = {1, 3, 9, 7}
𝐶2 = {2, 6, 8, 4}
𝐶5 = {5}

Therefore, 𝑥90 − 1 = (𝑓0𝑓1𝑓2𝑓5)9 where deg(𝑓0) = 1, deg(𝑓1) = 4, deg(𝑓2) = 4, and deg(𝑓5) = 1 and
𝑓0, 𝑓1, 𝑓2, 𝑓5 are irreducible over Z3[𝑥]. Thus, the number of cyclic subspaces of 𝑉90(Z3) is

10 × 10 × 10 × 10 = 10000

Note:

𝑓0(𝑥) = 𝑚𝛽0(𝑥)
𝑓1(𝑥) = 𝑚𝛽1(𝑥)
𝑓2(𝑥) = 𝑚𝛽2(𝑥)
𝑓5(𝑥) = 𝑚𝛽5(𝑥)

where 𝛽 is an element of order 10 in 𝐺𝐹(34) since 34 ≡ 1 (mod 10).



Chapter 6
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6.1 Introduction
BCH codes are cyclic codes which are constructed in such a way that a lower bound on their distance is
known.

6.2 BCH Codes and the BCH Bound
Setup

• Assume gcd(𝑛, 𝑞) = 1.
• Let 𝑚 be the smallest positive integer such that 𝑞𝑚 ≡ 1 (mod 𝑛).
• Let 𝛼 be a generator of 𝐺𝐹(𝑞𝑚)∗, and let 𝛽 = 𝛼(𝑞𝑚 − 1)/𝑛, so ord(𝛽) = 𝑛.
• Let 𝑚𝛽𝑖(𝑥) denote the minimal polynomial of 𝛽𝑖 over 𝐺𝐹(𝑞) for a fixed integer 𝑖 ∈ [0, 𝑛 − 1].
• We will let 𝑚𝛽𝑖(𝑥) = 𝑚𝛽𝑖 (mod 𝑛)(𝑥) for 𝑖 ⩾ 𝑛 since 𝛽𝑖 = 𝛽𝑖 (mod 𝑛).

DEFINITION 6.2.1: BCH code, Designed distance

A BCH code 𝐶 over 𝐺𝐹(𝑞) of block length 𝑛 and designed distance 𝛿 is a cyclic code generated by

𝑔(𝑥) = lcm{𝑚𝛽𝑖(𝑥) ∶ 𝑎 ⩽ 𝑖 ⩽ 𝑎 + 𝛿 − 2}

for some 𝑎 ∈ Z.

Notes:
(i) lcm(3, 3, 5, 7, 7, 7, 11, 11) = 3 × 5 × 7 × 11.
(ii) 𝑚𝛽𝑖(𝑥) ∣ (𝑥𝑛 − 1) for each 𝑖, 𝑎 ⩽ 𝑖 ⩽ 𝑎 + 𝛿 − 2, it follows that 𝑔(𝑥) ∣ (𝑥𝑛 − 1). Also, 𝑔(𝑥) is monic. Hence,

𝑔(𝑥) is indeed the generator polynomial for a cyclic code of length 𝑛 over 𝐺𝐹(𝑞).
(iii) The 𝛿 − 1 consecutive powers of 𝛽: 𝛽𝑎, 𝛽𝑎+1, … , 𝛽𝑎+𝛿−2 are roots of 𝑔(𝑥).
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(iv) BCH bound: 𝑑(𝐶) ⩾ 𝛿.
EXAMPLE 6.2.2: Constructing a BCH Code

Let 𝑞 = 3, 𝑛 = 13. Then, 𝑚 = 3 since 33 ≡ 1 (mod 13). Consider 𝐺𝐹(33) = Z3[𝑥]/(𝑥3 + 2𝑥2 + 1).
Then, 𝛼 = 𝑥 is a generator of 𝐺𝐹(33)∗ as the following table shows.

𝛼0 = 1
𝛼1 = 𝛼
𝛼2 = 𝛼2

𝛼3 = 2 + 𝛼2

𝛼4 = 2 + 2𝛼 + 𝛼2

𝛼5 = 2 + 2𝛼
𝛼6 = 2𝛼 + 2𝛼2

𝛼7 = 1 + 𝛼2

𝛼8 = 2 + 𝛼 + 𝛼2

𝛼9 = 2 + 2𝛼 + 𝛼2

𝛼10 = 1 + 2𝛼 + 2𝛼2

𝛼11 = 2 + 𝛼
𝛼12 = 2𝛼 + 𝛼2

𝛼13 = 2
𝛼14 = 2𝛼
𝛼15 = 2𝛼2

𝛼16 = 1 + 2𝛼2

𝛼17 = 1 + 𝛼 + 2𝛼2

𝛼18 = 1 + 𝛼
𝛼19 = 𝛼 + 𝛼2

𝛼20 = 2 + 2𝛼2

𝛼21 = 1 + 2𝛼 + 2𝛼2

𝛼22 = 1 + 𝛼 + 𝛼2

𝛼23 = 2 + 𝛼 + 2𝛼2

𝛼24 = 1 + 2𝛼
𝛼25 = 𝛼 + 2𝛼2

𝛼26 = 1

Also, 𝛽 = 𝛼2 is an element of order 13.
Compute the cyclotomic cosets of 𝑞 = 3 mod 13 = 𝑛:

