
CO 250 - Introduction to Optimization

Cameron Roopnarine

Last updated: June 6, 2020



Contents

Contents 1

1 Introduction 3

2 Introduction to Graphs 8

3 Solving Linear Programs 14
3.1 Possible Outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1.1 Infeasible Linear Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.2 Unbounded Linear Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.3 Linear Programs with Optimal Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Standard Equality Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 Bases and Canonical Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3.1 Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3.2 Canonical Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4 The Simplex Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4.1 An Example with an Optimal Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4.2 Convergence of Simplex Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4.3 Implementation of the Simplex Algorithm in “Big Data” . . . . . . . . . . . . . . . . . . 25

3.5 Finding Feasible Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.5.1 The Two Phase Simplex Algorithm—An Optimal Example . . . . . . . . . . . . . . . . 27
3.5.2 The Two Phase Simplex Algorithm—An Infeasible Example . . . . . . . . . . . . . . . . 28

3.6 Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.6.1 Feasible Region of LPs and Polyhedra . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.6.2 Convexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.6.3 Extreme Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.6.4 Geometric Interpretation of Simplex Algorithm . . . . . . . . . . . . . . . . . . . . . . 34

4 Duality Theory 36
4.1 Weak Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Strong Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3 A Geometric Characterization of Optimality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3.1 Complementary Slackness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3.2 Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5 Duality Through Examples 41
5.1 The Shortest Path Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2 An Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.3 Minimum Cost Perfect Matching Problem in Bipartite Graphs . . . . . . . . . . . . . . . . . . . 43

6 Non-linear Optimization 48
6.1 Convexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

1



CONTENTS 2

6.1.1 Convex Functions and Epigraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.1.2 Level Sets and Feasible Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.2 Relaxing Convex NLPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.2.1 Subgradients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49



Chapter 1

Introduction

2019-09-05

EXAMPLE 1.0.1 (Manufacturing Tables and Chairs).
Process: raw materials→ machine→ labour→ final products
Rules:

• Company has 30 workers and 40 machines available 40hrs/week.
• Manufacturing a table requires 2 machine-hours and 1 labour-hour.
• Manufacturing a chair requires 1 machine-hours and 3 labour-hours.
• Each manufacturer table yields $10 of profit and each manufacturer chair yields $15 of profit.

Goal: The company wants to prepare a weekly production plan which maximizes total profit.
Variables

• x1 := the number of tables manufactured per week
• x2 := the number of chairs manufactured per week

Objective function
The total profit per week can be modelled by 10x1 + 15x2, which is what we want to maximize.
Constraints

• Machine-hours used per week ≤ machine-hours available per week which can be modelled by
2x1 + x2 6 40× 40 = 1600

• Labour-hours used per week ≤ labour-hours available per week which can be modelled by
x1 + 3x2 6 30× 40 = 1200

We can then formulate the linear programming (LP) model:

minimize 10x1 + 15x2

subject to 2x1 + x2 6 1600
x1 + 3x2 6 1200
x1, x2 > 0

(LP)

An optimal solution to the LP using an algorithm later in in this course is x := (720, 160)>, which means
that we want 720 tables, and 160 chairs.

EXAMPLE 1.0.2 (A General Production Planning Problem). There are resources I := {1, . . . ,m} and
products J := {1, . . . , n}. There are bi units of resource i available per week ∀i ∈ I. One unit of product
j yields cj of profit for ∀j ∈ J . Manufacturing one unit of product j requires aij units of resource
i. We want to maximize the total profit of this manufacturing process. xj := amount of product j

3



CHAPTER 1. INTRODUCTION 4

manufactured per week.

maximize c1x1 + · · ·+ cnxn =
n∑
j=1

cjxj

subject to
n∑
j=1

aijxij 6 bi ∀i ∈ {1, . . . ,m}

xj > 0 ∀j ∈ {1, . . . , n}

(LP)

REMARK 1.0.3. If x,y ∈ Rn and x 6 y, then x1 6 y1, . . . , xn 6 yn.
REMARK 1.0.4.

c :=

 c1
...
cn

 x :=

 x1
...
xn

 A :=

 a11 · · · a1n
... ...

am1 · · · amn

 b :=

 b1
...
bn


Given A, b, c with x ∈ Rn as the variable vector, we realize that c>x =

n∑
j=1

cjxj is exactly the model that we
wanted to maximize in LP such that it satisfies Ax 6 b, with x > 0.

DEFINITION 1.0.5. Let f : Rn → R. f is an affine function if f(x) = a>x+ β for some a ∈ Rn and
β ∈ R.

DEFINITION 1.0.6. Let f : Rn → R. f is a linear function if f is an affine function with β = 0.

REMARK 1.0.7. Every linear function is affine, but the converse is not true.

DEFINITION 1.0.8. A linear constraint is one of

f(x) 6 β

f(x) = β

f(x) > β

where f is a linear function and β ∈ R.

DEFINITION 1.0.9. A linear program (LP) is the problem of minimizing or maximizing an affine
function subject to a finite number of linear constraints.

2019-09-10

Recall the family of LP problems:
max{c>x : Ax 6 b, x > 0}

An assignment of values to all variables such that every constraint is satisfied is called a feasible solution.
A feasible region is the set of all feasible solutions. An optimal solution is a feasible solution which has the
best possible objective value among all feasible solutions. Note that an optimization problem may have many
optimal solutions, but it may have one optimal value.
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EXAMPLE 1.0.10 (Extension of 1.0.1). Suppose an entrepreneur offers at most 500machine hours/week
(rental) at $2.5/hour. Can we incorporate this new situation into our mathematical model? Can it still
be a LP? Yes. x3 := the number of machine hours rented from the business person per week.

maximize 10x1 + 15x2 − 2.5x3

subject to 2x1 + x2 6 1600 + x3

x1 + 3x2 6 1200
x3 6 500
x1, x2, x3 > 0

(LP)

EXAMPLE 1.0.11 (Constraints on Ratios, Percentages and Proportions). Suppose we are required to
manufacture at least 10 tables and 80 chairs per week. Also

#of tables manufactured/week/#of chairs manufactured/week > 6 x1 > 10
x2 > 80
x2/x1 > 6

 ⇐⇒
 x1 > 10

x2 > 80
x2 > 6x1


In general, suppose f, g are affine functions

b1 6 f(x)/g(x) 6 b2

provided that g(x) > 0 for every feasible solution x we can equivalently write

f(x) 6 b2g(x)
f(x) > b1g(x)

EXAMPLE 1.0.12 (Multi-period, Multi-stage Optimization Problems). Consider planning for multiple
periods where in each period we want to decide how much to produce, how much to keep in stock
(inventory) for the upcoming periods.
Variables
For all i ∈ {1, . . . , T}, where T is the last period, we have:

• si := the amount of units sold in period i
• pi := the amount of units purchased/manufactured of period i
• ti := the amount of units in stock at the end of period i
• t0 := the amount of units in stock at the beginning of the first period.

Key Constraints

pi + ti−1 = si + ti ∀i ∈ {1, . . . , T}
pi, si, di > 0 ∀i ∈ {1, . . . , T}

REMARK 1.0.13. Typically we have additional constraints on si, pi, ti, t0.

DEFINITION 1.0.14. An integer program (IP) is obtained from linear program by requiring a non-
empty subset of variables to be integers. If all variables are restricted to be integers, we call the integer
program a Pure IP, and if at least some variables may take real values, we call the integer program a
Mixed IP.

2019-09-12
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REMARK 1.0.15. In integer programs, some examples of constraints that can be used are:
• xi ∈ Z

• x ∈ Zn

• xi ∈ {0, 1}

• xi is an integer
• xi ∈ {0, 1}n

EXAMPLE 1.0.16 (Assignment Problem). SPIT has a campus near the North Pole. They have three
buildings named A, B, C, which need to be renovated to be served as one of a Library, Laboratory, or
Gym (sometimes called functions). Each building must be assigned one activity, and each activity must
be assigned one building. Renovation costs in millions of dollars are given:

Library Laboratory Gym
A 10 60 20
B 60 70 50
C 20 60 40

Find an assignment of activities to buildings so that the total renovation cost is minimized.
Solution. Let us generalize to n buildings and n activities.

xij :=
{

1, if i is assigned to activity j
0, otherwise ∀i, j ∈ {1, . . . , n}

cij := renovation cost for assigning activity j to building i

minimize
n∑
i=1

n∑
j=1

cijxij

subject to
n∑
i=1

xij = 1 ∀j ∈ {1, . . . , n}

n∑
j=1

xij = 1 ∀i ∈ {1, . . . , n}

xij = {0, 1} ∀i, j ∈ {1, . . . , n}

(IP)

• First constraint =⇒ every activity is assigned exactly one building
• Second constraint =⇒ every building is assigned exactly one activity
• Third constraint =⇒ xij is a binary variable that takes values only 1 or 0. If we wanted an

IP formulation, we would remove the constraint xij = {0, 1} and add: xij > 0, xij 6 1 and xij
integer.
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Suppose cij ∈ R and consider the inequality version (if we don’t assign exactly one item to another):

minimize
n∑
i=1

n∑
j=1

cijxij

subject to
n∑
i=1

xij 6 1 ∀j ∈ {1, . . . , n}

n∑
j=1

xij 6 1 ∀i ∈ {1, . . . , n}

xij = {0, 1} ∀i, j ∈ {1, . . . , n}

(IP)

We can generalize this class optimization problem further.



Chapter 2

Introduction to Graphs

DEFINITION 2.0.1. An undirected graph is a pair G = (V,E), where V is a finite set of elements
called vertices, and E is a set of pairs of distinct vertices called edges. All edges in an undirected graph
are bidirectional.

DEFINITION 2.0.2. Let G = (V,E) be a graph. Suppose uv ∈ E. u, v are adjacent vertices. u, v are
the endpoints of the edge uv. The edge uv is incident to vertices u and v.

EXAMPLE 2.0.3 (Undirected Graph). Given G :=

1

2 3

4

5

we have
V = {1, . . . , 5}

E = {12, 13, 23, 24, 35, 34}

DEFINITION 2.0.4. Given a graph G = (V,E), a matchingM in G is a subset of edges in G such that
no two edges inM share a common vertex.

EXAMPLE 2.0.5 (Matching). In the above example:

Matching Not a Matching
M := {12} M := {12, 25}

M := ∅ M := {67}
M := {12, 35}

8



CHAPTER 2. INTRODUCTION TO GRAPHS 9

DEFINITION 2.0.6. Given a graph G = (V,E), if every vertex in V of G is an endpoint of an edge in
M , we call the matching a perfect matching.

The assignment problem is a special case of a minimum cost perfect matching problem or weighted graphs (in
this case every edge is given a weight/cost cij)

C

B

A

Gym

Lab

Lib

10

60

20

60

70

50

20

60

40

REMARK 2.0.7. In a perfect matching graph, there are n2 edges, and 2n (an even number of) vertices.

2019-09-17

EXAMPLE 2.0.8 (Minimum-Cost Perfect Matching Problem). Given an undirected graph G = (V,E),
and ce ∈ R, for every e ∈ E, we want to find a perfect matching in G with minimum total cost. The cost
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of matchingM is ∑
e∈M

ce. For each v ∈ V , δ(v) := the set of edges incident to v. G :=

1

2

3 6

5

4

Examples of δ(v) in G:
• δ(1) = {14, 15, 16}
• δ(5) = {15, 25, 35}

xe :=
{

1 if e is chosen in the matching
0 otherwise

minimize
∑
e∈E

cexe

subject to
∑
e∈δ(v)

xe = 1 ∀v ∈ V

xe ∈ {0, 1} ∀e ∈ E

(IP)

DEFINITION 2.0.9. A graph G = (V,E) is bipartite if there exists a partition V1, V2 of V where
V1 ∪ V2 = V and V1 ∩ V2 = ∅ such that

E ⊆ {uv | u ∈ V1, v ∈ V2}

Assignment problems are a special case of minimum cost perfect matching problems in bipartite graphs.

THEOREM 2.0.10. A graph is bipartite if and only if it does not contain an odd cycle.

Proof. Done in MATH 239.

Given a situation where we have binary-valued variables

xj :=
{

1 option j is chosen
0 otherwise ∀j ∈ {1, . . . , n}

We solve how to formulate in an IP in the following conditions:

• at most k options are chosen:
n∑
j=1

xj 6 k

• at least k options are chosen:
n∑
j=1

xj > k
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• exactly k options are chosen:
n∑
j=1

xj = k

We can also formulate many classes of the “OR” type constraint in IP problems.

EXAMPLE 2.0.11 (Extension of 1.0.1).

minimize 10x1 + 15x2

subject to 2x1 + x2 6 1600
x1 + 3x2 6 1200
x1, x2 > 0

(LP)

Suppose C&O is required to produce at least 10 tables per week or at least 80 chairs per week, or
possibly both. x1 > 10 or x2 > 80 or both. We introduce a new binary-valued variable z ∈ {0, 1}.

z :=
{

1 if x1 > 10
0 if x2 > 80

{(x1 > 10 OR x2 > 80) AND (x1 > 0 OR x2 > 0)} ⇐⇒


x1 > 10z

x2 > 80(1− z)
z ∈ {0, 1}
x1, x2 > 0


REMARK 2.0.12. Possibly both means that you can choose either one of these conditions in the first OR above
and it will be correct.

EXAMPLE 2.0.13 (Extension of 2.0.11). Now, suppose C&O has a new condition every week. We must
manufacture either exactly 3 chairs for every table or exactly 8 chairs for every table. Show how to
incorporate this in an IP formulation

{x2 = 3x1 OR x2 = 8x1} ⇐⇒ {(x2 6 3x1 AND x2 > 3x1) OR (x2 6 8x1 AND x2 > 8x1)}

Introduce a new binary-valued variable z ∈ {0, 1}.

z :=
{

1 if x2 = 3x1

0 if x2 = 8x1

Existing constraints:  2x1 + x2 6 1600
x1 + 3x2 6 1200

x1, x2 > 0

 =⇒ x1 ∈ [0, 800]
=⇒ x2 ∈ [0, 500]

So,

x2 6 3x1 + 400(1− z)
x2 > 3x1 − 2400(1− z)
x2 6 8x1 + 400z
x2 > 8x1 − 6400z
z ∈ {0, 1}

2019-09-19
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DEFINITION 2.0.14. A non-linear program has the form

min f(x)

subject to

g1(x) 6 0
g2(x) 6 0

...
gm(x) 6 0

where f : Rn → R, gi : Rn → R, ∀i ∈ {1, . . . ,m}.

Every LP problem is a very special case of a NLP problem. IP problems can also be formulated as NLP
problems.

EXAMPLE 2.0.15 (Formulating LP Problems as NLP Problems).

xi ∈ Z ⇐⇒ sin(πxi) = 0
⇐⇒ [sin(πxi)]2 6 0

xi ∈ {0, 1} ⇐⇒ xi(1− xi) = 0
⇐⇒ x2

i (1− xi)2 6 0

NLP problems have huge modelling power, as a result, one must understand the structure of the
underlying problem and construct “good” NLP models that are amendable to analysis and solution
techniques.

EXAMPLE 2.0.16 (Portfolio Optimization). There are n stocks 1, . . . , n to invest in. We have a budget
of B dollars. We have an expected return (for $1 investment at the end of our planning horizon) of
µ1, . . . , µn. We are also given V ∈ Rn×n, a variance covariance matrix so that if we invest in x1, . . . , xn
dollars in n stocks, 1, . . . , n respectively, then the expected risk of such an investment is given by x>V x.

n∑
i=1

n∑
j=1

Vijxixj

xj := amount of investment in stock j in dollars.
Suppose we are also given a goal G (a dollar amount we want as the value of our portfolio at the end of
the planning horizon).
Data

• Budget ($)→ B
• Goal ($)→ G
• Expected return→ (µ1, . . . , µn)>
• Variance-covariance matrix→ V ∈ Rn×n

We want to minimize the risk of our portfolio while satisfying the budget and the goal constraints.
(NLP)

minx>V x
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subject to
n∑
j=1

xj 6 B

n∑
j=1

µjxj > G

x > 0

There are many variants of such models and extensions. For example, instead of a goal G, we may given
an upper bound on the risk, say R ∈ R>0.
(NLP)

max
n∑
j=1

µjxj

subject to
n∑
j=1

xj 6 B

x>V x 6 R

x > 0

We can handle many more variants and extensions. Suppose investing in stock j below `j dollars is
not allowed. For diversity of our portfolio, we want to invest in at least 20 stocks, and for the sake of
simplicity we want to invest in at most 150 stocks. We introduce a binary-valued variable zj .

zj :=
{

1, if we invest in stock j
0, otherwise ∀j ∈ {1, . . . , n}

Add these constraints:

`jzj 6 xj 6 Bzj ∀j ∈ {1, . . . , n}

20 6
n∑
j=1

zj 6 150 ∀j ∈ {1, . . . , n}

zj ∈ {0, 1} ∀j ∈ {1, . . . , n}



Chapter 3

Solving Linear Programs

2019-09-24

3.1 Possible Outcomes

DEFINITION 3.1.1. Consider an LP with variables x1, . . . , xn. Then the assignment of values to all
variables such that all constraints are satisfied, gives a feasible solution.
An optimization problem is called feasible if it has at least one feasible solution, otherwise it is called
infeasible.