𝐶0 = {0}
𝐶1 = {1, 3, 9}
𝐶2 = {2, 6, 5}
𝐶4 = {4, 12, 10}
𝐶7 = {7, 8, 11}

The corresponding minimal polynomials are:

𝑚𝛽0(𝑥) = 𝑥 + 2
𝑚𝛽1(𝑥) = 𝑥3 + 2𝑥2 + 2𝑥 + 2
𝑚𝛽2(𝑥) = 𝑥3 + 2𝑥 + 2
𝑚𝛽4(𝑥) = 𝑥3 + 𝑥2 + 𝑥 + 2
𝑚𝛽7(𝑥) = 𝑥3 + 2𝑥 + 1

Arithmetic of 𝑚𝛽2(𝑥)

𝑚𝛽2(𝑥) = (𝑥 − 𝛽2)(𝑥 − 𝛽6)(𝑥 − 𝛽5)
= (𝑥 − 𝛼4)(𝑥 − 𝛼12)(𝑥 − 𝛼10)
= [𝑥2 − (𝛼4 + 𝛼12)𝑥 + 𝛼16] (𝑥 − 𝛼10)
= (𝑥2 + 𝛼10𝑥 + 𝛼16)(𝑥 + 𝛼23)
= 𝑥3 + (𝛼10 + 𝛼23)𝑥2 + (𝛼16 + 𝛼33)𝑥 + 𝛼39

= 𝑥3 + 2𝑥 + 2

Let
𝑔(𝑥) = 𝑚𝛽0(𝑥)𝑚𝛽1(𝑥)𝑚𝛽2(𝑥) = 2 + 2𝑥 + 𝑥4 + 2𝑥5 + 𝑥6 + 𝑥7

The roots of 𝑔(𝑥) are: 𝛽0, 𝛽1, 𝛽3, 𝛽9, 𝛽2, 𝛽6, 𝛽5.
Since 𝛽0, 𝛽1, 𝛽2, 𝛽3 are among these roots, 𝛿 = 5 ⟹ 𝑑 ⩾ 5.
Thus, 𝑔(𝑥) generates a (13, 6)-BCH code over 𝐺𝐹(3) of distance at least 5.
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EXERCISE 6.2.3
Show that

𝑔(𝑥) = 𝑚𝛽0(𝑥)𝑚𝛽4(𝑥)𝑚𝛽7(𝑥)
generates a (13, 6)-BCH code over 𝐺𝐹(3) of distance at least 5.

EXAMPLE 6.2.4

Does there exist a block code with parameters 𝑞 = 2, 𝑛 = 128, 𝑀 = 264, and 𝑑 ⩾ 22?
The corresponding sphere-packing problem is:
Can we place 264 spheres of radius ⩾ 10 in 𝑉128(Z2) so that no two spheres intersect?
Solution. Yes! We will describe an extended BCH code with these parameters.
Let 𝑞 = 2 and 𝑛 = 127. The cyclotomic cosets of 2 (mod 127) are:

𝐶0 = {0}
𝐶1 = {1, 2, 4, 8, 16, 32, 64}

𝐶3 = {3, 6, 12, 24, 48, 96, 65}
𝐶5 = {5, 10, 20, 40, 80, 33, 66}
𝐶7 = {7, 14, 28, 56, 112, 97, 67}
𝐶9 = {9, 18, 36, 72, 17, 34, 68}

𝐶11 = {11, 22, 44, 88, 49, 98, 69}
𝐶13 = {13, 26, 52, 104, 81, 35, 70}
𝐶15 = {15, 30, 60, 120, 113, 99, 71}
𝐶19 = {19, 38, 76, 25, 50, 100, 73}

⋮

We have 𝑚 = 7. Let 𝛽 be an element of order 127 in 𝐺𝐹(27)∗. Then,

𝑔(𝑥) = 𝑚𝛽1(𝑥)𝑚𝛽3(𝑥)𝑚𝛽5(𝑥)𝑚𝛽7(𝑥)𝑚𝛽9(𝑥)𝑚𝛽11(𝑥)𝑚𝛽13(𝑥)𝑚𝛽15(𝑥)𝑚𝛽19(𝑥)

is a degree-63 divisor of 𝑥127 − 1 over 𝐺𝐹(2).
Moreover, the roots of 𝑔(𝑥) include the follow 20 consecutive powers of 𝛽: 1, 2, … , 20.
Thus, 𝑔(𝑥) generates a binary (127, 64)-BCH code 𝐶 with distance ⩾ 21.
Finally, the extended code of 𝐶 (i.e., the code obtained by adding a parity bit to each codeword in
𝐶–see A2Q5) is a binary (128, 64)-code with distance ⩾ 22.
Note: The rate of the code is 1/2.

DEFINITION 6.2.5: Vandermonde matrix
A Vandermonde matrix over a field 𝐹 is an 𝑛 × 𝑛 matrix of the form

𝐴 (𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛) =
⎡
⎢
⎢
⎢
⎣

1 𝑥1 𝑥2
1 ⋯ 𝑥𝑛−1

1
1 𝑥2 𝑥2

2 ⋯ 𝑥𝑛−1
2

1 𝑥3 𝑥2
3 ⋯ 𝑥𝑛−1

3
⋮ ⋮
1 𝑥𝑛 𝑥2

𝑛 ⋯ 𝑥𝑛−1
𝑛

⎤
⎥
⎥
⎥
⎦

where 𝑥𝑖 ∈ 𝐹 .

THEOREM 6.2.6
det(𝐴) ≠ 0 if and only if 𝑥𝑖 are pairwise distinct.

THEOREM 6.2.7: BCH Bound
Let 𝐶 be an (𝑛, 𝑘)-BCH code over 𝐺𝐹(𝑞) with designed distance 𝛿. Then, 𝑑(𝐶) ⩾ 𝛿.
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Proof of Theorem 6.2.7

Let 𝑔(𝑥) be the generator polynomial for 𝐶. Suppose that 𝛽, 𝛽2, … , 𝛽𝛿−1 are the roots of 𝑔(𝑥), where
𝛽 ∈ 𝐺𝐹(𝑞𝑚) is an element of order 𝑛. For simplicity, we have chosen 𝑎 = 1. Hence,

𝑔(𝑥) = lcm{𝑚𝛽𝑖(𝑥) ∶ 1 ⩽ 𝑖 ⩽ 𝛿 − 1}

Now, let 𝒓 ∈ 𝑉𝑛(𝐺𝐹(𝑞)). Then,

𝒓 ∈ 𝐶 ⟺ 𝑔(𝑥) ∣ 𝑟(𝑥)
⟺ 𝑚𝛽𝑖(𝑥) ∣ 𝑟(𝑥) ∀𝑖 ∈ [1, 𝛿 − 1]
⟺ 𝑟(𝛽𝑖) = 0 ∀𝑖 ∈ [1, 𝛿 − 1]

Let

𝐻1 =
⎡
⎢⎢
⎣

1 𝛽 𝛽2 ⋯ 𝛽𝑛−1

1 𝛽2 (𝛽2)2 ⋯ (𝛽2)𝑛−1

⋮
1 𝛽𝛿−1 (𝛽𝛿−1)2 ⋯ (𝛽𝛿−1)𝑛−1

⎤
⎥⎥
⎦(𝛿−1)×𝑛

Now, 𝒓 ∈ 𝐶 ⟺ 𝐻1𝒓⊤ = 𝟎. Furthermore, no 𝑡 = 𝛿 − 1 columns of 𝐻1 are linearly dependent over
𝐺𝐹(𝑞𝑚) since

det
⎡
⎢⎢
⎣

𝛽𝑖1 𝛽𝑖2 ⋯ 𝛽𝑖𝑡

(𝛽2)𝑖1 (𝛽2)𝑖2 ⋯ (𝛽2)𝑖𝑡

⋮
(𝛽𝛿−1)𝑖1 (𝛽𝛿−1)𝑖2 ⋯ (𝛽𝛿−1)𝑖𝑡

⎤
⎥⎥
⎦𝑡×𝑡

=
𝑡

∏
𝑗=1

𝛽𝑖𝑗 det[ 𝐴(𝛽𝑖1 , … , 𝛽𝑖𝑡)⎵⎵⎵⎵⎵⎵
Vandermonde Matrix

] ≠ 0

since 𝛽𝑖1 , … , 𝛽𝑖𝑡 are distinct.
Since 𝐺𝐹(𝑞) ⊆ 𝐺𝐹(𝑞𝑚), we also have that no 𝛿 − 1 columns of 𝐻1 are linearly dependent over 𝐺𝐹(𝑞).
Now, if 𝒄 ∈ 𝐶, 𝒄 ≠ 𝟎, 𝑤(𝒄) < 𝛿, then 𝐻1𝒄⊤ = 𝟎 gives 0 as a non-trivial linear combination of 𝛿 − 1 (or
fewer) columns of 𝐻1, contradicting the fact what we just proved. Hence, every non-zero codeword in
𝐶 has weight ⩾ 𝛿. Thus, 𝑑(𝐶) ⩾ 𝛿.