3.1.1 Infeasible Linear Programs

EXAMPLE 3.1.2 (Infeasible LP). (LP)

max x1 + 2x2 + 3x3 + 4x4 + 5x5

subject to

1
−2

[
−3 2 7 1 −7
−2 1 2 0 −4

]
︸ ︷︷ ︸

A


x1
x2
x3
x4
x5


︸ ︷︷ ︸

x

=
[
6
4

]
︸︷︷︸

b

x > 0

Let y := (1,−2)> and consider the facts

Ax = b

=⇒ y>Ax = y>b

=⇒
[
1 0 3 1 1

]︸ ︷︷ ︸
>0>

x︸︷︷︸
>0

= 6− 8︸ ︷︷ ︸
<0

= −2

Therefore, since @ any solution to Ax = b, x > 0 the LP is infeasible.

14
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THEOREM 3.1.3 (Infeasibility). If ∃y ∈ Rm such that
(1) y>A > 0>
(2) y>b < 0

then, the LP
max{c>x : Ax = b, x > 0}

is infeasible. In particular, we call a vector y a certificate of infeasibility.

Proof. Suppose there exists such a y. Suppose for a contradiction that ∃x̄ ∈ Rn (there is a feasible solution)
such that

Ax̄ = b, x̄ > 0
Ax̄ = b =⇒ y>A︸︷︷︸

>0>

x̄︸︷︷︸
>0

= y>b︸︷︷︸
≮0

a contradiction to (2).

An optimization problem is called unbounded if ∀M ∈ R, there exists a feasible solution of the optimization
problem with the objective value strictly better thanM .

3.1.2 Unbounded Linear Programs

EXAMPLE 3.1.4 (Unbounded LP).
max

[
−1 3 0 0 1

]
x

subject to [
−1 3 −1 1 0
−2 4 1 0 1

]
x =

[
2
1

]
x > 0

Consider

x̃ :=


0
0
0
2
1


︸︷︷︸

x

+t


1
0
0
1
2


︸︷︷︸

d

, t > 0

Ax =
[
2
1

]
, x̄ > 0.Therefore x̄ is a feasible solution.

Ad =
[
0
0

]
,d > 0.

Ax̃ = A(x̄+ td) = Ax̄+ t(Ad) =
[
2
1

]
x̃ = x̄+ td

Therefore, x̃ is a feasible solution ∀t > 0.
Objective function value of x̃:

[
−1 3 0 0 1

]



0
0
0
2
1

+ t


1
0
0
1
2


 = 1 + t(−1 + 2) = 1 + t→ +∞ as t→ +∞
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Therefore the LP is unbounded.

THEOREM 3.1.5. If ∃x̄ ∈ Rn such that

Ax̄ = b,x > 0.

and ∃d ∈ Rn such that
(1) Ad = 0
(2) d > 0
(3) c>d > 0

then, the LP
max{c>x : Ax = b, x > 0}

is unbounded. In particular, we call a pair of vectors x̄, d a certificate of unboundedness.

Proof. Suppose there exists such d. Consider
x̃ = x̄+ td, t > 0

Then,
Ax̃ = Ax̄︸︷︷︸

b

+t (Ad)︸ ︷︷ ︸
0

= b

Therefore x̃ is a feasible solution of the LP, t > 0. The objective value of the function is
c>x̃ = c>x̄+ t (c>d)︸ ︷︷ ︸

>0

→ +∞ as t→ +∞

Therefore, the LP is unbounded.

REMARK 3.1.6. If the LP is min, then flip the equality for (3).

3.1.3 Linear Programs with Optimal Solutions

EXAMPLE 3.1.7 (Optimal LP).
max 10x1 + 15x2

subject to
2x1 + x2 + x3 = 1600
x1 + 3x2 + x4 = 1200

x > 0
Consider x̄ := (720, 160, 0, 0)> and y := (3, 4)>.
Note that Ax̄ = b, with x̄ > 0, so x̄ is a feasible solution.
Also, c>x̄ = 7200 + 2400 = 9600. Every feasible solution satisfies

Ax = b

=⇒ y>Ax = y>b

y>A =
[
10 15 3 4

]
>
[
10 15 0 0

]
= c>

y>b = 3× 1600 + 4× 1200 = 9600 = c>x̄

Therefore x̄ is an optimal solution.
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2019-09-26

Summary of Outcomes
(P)

max{c>x : Ax = b, x > 0}

• If there exists a vector y such that
(1) y>A > 0>
(2) y>b < 0
then (P) is infeasible. We call y a certificate of infeasibility.

• If there exists a feasible solution x̄ and a vector d such that:
(1) Ad = 0
(2) d > 0
(3) c>d > 0
then (P) is unbounded. We call a pair of vectors x̄,d a certificate of unboundedness.

• If there exists a feasible solution x̄ and a vector ȳ such that:
(1) A>ȳ > c
(2) c>x̄ = ȳ>b
then x̄ is an optimal solution of (P). We call ȳ a certificate of optimality.

3.2 Standard Equality Form

DEFINITION 3.2.1. An LP is said to be in Standard Equality Form (SEF) if it has the Form

max{c>x+ z̄ : Ax = b, x > 0}

where z̄ is a constant. In other words, it satisfies all of the conditions:
(1) It is a maximization problem
(2) All constraints are equations (other than non-negativity constraints)
(3) Every variable has a non-negativity constraint

Every LP can be converted to SEF. A pair of LP problems LP1 and LP2 are equivalent if they both have the
same status (infeasible, unbounded, or optimal) and certificate of such a status for one problem can easily be
converted into a certificate of the same type for the other LP.
Given an arbitrary LP problem,

• if the objective function is a minimization problem, then min c>x→ −(max−c>x)

REMARK 3.2.2. We often omit one negative sign from a TA on Piazza: “It’s more just a convention of not
putting − before max when doing this and it’s understood that the optimal value of one is the negative
of the optimal value of the other”

• if there are constraints αx 6 α, introduce a new non-negative slack variable xn+1, xn+1 > 0.
• if some xj has no constraint on it, such variables are called free variables and we represent that free

variable as a difference of two non-negative variables, xj = x+
j − x

−
j , x+

j > 0, x−j > 0.
• if some xj < 0 flip all signs correlating to xj

EXAMPLE 3.2.3 (Converting an LP to SEF). (P)

max 100x1 + 200x2
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subject to
x1 + 2x2 6 20
3x1 + 4x2 > 10

x1 > 0

Converting into SEF we get (P′):
max 100x1 + 200(x+

2 − x
−
2 )

subject to
x1 + 2(x+

2 − x
−
2 ) + x3 = 20

3x1 + 4(x+
2 − x

−
2 ) − x4 = 10

x1, x
+
2 , x

−
2 , x3, x4 > 0

(P) and (P′) are equivalent.
Let (x̄1, x̄

+
2 , x̄

−
2 , x̄3, x̄4)> be a feasible solution of (P′).

If

x̂1 := x̄1

x̂2 := x̄+
2 − x̄

−
2

Then (x̂1, x̂2)> is a feasible solution of (P).
Let (x̄1, x̄2)> be a feasible solution of (P).
If

x̄3 := 20− x̄1 − 2x̄2

x̄4 := 3x̄1 + 4x̄2 − 10

and if x̄2 > 0
x̄+

2 := x̄2

x̄−2 := 0

or x̄2 < 0
x̄+

2 := 0

x̄−2 := −x̄2

then (x̄1, x̄
+
2 , x̄

−
2 , x̄3, x̄4)> is a feasible solution of (P′).