2020-03-30

6.3 Decoding BCH Codes
Over the years, many efficient algorithms have been designed for decoding BCH codes. One such algorithm is
described in pages 215–219 of the course textbook. This algorithm is rather complicated. Instead of studying
this algorithm, I will present a decoding algorithm for one specific BCH code, called 𝐶15. The decoding
algorithm for 𝐶15 captures the essential idea of a more general decoding algorithm for all BCH codes.
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DEFINITION 6.3.1: 𝑪𝟏𝟓

Let 𝑞 = 2, 𝑛 = 15, 𝑚 = 4. Let 𝐺𝐹(24) = Z2[𝑥]/(𝑥4 + 𝑥 + 1). Then, 𝛼 = 𝑥 is a generator of 𝐺𝐹(24)∗

and 𝛽 = 𝛼 is an element of order 15.
Let

𝑔(𝑥) = 𝑚𝛽(𝑥)𝑚𝛽3(𝑥) = (𝑥4 + 𝑥 + 1)(𝑥4 + 𝑥3 + 𝑥2 + 𝑥 + 1)
= 1 + 𝑥4 + 𝑥6 + 𝑥7 + 𝑥8

The roots of 𝑔(𝑥) include 𝛽, 𝛽2, 𝛽3, 𝛽4. So, 𝑔(𝑥) generates a (15, 7)-BCH code over 𝐺𝐹(2) with 𝛿 = 5,
so 𝑑 ⩾ 5. In fact, 𝑑 = 5 since 𝑔(𝑥) has weight 5.
This BCH code is called 𝑪𝟏𝟓 ∶ (𝟏𝟓, 𝟕, 𝟓)-binary code.
Note: 𝐶15 is a 2-error correcting code.

Computing Syndromes
Let’s first find a PCM for 𝐶15. Let 𝒓 ∈ 𝑉15(Z2). Then

𝒓 ∈ 𝐶15 ⟺ 𝑔(𝑥) ∣ 𝑟(𝑥)
⟺ 𝑚𝛽(𝑥) ∣ 𝑟(𝑥) and 𝑚𝛽3(𝑥) ∣ 𝑟(𝑥)
⟺ 𝑟(𝛽) = 0 and 𝑟(𝛽3) = 0.

So, a PCM for 𝐶15 is
𝐻 = [ 𝛽0 𝛽1 𝛽2 𝛽3 ⋯ 𝛽14

(𝛽3)0 (𝛽3)1 (𝛽3)2 (𝛽3)3 ⋯ (𝛽3)15]
8×15

Note: 𝐻 is a 2 × 15 matrix over 𝐺𝐹(24), and an 8 × 15 matrix over 𝐺𝐹(2).

Syndromes
The syndrome of 𝒓 is

𝐻𝒓⊤ = [ 𝑟(𝛽)
𝑟(𝛽3)] = [𝑠1

𝑠3
]

(So, we don’t need 𝐻 to compute syndromes)
Recall: 𝐶15 is a (15, 7, 5)-BCH code over 𝐺𝐹(2). The syndrome of 𝒓 consists of 𝑠1 = 𝑟(𝛽) and 𝑠3 = 𝑟(𝛽3). We
have 𝑠1, 𝑠3 ∈ 𝐺𝐹(24).

Decoding strategy
If there is an error vector 𝒆 of weight at most 2, that has syndrome (𝑠1, 𝑠3), then we decode 𝒓 to 𝒓 − 𝒆.
Otherwise, we reject 𝒓.

Decoding Algorithm for C15 [With Justification]
• Received word is 𝒓 ∈ 𝑉15(𝐺𝐹(2)).
• Compute 𝑠1 = 𝑟(𝛽) and 𝑠3 = 𝑟(𝛽3).
• If 𝑠1 = 0 and 𝑠3 = 0, then accept 𝒓; STOP.
• Suppose 𝑒(𝑥) = 𝑥𝑖; i.e., exactly one error has occurred in the 𝑖th position 𝑖 ∈ [0, 14]. Then, 𝑠1 = 𝑟(𝛽) =

𝑐(𝛽) + 𝑒(𝛽) = 𝑒(𝛽) = 𝛽𝑖, and 𝑠3 = 𝑟(𝛽3) = 𝑒(𝛽3) = 𝛽3𝑖. Hence, 𝑠3 = 𝑠3
1. If 𝑠3

1 = 𝑠3, then correct 𝒓 in
position 𝑖 where 𝑠1 = 𝛽𝑖; STOP.
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• If 𝑠1 = 0 (and 𝑠3 ≠ 0), then reject 𝒓; STOP. Since 𝑟(𝛽3) = 𝑒(𝛽3) ≠ 0, we have 𝑒(𝑥) ≠ 0. If 𝑠1 = 𝑟(𝛽) = 0,
then 𝑒(𝛽) = 0, so 𝑚𝛽(𝑥) ∣ 𝑒(𝑥), so 𝑤(𝒆) ⩾ 3 since the BCH code generated by 𝑚𝛽(𝑥) has 𝛿 ⩾ 3.