3.3 Bases and Canonical Forms

3.3.1 Bases

DEFINITION 3.3.1. Let A ∈ Rm×n, B ⊆ {1, . . . , n} such that |B| = m. If

AB :=
[
ai i ∈ B

]
∈ Rm×m

where AB is non-singular (i.e. IMT holds), then B is a basis of A. If B is a basis of A, then AB is a basis
for Rm. We denote N as the set that does not have the elements of B.
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DEFINITION 3.3.2. A vector x̄ is a basic solution of Ax = b for a basis B of A if:
(1) Ax̄ = b
(2) x̄N = 0

where x̄N is the vector formed by the non-basic variables. That is, N := {1, . . . , n} \B.

DEFINITION 3.3.3. A vector x̄ is a basic feasible solution of {Ax = b, x > 0} if it is a basic solution of
Ax = b determined by a basis B of A that also satisfies x̄ > 0. Thus x̄ satisfies Ax̄ = b, x̄N = 0, and
x̄ > 0.

EXAMPLE 3.3.4 (Bases of A).

A :=
[
1 0 2 −1 1
0 1 2 −1 2

]
, b :=

[
2
5

]
Bases of A: {1, 2}, {2, 3}, {1, 4}.
Not a bases of A: ∅, {1}, {1, 2, 3}, {3, 4}.
To find the basic solution determined by B := {1, 4}, solve[

1 −1
0 −1

] [
x1
x4

]
=
[
2
5

]
and we get x̄ = (−3, 0, 0,−5, 0)>.

2019-10-01

Let A ∈ Rm×n, b ∈ Rm, c ∈ Rn. Consider (P)
max c>x

subject to
Ax = b

x > 0

Suppose we are given x̃ ∈ Rn such that, Ax̃ = b, x̃ > 0 and y ∈ Rm such that A>y > c, y>b = c>x̄ with
objective function value = c>x̄.
Computing c>x̄ we get

c>x̄ = y>b

= y>(Ax̃)
= (y>A)︸ ︷︷ ︸

>c>

x̃︸︷︷︸
>0

> c>x̃

Since x̄ achieves the objective value of c>x̄ and for every feasible solution the objective value is at most c>x̄,
x̄ is an optimal solution of (P).
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3.3.2 Canonical Forms

DEFINITION 3.3.5. Consider the following LP in SEF:
(P)

max c>x+ z̄

subject to

Ax = b

x > 0

We say (P) is in canonical form for a basis B of A if
(C1) AB is an identity matrix
(C2) cB = 0

Now,

Ax =
n∑
j=1

ajxj

=
n∑
j∈B

ajxj +
n∑

j∈N
ajxj

= ABxB +ANxN

Since B is a basis of A, AB is non-singular,

Ax = b

⇐⇒ A−1
B Ax = A−1

B b

⇐⇒ A−1
B (ABxB +ANxN ) = A−1

B b

⇐⇒ (A−1
B AB︸ ︷︷ ︸
I

xB) + (A−1
B ANxN ) = A−1

B b

⇐⇒ xB = A−1
B b− (A−1

B ANxN )

Consider (C2). For any y := (y1, . . . , ym)> the equation

y>Ax = y>b

can be written as
0 = y>b− y>Ax

Since this equation holds for every feasible solution, we can add this constraint to the objective function which
is now:

max c>x+ z̄ + y>b− y>Ax =⇒ max(c> − y>A)x+ y>b+ z̄

Let c̄> := c> − y>A. For (C2) to be satisfied we need c̄B = 0, so we need to choose y accordingly, such
as

c̄>B = c>B − y>AB = 0>

equivalently,
y>AB = c>B =⇒ y> = c>BA

−1
B

We have shown the following:
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THEOREM 3.3.6 (Canonical Form). Suppose an LP

max{c>x+ z̄ : Ax = b, x > 0}

and a basis B of A are given. Then

max(c> − y>A)x+ y>b+ z̄

subject to
A−1
B Ax = A−1

B b

x > 0

where y> = c>BA
−1
B , is an equivalent LP in canonical form for the basis B of A.

The canonical form is useful because it:
• allows us to simply read a basic solution
• gives us easy ways to move in the feasible region to improve the current basic feasible solution
• gives us a way to obtain optimality certificates if c> − y>A 6 0>

EXAMPLE 3.3.7 (Canonical Form). (P)

max
[
0 0 −4 1 0

]
x

subject to 1 0 −1 1 0
0 1 2 −1 0
0 0 −3 2 1

x =

4
2
6


x > 0

B := {1, 2, 5} is a basis of A. Thus, the basic solution corresponding to the basis is

x̄ := (4, 2, 0, 0, 6)>

c3 = −4, increasing the value of x3 from 0 will decrease the objective value by −4 units
c4 = 1, we want to increase the value of x4, sox1

x2
x5

 =

4
2
6

− x4

 1
−1
2

 > 0

Let t denote the maximum value we can assign to x4 and stay feasible.
So, t = min{4/1, _, 6/2} = 3

2019-10-03

EXAMPLE 3.3.8 (Previous Example Coninuted). So, the new basic feasible solution is x̄ := (1, 5, 0, 3, 0)>
determined by the basis B := {1, 2, 5} ∪ {4} \ {5} = {1, 2, 4}. Note that we exclude {5} since the index
of which t achieved the minimum was at 6/2, i.e. index 5 (row x5). The canonical form determined by
the new basis is

max
[
0 0 −5/2 0 −1/2

]
x+ 3
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subject to 1 0 1/2 0 −1/2
0 1 1/2 0 1/2
0 0 −3/2 1 1/2

x =

1
5
3


REMARK 3.3.9. x̄ is the optimal solution with optimal value 3.
REMARK 3.3.10. How did we arrive to this LP? Using the formulae in Proposition 8.2. If you didn’t want to
calculate A−1

B , then follow the below instructions.
REMARK 3.3.11. The following was not taught in class or the textbook. This method can be confusing and
not intuitive.

EXAMPLE 3.3.12 (Canonical Form Without Computing the Inverse). Write

A :=

 1 0 −1 1 0 4
0 1 2 −1 0 2
0 0 −3 2 1 6

→
 1 0 1/2 0 −1/2 1

0 1 1/2 0 1/2 5
0 0 −3/2 1 1/2 3

−x1
−x2
−x4

and row reduce A to make fourth column get a leading one as seen above. The row-reduced matrix and
the augment are your new constraints.
The objective function is tricky, we want a 0 in the fourth column of our c>. Also, we denote x1, x2, x4
as the rows of the matrix respectively as seen above. Using x4 (which is our row-reduced A), we get

(−1)
([

0 0 −3/2 1 1/2
]
x− 3

)
+ (
[
0 0 −4 1 0

]
x)

The −3 right after the first matrix was the row of b. General form:

c([Rowi(A)]x− bi) + original objective function

where c is a constant.

3.4 The Simplex Algorithm

Algorithm 1: Simplex Algorithm
Input :A ∈ Rm×n, b ∈ Rm, c ∈ Rn such that we have linear program (P):

max
{
c>x, Ax = b,x > 0

}, and a feasible basis B.
Output :An optimal solution x̄ of (P) or a certificate proving that the (P) is unbounded.

1 Compute the canonical form for the basis B. Let x̄ be the basic feasible solution for B.
2 If cN 6 0, then stop (x̄ is optimal).
3 Choose k ∈ N such that ck > 0.
4 If ak 6 0, then stop (the LP is unbounded).
5 Let r be any index i where the following minimum is attained:

t = min
{
bi
aik

: aik > 0
}

6 Let ` be the rth basis element.
7 Set B := B ∪ {k} \ {`}.
8 Go to step 1.
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THEOREM 3.4.1 (Bland’s Rule). Throughout the Simplex iterations with t = 0, in Step 3, among all
j ∈ N , with cj > 0, choose k := min {j ∈ N : cj > 0}; also in Step 5, define t as before and choose the
smallest r ∈ B with ark > 0, and br/ark = t.

3.4.1 An Example with an Optimal Solution

EXAMPLE 3.4.2 (Simplex Algorithm with Bland’s Rule). Solve (P)

max
[
0 3 1 0

]
x

subject to [
1 2 −2 0
0 1 3 1

]
x =

[
2
5

]
x > 0

using the Simplex Algorithm with Bland’s Rule. Give a certificate of optimality or unboundedness for
the problem, and verify it.
Solution.
Iteration 1
Useful values computed:

AB =
[
1 0
0 1

]
⇒ A−1

B =
[
1 0
0 1

]
y> = c>BA

−1
B =

[
0 0

] [1 0
0 1

]
=
[
0
0

]
1. The LP is already in canonical form determined by B = {1, 4}. Let x̄ := (2, 0, 0, 5)> be the basic
feasible solution for B.
2. c{2,3} � 0, so x̄ is not optimal.
3. Using Bland’s Rule we choose k = 2 ∈ N which enters the basis as c2 > 0.
4. a2 =

[
2
1

]
� 0, so the LP is not unbounded.

5.
[
x1
x4

]
=
[
2
5

]
− t
[
2
1

]
> 0 so

t = min
{

2
2 ,

5
1

}
Minimum is attained at index 1 (x1). Let r = 1 be the index which attains the smallest value of t.
6. Let 1 be the 1st basis element.
7. Set B := {1, 4} ∪ {2} \ {1} = {2, 4}
Iteration 2
Useful values computed:

AB =
[
2 0
1 1

]
⇒ A−1

B =
[

1/2 0
−1/2 1

]
y> = c>BA

−1
B =

[
3 0

] [ 1/2 0
−1/2 1

]
=
[

3/2
0

]
1. Canonical form determined by B = {2, 4} is

max
[
−3/2 0 4 0

]
+ 3

subject to [
1/2 1 −1 0
−1/2 0 4 1

]
x =

[
1
4

]
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x > 0

Let x̄ := (0, 1, 0, 4)> be the basic feasible solution.
2. c{1,3} � 0, so x̄ is not optimal.
3. Using Bland’s Rule we choose k = 3 ∈ N which enters the basis as c3 > 0.
4. a3 =

[
−1
4

]
� 0, so the LP is not unbounded.

5.
[
x2
x4

]
=
[
1
4

]
− t
[
−1
4

]
> 0 so

t = min
{
_, 4

4

}
Minimum is attained at index 2 (x4). Let r = 2 be the index which attains the smallest value of t.
6. Let 4 be the 2nd basis element.
7. Set B := {1, 4} ∪ {3} \ {4} = {2, 3}
Iteration 3
Useful values computed:

AB =
[
2 −2
1 3

]
⇒ A−1

B =
[

3/8 1/4
−1/8 1/4

]
y> = c>BA

−1
B =

[
3 1

] [ 3/8 1/4
−1/8 1/4

]
=
[
1 1

]
1. Canonical form determined by B = {2, 3} is

max
[
−1 0 0 −1

]
+ 7

subject to [
3/8 1 0 1/4
−1/8 0 1 1/4

]
x =

[
2
1

]
x > 0

Let x̄ := (0, 2, 1, 0)> be the basic feasible solution.
2. c{1,4} 6 0, stop x̄ is optimal.
The certificate of optimality is ȳ = (1, 1)>.
To verify that ȳ = (1, 1)> is the certificate of optimality. We compute

A>ȳ =


1
3
1
1

 >


0
3
1
0

 = c

and

c>x̄ =
[
0 3 1 0

] 
0
2
1
0

 = 7 =
[
1 1

] [2
5

]
= ȳ>b

REMARK 3.4.3. This was obviously not done in class (in fact it’s a textbook question!). It can be verified that
ȳ is indeed the certificate of optimality by using the summary of outcomes as seen above.

2019-10-08
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3.4.2 Convergence of Simplex Algorithm
In each iteration, we choose k ∈ N such that ck > 0. Then, we compute t = min{bi/Aik | Aik > 0}. Then,
throughout the rest of the Simplex iterations, we never see the same basis again. There are at most (nm) bases
of A. Therefore, if t > 0 in each iteration, the Simplex Algorithm will terminate in at most (nm) iterations. The
only way the algorithm will not terminate is when t = 0 for all iterations (after some # of iterations). If our
choices for k and l are deterministic and consistent in this case if we repeat a basis we call it a cycle.

THEOREM 3.4.4. The Simplex Algorithm starting from a basic feasible solution with Bland’s Rule termi-
nates.

3.4.3 Implementation of the Simplex Algorithm in “Big Data”
In a given iteration of the Simplex Algorithm, what information do we need to execute the algorithm?
We have the original data (A, b, c) and we have the current B, x̄, v̄.
Pick any k ∈ N such that c̄k > 0. c̄k = ck − ȳ>Ax (where ȳ> = cBA

−1
B ).

Then to compute t, we need t = min{bi/Aik | Aik > 0}.
So, we need Āk: Āk = A−1

B Ak and note that x̄N = 0, x̄B = b̄

We solve linear systems A>By = cB and ABdB = Ak.
In implementations, we typically express AB or A−1

B as a product of elementary matrices.
In practice, good implementations of the Simplex Algorithm terminates after 2m to n/2 iterations. Each iteration
is very fast.
It is an open problem whether there exists a variant of Simplex Algorithm which is guaranteed to terminate in
at most pnq iterations for LP problems in SEF with n variables, where p, q are constants.

2019-10-10

Midterm 1 was written on this day, as a result no classes were held.

2019-10-22

Given any LP problem, we know how to convert it into an equivalent LP problem in SEF:
(P)

max z := c>x

subject to

Ax = b

x > 0

where A ∈ Rm×n has rank(A) = m.
Given an LP in SEF, with a given basic feasible solution, we know how to solve it.

3.5 Finding Feasible Solutions
Given an LP in SEF with rank(A) = m, how do we find a feasible solution or prove that none exists.
We will construct an auxiliary LP problem.
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We can always make sure b > 0. (If any bi < 0, multiply both sides of that equation by (−1)) Introduce
artificial variables xn+1, . . . , xn+m

DEFINITION 3.5.1. Given (P): max
{
c>x, Ax = b,x > 0

}, we define the auxiliary linear program of
(P) as:
(Paux)

minw := xn+1 + · · ·+ xn+m

subject to

[
A I

]


x1
...
xn
xn+1
...

xn+m


︸ ︷︷ ︸

x

= b

x > 0

where b > 0, and I is the m×m identity matrix.
We call the variables xn+1, . . . , xn+m auxiliary variables.

For every feasible solution of (Paux), w > 0.
Therefore, (Paux) is not unbounded.
If the optimal value of (Paux) is zero, let (x̂1, . . . , x̂n+m)> be the basic feasible solution of (Paux). Then,
(x̂1, . . . , x̂n)> is a basic feasible solution of (P).
It is basic since {Aj : x̂j > 0} is linearly independent where J is the column indices j of A for which
x̂j 6= 0.
If |{j : x̂j > 0}| = m, this index set is a basis of A which determines (x̂1, . . . , x̂n)>.
If |{j : x̂j > 0}| 6 m− 1, we can extend this index set to be a basis of A, since rank(A) = m.
If the optimal value of (Paux) is positive, then (P) is infeasible. We state this as a theorem.

THEOREM 3.5.2. Let x̄ = (x̄1, . . . , x̄n+m)> be an optimal solution to (Paux).
(1) if w = 0, then (x̄1, . . . , x̄n)> is a solution to (P).
(2) if w > 0, then (P) is infeasible.

Proof. Let x̄ = (x̄1, . . . , x̄n+m)> be an optimal solution to (Paux).
(1) Assume w = 0, then x̄n+1 = · · · = x̄n+m = 0. Thus (x̄1, . . . x̄n)> is a feasible solution of (P).
(2) Assume w > 0. Suppose for a contradiction that there exists a feasible solution (x̄1, . . . x̄n)> to (P). Then,
(x̄1, . . . x̄n, 0, . . . , 0︸ ︷︷ ︸

m terms
) is a feasible solution to (Paux) with optimal objective value 0 which is a contradiction to

the fact that x̄ is optimal.
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Algorithm 2: Two Phase Method
Input :A, b, c data for LP in SEF such that full row rank and b > 0.

1 Construct (Paux) put into SEF, B := {n+ 1, n+ 2, . . . , n+m}
2 Put (Paux) into the canonical form determined by B.
3 Solve (Paux) starting with basis B by Simplex Method.
4 If the optimal value of (Paux) is zero, then we have a basic feasible solution of (P). Solve (P) using

Simplex Method. This is known as Phase II.
5 If the optimal objective value of (Paux) is not zero, then (P) is infeasible (a certificate of infeasibility

is given by the last ȳ computed).