• If exactly two errors have occurred, say in positions 𝑖 and 𝑗 with 𝑖 ≠ 𝑗 and 𝑖, 𝑗 ∈ [0, 14], then 𝑒(𝑥) = 𝑥𝑖+𝑥𝑗.
Thus, 𝑠1 = 𝑟(𝛽) = 𝑒(𝛽) = 𝛽𝑖 + 𝛽𝑗 and

𝑠3 = 𝑟(𝛽3) = 𝑒(𝛽3)
= 𝛽3𝑖 + 𝛽3𝑗

= (𝛽𝑖 + 𝛽𝑗)(𝛽2𝑖 + 𝛽𝑖+𝑗 + 𝛽2𝑗)
= (𝛽𝑖 + 𝛽𝑗)((𝛽𝑖 + 𝛽𝑗)2 + 𝛽𝑖+𝑗)
= 𝑠1(𝑠2

1 + 𝛽𝑖+𝑗)
therefore, 𝑠3/𝑠1 + 𝑠2

1 = 𝛽𝑖+𝑗. Hence, 𝛽𝑖 and 𝛽𝑗 are the roots of the polynomial 𝑧2 + (𝛽𝑖 + 𝛽𝑗)𝑧 + 𝛽𝑖+𝑗 =
𝑧2 + 𝑠1𝑧 + ( 𝑠3

𝑠1
+ 𝑠2

1) = 0. Form the error locator polynomial 𝜎(𝑧) = 𝑧2 + 𝑠1𝑧 + ( 𝑠3
𝑠1

+ 𝑠2
1), and find its

roots, if any, in 𝐺𝐹(24). If there are two roots, 𝛽𝑖 and 𝛽𝑗, correct 𝒓 in positions 𝑖 and 𝑗; STOP.
• Reject 𝒓.

Algorithm 5: Decoding Algorithm for 𝐶15
1 Received word is 𝒓
2 𝑠1 ← 𝑟(𝛽)
3 𝑠3 ← 𝑟(𝛽3)
4 if 𝑠1 = 0 and 𝑠3 = 0 then
5 return 𝒓
6 if 𝑠3

1 = 𝑠3 then
7 if 𝑠1 = 𝛽𝑖 then
8 return (𝑟1, … , 𝑟15) where 𝑟𝑖 ← 𝑟𝑖

9 if 𝑠1 = 0 (and 𝑠3 ≠ 0) then
10 return
11 Form the error locator polynomial 𝜎(𝑧) = 𝑧2 + 𝑠1𝑧 + ( 𝑠3

𝑠1
+ 𝑠2

1) and find its roots, if any, in 𝐺𝐹(24)
12 if there are two (distinct) roots 𝛽𝑖 and 𝛽𝑗 then
13 return corrected 𝒓 in positions 𝑖 and 𝑗
14 return

REMARK 6.3.2
We start position count from 0.

EXAMPLE 6.3.3: Decoding 𝐶15

Decode 𝒓 = (10001 00110 00000) ⟺ 1 + 𝑥4 + 𝑥7 + 𝑥8.

𝑠1 = 𝑟(𝛽) = 1 + 𝛽4 + 𝛽7 + 𝛽8 = 𝛽 + 𝛽11 = 𝛽6

𝑠3 = 𝑟(𝛽3) = 1 + 𝛽12 + 𝛽6 + 𝛽9 = 𝛽3

𝑠3
1 = (𝛽6)3 = 𝛽18 = 𝛽3 = 𝑠3,

so one error has occurred in position 6. So, correct 𝒓 to

𝒄 = (10001 01110 00000)

We can verify that 𝒄 ∈ 𝐶15 by checking 𝑔(𝑥) ∣ 𝑐(𝑥) or check 𝑐(𝛽) = 0 and 𝑐(𝛽3) = 0.
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EXAMPLE 6.3.4: Decoding 𝐶15

Decode 𝒓 = (00111 01110 00000) ⟺ 𝑥2 + 𝑥3 + 𝑥4 + 𝑥6 + 𝑥7 + 𝑥8.