As seen above, the original LP can either have an optimal solution or be infeasible when performing the Two
Phase Method.

3.5.1 The Two Phase Simplex Algorithm—An Optimal Example

EXAMPLE 3.5.3 (Two Phase—Optimal). (P)

max z :=
[
1 2 −1

]
x

subject to [
1 −2 −3
−1 1 1

]
x =

[
−3
1

]
x > 0

Since b1 < 0 we write [
−1 2 3
−1 1 1

]
x =

[
3
1

]
we do this because we will not have a feasible solution if b < 0.
Introduce artificial variables: x4, x5
Phase I
(Paux)

max−w :=
[
0 0 0 −1 −1

]
x

subject to [
−1 2 3 1 0
−1 1 1 0 1

]
x =

[
3
1

]
x := (x1, x2, x3, x4, x5)> > 0

Turn (Paux) into canonical form for B := {4, 5}

max−w :=
[
−2 3 4 0 0

]
x

subject to [
−1 2 3 1 0
−1 1 1 0 1

]
x =

[
3
1

]
x > 0

We solve the LP via Simplex Algorithm and obtain the following LP corresponding to the optimal basis
of B = {1, 2}

max−w :=
[
0 0 0 −1 −1

]
x
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subject to [
1 0 1 1 −2
0 1 2 1 −1

]
x =

[
1
2

]
x > 0

End of Phase I.
Phase II
We rewrite the original LP in canonical form corresponding to basis B = {1, 2} to obtain

max z :=
[
0 0 −6

]
x+ 5

subject to [
1 0 1
0 1 2

]
x =

[
1
2

]
x := (x1, x2, x3)> > 0

We obtain the optimal basic feasible solution of (Paux) via the Simplex Algorithm

(x̂1, x̂2, x̂3, x̂4, x̂5) := (1, 2, 0, 0, 0)>

Thus, the corresponding basic feasible solution of (P) is

(x̂1, x̂2, x̂3) = (1, 2, 0)>

with an optimal objective value of z := 5.

3.5.2 The Two Phase Simplex Algorithm—An Infeasible Example

EXAMPLE 3.5.4 (Two Phase—Infeasible). (P)

max z :=
[
3 2 4

]
x

subject to [
5 1 1
−1 1 2

]
︸ ︷︷ ︸

A

x =
[
1
5

]

x > 0

(Paux)
max−w :=

[
0 0 0 −1 −1

]︸ ︷︷ ︸
c̃B

x

subject to [
5 1 1 1 0
−1 1 2 0 1

]
︸ ︷︷ ︸

Ã

x =
[
1
5

]

x := (x1, x2, x3, x4, x5)> > 0

Turn (Paux) into canonical form for B := {4, 5} (by adding the constraints up to the original objective
function).

max−w :=
[

4 2 3 0 0
]
x− 4
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subject to [
5 1 1 1 0
−1 1 2 0 1

]
x =

[
1
5

]
x > 0

Starting with the basis B = {4, 5}, solve (Paux) with the Simplex Algorithm to get:

max−w =
[
−11 −1 0 −3 0

]
x− 3

subject to [
5 1 1 1 0
−11 −1 0 −2 1

]
x =

[
1
3

]
x > 0

The optimal value of (Paux) is not zero. Therefore, (P) is infeasible. The basis in the last iteration was
B = {3, 5}.

y> = c̃>BÃ
−1
B ⇐⇒ y> =

[
0 −1

]︸ ︷︷ ︸
SEF of (Paux)

[
1 0
2 1

]−1

ȳ = (2,−1)> is a certificate of infeasibility of (P).
Compute ȳ>A =

[
11 1 0

]
> 0> and ȳ>b = −3 = c>x where x̄ = (0, 0, 0, 1, 3)>.

Thus, ȳ is a certificate of optimality for (Paux).

THEOREM 3.5.5 (Fundamental Theorem of LP (SEF)). Let (P) be an LP problem in SEF, whereA ∈ Rm×n
has rank(A) = m.
(1) if (P) does not have an optimal solution, then (P) is either infeasible or unbounded.
(2) if (P) has a feasible solution, then (P) has a basic feasible solution.
(3) if (P) has an optimal solution, then (P) has an optimal basic feasible solution.

2019-10-24

THEOREM 3.5.6 (Fundamental Theorem of LP). Let (P) be an LP problem. Then exactly one of the
following holds:

• (P) is infeasible
• (P) is unbounded
• (P) has an optimal solution

REMARK 3.5.7. Fundamental Theorem of LP and Fundamental Theorem of LP (SEF) are not the same, they
are two completely different theorems!

3.6 Geometry

3.6.1 Feasible Region of LPs and Polyhedra

DEFINITION 3.6.1. Let a ∈ Rn \ 0, β ∈ R.
H :=

{
x ∈ Rn : a>x = β

} is a hyperplane.
F :=

{
x ∈ Rn : a>x 6 β

} is a half-space.
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Solution sets of linear equations are intersections of hyperplanes.

DEFINITION 3.6.2. Let A ∈ Rm×n, b ∈ Rm. P := {x ∈ Rn : Ax 6 b} is a polyhedron.

REMARK 3.6.3. The set of solutions to any one of the inequalities of Ax 6 b is a half-space.

THEOREM 3.6.4. The feasible region of an LP is a polyhedron or equivalently the intersection of a finite
number of half-spaces.

Proof. Let a ∈ Rn,x ∈ Rn, β ∈ R.
Given an inequality of the form a>x > β, we can rewrite it as −a>x 6 −β.
Given an equation of the form a>x = β we can rewrite it as a>x > β and −a>x 6 −β.
Thus, any set of linear constraints can be rewritten as Ax 6 b for some A ∈ Rm×n and b ∈ Rm, where a> can
correspond to each row of A, and β can correspond to each row of the column vector b.

Solutions sets of Ax = b are either ∅, a single point, a line, or in general, an intersection of a hyperplane.
Note that already in R2 there are already equivalent polyhedra. The mathematical modelling power of LPs are
significantly more than that of linear systems of equations.

3.6.2 Convexity

DEFINITION 3.6.5. The line segment joining two points, x(1) and x(2) is{
λx(1) + (1− λ)x(2) : λ ∈ [0, 1]

}
Graphically, the line segment can be seen as:

DEFINITION 3.6.6. A subset S ⊆ Rn is convex if for every pair of points x(1), x(2) ∈ S, the line segment
with ends x(1) and x(2) is included in S. That is,{

λx(1) + (1− λ)x(2) : λ ∈ [0, 1]
}
⊆ S
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THEOREM 3.6.7. Half-spaces are convex.

Proof. Let H ⊆ Rn be a half-space. Then a ∈ Rn \ 0 and β ∈ Rn such that

H =
{
x ∈ Rn : a>x ≤ β

}
Let x̄ = λx(1) + (1− λ)x(2) where λ ∈ [0, 1].

a>x̄ = a>
[
λx(1) + (1− λ)x(2)

]
= λ︸︷︷︸

>0

a>x(1)︸ ︷︷ ︸
6β

+ (1− λ)︸ ︷︷ ︸
>0

a>x(2)︸ ︷︷ ︸
6β

6 λβ + (1− λ)β = β

Thus, H is convex since x̄ ∈ H.

THEOREM 3.6.8. The intersection of any collection of convex sets is convex. That is, a convex set Cj for all
j ∈ J , the intersection

C :=
⋂
j∈J

Cj

is convex.

Proof. Let u, v be two points in C. Let w lie on the line segment between u and v. Then, w ∈ Cj since Cj is
convex for each j ∈ J . Thus, w ∈ C.

REMARK 3.6.9. J can be infinite. That is, the intersection of infinitely many convex sets is convex, which can
be formally proved by strong induction.

THEOREM 3.6.10. Polyhedra are convex.

DEFINITION 3.6.11. We say that a point x is properly contained in a line segment if it is in the line
segment and not an endpoint.
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3.6.3 Extreme Points

DEFINITION 3.6.12. Let S ⊆ Rn be a convex set. Let x̄ ∈ Rn. x̄ is an extreme point of S, if x̄ ∈ S and
no line segment that properly contains x̄ is included in S.
Equivalently, x̄ is an extreme point of S, if x̄ ∈ S and no two distinct x(1), x(2) ∈ S exist satisfying

x̄ = λx(1) + (1− λ)x(2)

for some λ ∈ (0, 1).
Equivalently, x̄ is an extreme point of S, if x̄ ∈ S and no two distinct x(1), x(2) ∈ S exist satisfying

x̄ = 1
2x

(1) + 1
2x

(2)

2019-10-30

Recall the notions: hyperplane, half-space, polyhedron, feasible regions of LPs, convex sets, extreme points of
convex sets.

THEOREM 3.6.13. Let S ⊆ Rn be a convex set and x̄ ∈ S. x̄ is an extreme point of S if and only if S \{x̄}
is convex.

Proof. Assume S ⊆ Rn is convex and x̄ ∈ S.
⇒ Suppose x̄ is an extreme point of S. Pick two points x(1), x(2) ∈ S \ {x̄} and λ ∈ [0, 1] and set x̄ =
λx(1) + (1−λ)x(2). To show that S \ {x̄} is convex, we have to verify that x ∈ S \ {x̄}. Now the set S is convex,
so x ∈ S. It remains to show that x 6= x̄.
Case 1: λ = 0. Then x = x(1) 6= x̄.
Case 2: λ = 1. Then x = x(2) 6= x̄.
Case 3: λ ∈ (0, 1). We know x must be different from x̄, otherwise we would contradict the fact that x̄ is an
extreme point of S.
⇐ We prove the contrapositive. Assume that x̄ is not an extreme point of S. Then there exists two points
x(1), x(2) ∈ S with x(1) 6= x(2) and some λ ∈ (0, 1) such that x̄ = λx(1)+(1−λ)x(2). Note that x(1), x(2) ∈ S\{x̄}
since x(1) 6= x(2). Thus S \ {x̄} is not convex.

DEFINITION 3.6.14. Let A ∈ Rm×n, b ∈ Rm. Consider the polyhedron P ⊆ Rn P := {x ∈ Rn : Ax 6
b}. We say that a constraint α>x 6 β of Ax 6 b is tight for x̄ if α>x̄ = β. We denote the set of all
inequalities of Ax 6 b that are tight at x̄ by A=x̄ = b=.

THEOREM 3.6.15. Let P = {x ∈ Rn : Ax 6 b} be a polyhedron and let x̄ ∈ P . Let A=x = b= be the
set of tight constraints for x̄. Then rank(A=) = n if and only if x̄ is an extreme point of P .
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Proof. =⇒ [rank(A=) = n =⇒ x̄ is an extreme point of P ]
Suppose rank(A=) = n. Suppose for a contradiction that x̄ is not an extreme point. Then there exists
x(1),x(2) ∈ P , where x(1) 6= x(2) and λ ∈ (0, 1) such that

x̄ = λx(1) + (1− λ)x(2)

Thus,
b= = A=x̄

= A=[λx(1) + (1− λ)x(2)]
= λ︸︷︷︸

>0

A=x(1)︸ ︷︷ ︸
6b=

+ (1− λ)︸ ︷︷ ︸
>0

A=x(2)︸ ︷︷ ︸
6b=

≤ λb= + (1− λ)b=

= b=

Thus, we must have that everything in the inequality chain starting and ending with b= is equal. Thus,
A=x(1) = A=x(2) = b=. rank(A=) = n implies there is a unique solution to A=x̄ = b=, so we have
x̄ = x(1) = x(2), a contradiction that x̄ is an extreme point.
⇐= [rank(A=) = n ⇐= x̄ is an extreme point of P ]
We will prove the contrapositive of this. That is, we will be prove rank(A=) 6= n =⇒ x̄ is not an extreme
point of P .
Suppose that rank(A=) 6= n, that is rank(A=) < n, which means that the columns ofA= are linearly dependent.
Thus, ∃d such that A=d = 0. Let ε > 0 be arbitrarily small and define

x(1) := x̄+ εd

x(2) := x̄− εd
Hence, x̄ = 1

2x
(1) + 1

2x
(2), where x(1) and x(2) are distinct. Thus, x̄ is in the line segment between x(1) and

x(2).
We need to show that x(1),x(2) ∈ P for ε > 0 arbitrarily small. We have

A=x(1) = A=(x̄+ εd)
= A= x̄︸︷︷︸

=b=

+εA=d︸︷︷︸
=0

= b=

Similarly, A=x(2) = b=. Let a>x 6 β be any of the inequalities of Ax 6 b that is not in A=x 6 b=. It follows
for ε > 0 arbitrarily small that:

a>x(1) = a>(x̄+ εd)
= a>x̄︸︷︷︸

6β

+εa>d

6 β

hence x(1) ∈ P . Similarly, x(2) ∈ P . Thus, x̄ is properly contained in P and hence is not an extreme point.

Example

F :=

x ∈ R2 :


1 1
1 0
−1 0
0 −1

x ≤


4
2
0
0

 ,x > 0


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(i) x(1) :=
[
2
0

]
, A= =

[
1 0
0 −1

]
rank(A=) = 2 = n, therefore x(1) is an extreme point of F .

(ii) x(2) :=
[
2
2

]
, A= =

[
1 1
1 0

]
rank(A=) = 2 = n, therefore x(2) is an extreme point of F .

(iii) x(3) :=
[
2
1

]
, A= =

[
1 0

]
rank(A=) = 1 < 2 = n, therefore x(3) is not an extreme point of F .

THEOREM 3.6.16. Let A ∈ Rm×n with rank(A) = m. Let P = {x ∈ Rn : Ax = b,x > 0}, and let
x̄ ∈ P . x̄ is an extreme point of P if and only if x̄ is a basic feasible solution of Ax = b.

F :=

x ∈ R2 :


1 1
1 0
−1 0
0 −1

x ≤


4
2
0
0

 ,x > 0


P :=

{
x ∈ R4 :

[
1 1 −1 0
1 0 0 −1

]
x =

[
4
2

]
,x > 0

}

Note that for every feasible solution
[
x̄1
x̄2

]
∈ F ,


x̄1
x̄2

4− x̄1 − x̄3
2− x̄1

 ∈ P .

Conversely, for every


x̂1
x̂2
x̂3
x̂4

 ∈ P , [x̂1
x̂2

]
∈ F

Consider the basis B := {3, 4} of A. The corresponding basic feasible solution is x̄ = (0, 0, 4, 2)>. Thus, x̄ is
an extreme point of P .

3.6.4 Geometric Interpretation of Simplex Algorithm
(P)

max z := c>x
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subject to
Ax 6 b

x > 0

Suppose n = 1 and m = 6 with b > 0.
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Duality Theory

(P)
max{c>x : Ax = b, x > 0}

Recall the notation of optimality certificate ȳ ∈ Rm such that A>ȳ > c. We noted that for every feasible x in
(P), Ax = b =⇒ ȳ>Ax = ȳ>b

Since A>ȳ > c and x > 0, we have c>x 6 ȳ>Ax = ȳ>b. So as long as y ∈ Rm with A>y > c, we can get an
upper bound of b>y on the optimal objective value of (P).
We want to minimize b>y subject to A>y > c

DEFINITION 4.0.1. Given (P)
max{c>x : Ax = b, x > 0}

we define (D)
min{b>y : A>y > c, y > 0}

to be the dual of (P).

EXAMPLE 4.0.2 (Dual). Find the dual of (P1): max{c>x : Ax 6 b, x > 0}.
Solution.
Convert to SEF by introducing slack variables: s = (s1, . . . , sn)>.
(P2)

max c>
[
x
s

]
subject to [

A I
] [x
s

]
= b

(x, s)> > 0

(D2)
min b>y[
AT

I

]
>

[
c
0

]
y > 0

Thus, the dual of (P1) is (D2): min{b>y : A>y > c, y > 0}.