𝑠1 = 𝑟(𝛽) = 𝛽2 + 𝛽3 + 𝛽4 + 𝛽6 + 𝛽7 + 𝛽8 = 𝛽13

𝑠3 = 𝑟(𝛽3) = 𝛽6 + 𝛽9 + 𝛽12 + 𝛽3 + 𝛽6 + 𝛽9 = 𝛽10

𝑠3
1 = 𝛽39 = 𝛽9 ≠ 𝑠3

Error locator polynomial:

𝜎(𝑧) = 𝑧2 + 𝑠1𝑧 + (𝑠3
𝑠1

+ 𝑠2
1) = 𝑧2 + 𝛽13𝑧 + (𝛽12 + 𝛽11) = 𝑧2 + 𝛽13𝑧 + 1

Let its roots be 𝛽𝑖 and 𝛽𝑗. Then, 𝛽𝑖 ⋅𝛽𝑗 = 1 = 𝛽0. So, 𝑖+𝑗 ≡ 0 (mod 15). Hence, check if 𝛽𝑖 +𝛽𝑗 = 𝛽13

for
(𝑖, 𝑗) ∈ {(1, 14), (2, 13), (3, 12), (4, 11), (5, 10), (6, 9), (7, 8)}

Discover that 𝛽4 + 𝛽11 = 𝛽13. So, correct 𝒓 in positions 4 and 11:

𝒄 = (00110 01110 01000)

More Generally
Suppose 𝐶 is a binary (𝑛, 𝑘)-BCH code with designed distance 𝛿.
Suppose the generator polynomial of 𝐶 is

𝑔(𝑥) = lcm{𝑚𝛽𝑖(𝑥) ∶ 𝑖 ∈ [1, 𝛿 − 1]}

where 𝛽 is an element of order 𝑛 in 𝐺𝐹(2𝑚). Then, 𝑑(𝐶) ⩾ 𝛿. Let 𝑡 = ⌊ 𝛿−1
2 ⌋.

Suppose 𝒄 ∈ 𝐶 is transmitted, 𝑤(𝒆) ⩽ 𝑡, and 𝒓 is received.
Compute 𝑠𝑖 = 𝑟(𝛽𝑖) for each 𝑖 ∈ [1, 𝛿 − 1], and form the syndrome polynomial:

𝑠(𝑧) = 𝑠1 + 𝑠2𝑧 + 𝑠3𝑧3 + ⋯ + 𝑠𝛿−1𝑧𝛿−2

Fact: From 𝑠(𝑧), the error locator polynomial can be efficiently computed. The roots of 𝜎(𝑧) are 𝛽−𝑗, where
𝑗 are the error positions.
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7.1 Reed-Solomon Codes
Invented by Irving Reed and Gustave Solomon in 1960.

Codes

Block codes

Linear codes

Cyclic codes

BCH codes

RS codes

DEFINITION 7.1.1: Reed-solomon code
A Reed-Solomon (RS) code is a BCH code of length 𝑛 over 𝐺𝐹(𝑞) where 𝑛 ∣ (𝑞 − 1).

REMARK 7.1.2
Since 𝑞1 ≡ 1 mod 𝑛, we have 𝑚 = 1.

EXAMPLE 7.1.3

Let 𝑞 = 24 and 𝐺𝐹(24) = Z2/(𝛼4 + 𝛼 + 1). Recall that 𝛼 is a generator of 𝐺𝐹(24)⋆.
Let 𝛽 = 𝛼3, then ord(𝛽) = 5, (so 𝑞 = 16, 𝑛 = 5).

70
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Let

𝑔(𝑥) = lcm{𝑚𝛽(𝑥), 𝑚𝛽2(𝑥), 𝑚𝛽3(𝑥)} = (𝑥 − 𝛽)(𝑥 − 𝛽2)(𝑥 − 𝛽3) = 𝑥3 + 𝛼11𝑥2 + 𝛼2𝑥 + 𝛼3

Then, 𝑔(𝑥) generates a (5, 2)-RS code 𝐶 over 𝐺𝐹(24) with 𝛿 = 4. In fact, 𝑑(𝐶) = 4 since 𝑔(𝑥) is a
codeword of weight 4.
A generator matrix for 𝐶 is

𝐺 = [𝛼3 𝛼2 𝛼11 1 0
0 𝛼3 𝛼2 𝛼11 1]

2×5

Consider the code 𝐶′ obtained from 𝐶 by replacing each symbol in codewords of 𝐶 by their binary
vector representation. For example,

e.g., (𝛼3, 𝛼2, 𝛼11, 1, 0) ⟷ (0001 0010 0111 1000 0000)

It is not difficult to see that 𝐶′ is closed under vector addition and scalar multiplication over 𝐺𝐹(2).
Thus, 𝐶′ is a (20, 8)-binary code.

DEFINITION 7.1.4: RS code 𝑪 of length 𝒏 over 𝑮𝑭 (𝒒) with designed distance 𝜹

Suppose 𝑛 ∣ (𝑞 − 1), and let 𝛽 ∈ 𝐺𝐹(𝑞) be an element of order 𝑛. Then, 𝑚𝛽𝑖(𝑥) = 𝑥 − 𝛽𝑖 for all 𝑖.
An RS code 𝑪 of length 𝒏 over 𝑮𝑭 (𝒒) with designed distance 𝜹 is a cyclic code over 𝐺𝐹(𝑞) with
generator polynomial

𝑔(𝑥) = (𝑥 − 𝛽𝑎)(𝑥 − 𝛽𝑎+1)(𝑥 − 𝛽𝑎+2) ⋯ (𝑥 − 𝛽𝑎+𝛿−2) for some 𝑎.

Since deg(𝑔) = 𝛿 − 1, we have 𝑤(𝑔) ⩽ 𝛿, so 𝑑(𝐶) ⩽ 𝛿. By the BCH bound, 𝑑(𝐶) ⩾ 𝛿, hence 𝑑(𝐶) = 𝛿.

Since dim(𝐶) = 𝑘 = 𝑛−deg(𝑔) = 𝑛−𝛿+1, we have 𝑘 = 𝑛−𝑑+1, so 𝑑 = 𝑛−𝑘+1. Recall that 𝑑 ⩽ 𝑛−𝑘+1 for
any (𝑛, 𝑘, 𝑑)-code. Thus, RS codes are optimal in the sense that, for any fixed 𝑛, 𝑘, 𝑞, they achieve maximum
distance among all (𝑛, 𝑘, 𝑑)-codes over 𝐺𝐹(𝑞).

RS Codes Have Good (Cyclic) Burst Error Correcting Capability
• Let 𝐶 be a RS code of length 𝑛 over 𝐺𝐹(2𝑟) and designed distance 𝛿. Consider 𝒄 = (𝒄1, 𝒄2, … , 𝒄𝑛) ∈ 𝐶,

and notice that 𝒄𝑖 ∈ 𝐺𝐹(2𝑟). Let 𝑒 = ⌊ 𝑑−1
2 ⌋ = ⌊ 𝑛−𝑘

2 ⌋.
• By writing each 𝒄𝑖 as a binary vector of length 𝑟, we can view 𝒄 as a binary vector of length 𝑛𝑟 bits.
• Now, if 𝒄 is transmitted and if a cyclic burst error of length ⩽ 1 + (𝑒 − 1)𝑟 bits is introduced, then at

most 𝑒 symbols of 𝒄 are received incorrectly. Thus, the received word can be decoded correctly.
THEOREM 7.1.5
Let 𝐶 be an (𝑛, 𝑘)-RS code over 𝐺𝐹(2𝑟). Then 𝐶′, the code obtained by replacing each symbol in the code-
words of 𝐶 by the 𝑟-bit binary representations, is a binary (𝑛𝑟, 𝑘𝑟)-code with cyclic burst error correcting
capability 𝑡 = 1 + (⌊𝑛 − 𝑘

2 ⌋ − 1)𝑟.

EXAMPLE 7.1.6

Consider 𝐺𝐹(28) = Z2[𝛼]/(𝛼8 +𝛼4 +𝛼3 +𝛼2 +1). Then 𝛽 = 𝛼 has order 𝑛 = 255 (so 𝑞 = 256, 𝑛 = 255).
Let

𝑔(𝑥) =
24
∏
𝑖=1

(𝑥 − 𝛽𝑖)
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Then 𝑔(𝑥) is the generator polynomial for a (255, 231, 25)-RS code 𝐶 with error correcting capability
𝑒 = 12.

• The related code 𝐶′ is a (2040, 1848)-binary code with cyclic burst error correcting capability
𝑡 = 89.

• The code 𝐶, and others derived from it, have widely been used in practice, including in CDs,
DVDs, and QR codes.



Chapter 8

Code-Based Cryptography

8.1 Public-Key Encryption
• Goal: Confidentiality, when communicating over an insecure channel.
• Main feature: The two communicating parties do not share any secrets. They only share public infor-

mation that has been authenticated.

Alice Bob

Eve

Unsecured Channel

Secure Channel

8.2 Basic RSA Encryption Scheme
Key Generation
Alice does the following:

1. Randomly select two large prime numbers, 𝑝 and 𝑞.
2. Compute 𝑛 = 𝑝𝑞 and 𝜙(𝑛) = (𝑝 − 1)(𝑞 − 1).
3. Select arbitrary 𝑒, 1 < 𝑒 < 𝜙(𝑛) with gcd(𝑒, 𝜙(𝑛)) = 1.
4. Compute 𝑑 = 𝑒−1 mod 𝜙(𝑛).
5. Alice’s public key is (𝑛, 𝑒), while her private key is 𝑑. The only known way to recover 𝑑 from the public

key is to first factor 𝑛 to find 𝑝 and 𝑞. So, the private key remains secret to Alice as long is 𝑛 is large
enough so that no one else can factor it.

Encryption
To encrypt a message for Alice, Bob does:

73
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1. Obtain an authentic copy of Alice’s public key (𝑛, 𝑒).
2. Represent the message 𝑚 as an integer [0, 𝑛 − 1].
3. Compute 𝑐 = 𝑚𝑒 mod 𝑛.
4. Send 𝑐 to Alice over the unsecured channel.

Decryption
To decrypt 𝑐, Alice does:

1. Compute 𝑚 = 𝑐𝑑 mod 𝑛.

8.3 The Threat of Quantum Computers
• The security of RSA is based on the hardness of factoring 𝑛.
• It has been known since 1994 that factoring 𝑛 is easy on a quantum computer.
• Elliptic-curve cryptography, a widely used alternative to RSA can also be broken easily by quantum

computers.
• We are still very far away from being able to build large-scale quantum computers.
• Nonetheless, it seems prudent to develop public-key encryption schemes that resist attacks even by quan-

tum computers.

8.4 McEliece Public-Key Encryption Scheme (1978)
• Security is based on the fact that decoding a random (binary) linear code is NP-hard.
• Idea:

– Select a code 𝐶 for which an efficient decoding algorithm is known.
– Disguise 𝐶 to get “random looking” code ̂𝐶.
– ̂𝐶 is your public key, while the “disguising factor” is your private key.
– Encryption: Encode 𝒎 to get ̂𝒄 ∈ ̂𝐶, add a random error 𝒆 to ̂𝒄 to get ̂𝒓 ( ̂𝒓 = ̂𝒄 + 𝒆), and send ̂𝒓.
– Decryption: Use the “disguising factor” to convert the decoding problem to one for 𝐶 (𝒓 = 𝒄 + 𝒆),

and then use the decoding algorithm for 𝐶 to recover 𝒆 and 𝒎.

Key Generation
Alice does the following:

1. Select a 𝑘 × 𝑛 generator matrix 𝐺 for a 𝑡-error correcting binary Goppa code 𝐶.
2. Select a random 𝑘 × 𝑘 binary invertible matrix 𝑆.
3. Select a random 𝑛 × 𝑛 permutation matrix 𝑃 .
4. Compute ̂𝐺 = 𝑆𝐺𝑃 ( ̂𝐺 is a 𝑘 × 𝑛 matrix of rank 𝑘).
5. Alice’s public key is ( ̂𝐺, 𝑡), while her private key is (𝐺, 𝑆, 𝑃 ).

Conjecture: ̂𝐺 is indistinguishable from a random 𝑘 × 𝑛 binary matrix of rank 𝑘.
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Encryption
To encrypt a message for Alice, Bob does:

1. Obtain an authentic copy of Alice’s public key ( ̂𝐺, 𝑡).
2. Represent the message as a binary vector 𝒎 of length 𝑘.
3. Select a random binary vector 𝒆 ∈ 𝑉𝑛(Z2) of weight 𝑡.
4. Compute ̂𝒓 = 𝒎 ̂𝐺 + 𝒆, and send ̂𝒓 to Alice.

Decryption
To decrypt ̂𝒓, Alice does the following:

1. Compute 𝒓 = ̂𝒓𝑃 −1.
[Note: 𝒓 = ̂𝒓𝑃 −1 = 𝒎 ̂𝐺𝑃 −1 + 𝒆𝑃 −1 = (𝒎𝑆𝐺𝑃)𝑃 −1 + 𝒆𝑃 −1 = (𝒎𝑆)𝐺 + 𝒆𝑃 −1]

2. Use the decoding algorithm for 𝐶 to recover 𝒎′ = 𝒎𝑆.
3. Compute 𝒎 = 𝒎′𝑆−1.

Security is based on the hardness of decoding ̂𝐶 (the code generated by ̂𝐺).

8.5 Implementation Notes
• Suggested parameters: 𝑛 = 4096, 𝑘 = 3496, and 𝑡 = 50.
• Encryption is very fast.
• Decryption is relatively fast.
• Appears to resist quantum attacks.

Using Other Codes
Proposals that replace the Goppa codes with RS codes, LDPC codes, convolutional codes, etc., have all been
broken.
One secure alternative is to use “quasi-cyclic MDPC codes.”
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