36
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Last lecture, we defined the dual of LPs in SIF and found the dual of (P1).
(P1) : max{c>x : Ax 6 b, x > 0}

(D1) : min{b>y : A>y > c, y > 0}

EXAMPLE 4.0.3 (Directly Writing the Dual of an LP). Suppose A ∈ R3×4.
(P)

max 10x1 + 20x2 + 30x3 + 40x4

subject to a>1a>2
a>3



x1
x2
x3
x4

≤=
>

1
2
3


x1 > 0, x2 > 0, x3 6 0, x4 free

where a1,a2,a3 ∈ R4.
(D)

min
[
1 2 3

] y1
y2
y3


subject to

[
a1 a2 a3

] y1
y2
y3

>
>
≤
=


10
20
30
40


y1 > 0, y2 free, y3 6 0

Dual of the dual is the original problem, the primal.
Since:

1. constraint 1 in (P) is 6, then y1 > 0
2. constraint 2 in (P) is =, then y2 free
3. constraint 3 in (P) is >, then y3 6 0
4. x1, x2 > 0, then constraint 1, 2 in (D) is >
5. x3 6 0, then constraint 3 in (D) is ≤
6. x4 free, then constraint 4 in (D) is =

4.1 Weak Duality

THEOREM 4.1.1 (Weak Duality—Special Form). Consider (P)

max{c>x : Ax 6 b, x > 0}

and (P)’s dual (D)
min{b>y : A>y > c, y > 0}

Let x̄ be a feasible solution for (P) and ȳ be a feasible solution for (D). Then
(1) c>x̄ 6 b>ȳ
(2) if c>x̄ = b>ȳ, then x̄ is an optimal solution for (P).
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Proof. Let x̄ be a feasible solution of (P) and let ȳ be a feasible solution of (D). Then
c>x̄ 6 (ȳ>A)x̄

= ȳ>(Ax̄)
6 ȳ>b

If c>x̄ = b>ȳ it follows that x̄ is optimal for (P).

THEOREM 4.1.2. Let (P) and (D) be a pair of primal-dual LPs. Then
(1) if (P) is unbounded, then (D) is infeasible
(2) if (D) is unbounded, then (P) is infeasible
(3) if (P) and (D) are both feasible, then they both have optimal solutions

Proof. (1) We prove the contrapositive, that is we prove: [(D) feasible =⇒ (P) not unbounded]
Suppose that (D) is feasible. By Weak Duality theorem, we know that b>y is an upper bound on (P). Thus, (P)
is not unbounded.
(2) We prove the contrapositive, that is we prove: [(P) feasible =⇒ (D) not unbounded]
Suppose that (P) is feasible. By Weak Duality theorem, we know that c>x is a lower bound on (D). Thus, (D)
is not unbounded.
(3) Assume (P) and (D) are both feasible. By (1) and (2) we know that (P) and (D) are both not unbounded.
By Fundamental Theorem of Linear Programming, we know that exactly one of the following holds from
(I)-(III):
(I) (P) and (D) are infeasible
(II) (P) and (D) are unbounded
(III) (P) and (D) both have optimal solutions
Clearly, we know that (I) and (II) both do not hold in this part of the proof, thus (P) and (D) both have optimal
solutions.

4.2 Strong Duality

THEOREM 4.2.1 (Strong Duality). Let (P) and (D) be a pair of primal-dual LPs. Then
(1) If there exists an optimal solution x̄ of (P), then there exists an optimal solution ȳ of (D).
(2) The value of x̄ in (P) equals the value of ȳ in (D).

4.3 A Geometric Characterization of Optimality

4.3.1 Complementary Slackness
Recall our proof of Weak Duality. Then for LPs in SEF: x̄, ȳ are feasible in (P) and (D) respectively. x̄ is optimal
in (P), ȳ is optimal in (D) if and only if

c>x̄ = (A>ȳ)>x̄ = ȳ>(Ax̄) = ȳ>b

The first equality came from (A>y)> = c>, and the last equality came from Ax̄ = b (check Weak Duality
Theorem—Special Form). That is, if and only if

x̄>(A>ȳ − c) = 0
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and
ȳ>(b−Ax̄) = 0

That is, if and only if ∀j ∈ {1, . . . , n} either xj = 0 or (A>ȳ−c)j = 0 possibly both, and ∀i ∈ {1, . . . ,m} either
yi = 0 or (b−Ax̄)i = 0 possibly both. We call these the Complementary Slackness Conditions (CS).

THEOREM 4.3.1 (Complementary Slackness). Let (P) and (D) be an arbitrary primal-dual pair. Let x̄
be a feasible solution to (P) and let ȳ be a feasible solution to (D). Then, x̄ is an optimal solution to (P)
and ȳ is an optimal solution to (D) if and only if the complementary slackness conditions hold.

EXAMPLE 4.3.2 (Complementary Slackness). (P)

max
[
−2 −1 0

]
x

subject to [
1 3 2
−1 4 2

]
x
>
≤

[
5
7

]
x1 6 0, x2 > 0, x3 free

(1) Write the dual (D) of (P)
(2) Write the complementary slackness (CS) conditions for (P) and (D)
(3) Use weak duality to prove that x̄ is optimal for (P) and ȳ is optimal for (D)
(4) Use CS to prove that x̄ is optimal for (P) and ȳ is optimal for (D)

and
x̄ = (−1, 0, 3)> ȳ = (−1, 1)>

Solution.
(1)
(D)

min
[
5 7

]
subject to 1 −1

3 4
2 2

y>≤
=

−2
−1
0


y1 6 0, y2 > 0, y3 free

(2)
• x1 = 0 OR y1 − y2 = −2
• x2 = 0 OR 3y1 + 4y2 = −1
• y1 = 0 OR x1 + 3x2 + 2x3 = 5
• y2 = 0 OR −x1 + 4x2 + 2x3 = 7

(3) Verify that x̄ and ȳ are feasible for (P) and (D), and check c>x̄ = b>ȳ.
(4) By Complementary Slackness Theorem, this is trivially true as seen boxed above.

4.3.2 Geometry
(P)

max 2x1 + x2

subject to  1 1
−1 0
0 −1

x ≤
4

0
0


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(D)
min 4y1

subject to [
1 −1 0
1 0 −1

]
y =

[
2
1

]
y1, y2, y3 > 0

Let x̄ be a feasible solution of (P) and J(x̄) denote the indices of the tight constraints at x̄.
Then, x̄ is optimal in (P) if and only if c is a non-negative linear combination of tights rows (A=).

Suppose x̄ = (4, 0)>. Then A= =
[
1 1
0 −1

]
. That is, x̄ is tight at row1(A) and row3(A).

J(x̄) := {1, 3}, so x̄ is optimal if and only if ∃ ȳ1, ȳ2 such that

c> = ȳ1 [row1(A)] + ȳ2 [row3(A)]

2019-11-05

DEFINITION 4.3.3. Let a(1), . . . , a(k) ∈ Rn. We define the cone generated by a(1), . . . , a(k) to be the set

C = cone
{
a(1), . . . , a(k) ∈ Rn

}
=
{

k∑
i=1

λia
(i) : λi > 0, ∀i ∈ {1, . . . k}

}

We define the cone generated by an empty set to be {0}.

DEFINITION 4.3.4. Let P := {x : Ax 6 b} and let x̄ ∈ P . Let J(x̄) be the row indices of A corre-
sponding to the tight constraints of Ax 6 b, that is, i ∈ J(x̄) if and only if rowi(A)x̄ = bi. We define
the cone of tight constraints for x̄ to be the cone C generated by the rows of A corresponding to the
tight constraints, that is

C = cone
{

rowi(A)> : i ∈ J(x̄)
}

THEOREM 4.3.5. Let x̄ be a feasible solution to max
{
c>x : Ax 6 b

}
. Then x̄ is optimal if and only if c

is in the cone of tight constraints for x̄.
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Duality Through Examples
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5.1 The Shortest Path Problem
Given a graph G = (V,E), two distinct distinguished nodes s, t ∈ V , ce > 0 ∀e ∈ E, we want to find a shortest
path from s to t

DEFINITION 5.1.1. Let G = (V,E) be a graph, and let U ⊆ V . We let δ(U) denote the set of edges
that have exactly one endpoint in U . That is,

δ(U) = {uv ∈ E : u ∈ U, v ∈ U}

DEFINITION 5.1.2. Let G = (V,E) be a graph, and let U ⊆ V . Suppose G has a distinct pair of vertices
s and t. An s-t cut is the set of edges of the form δ(U) where s ∈ U , t /∈ U .

DEFINITION 5.1.3. Let G = (V,E) be a graph. Suppose G has a distinct pair of vertices s and t. An
s-t path P in G is the following sequence of edges of G

{v1, . . . , vk}

where v1 = s, vk = t, and vi 6= vj for i 6= j (as s and t are distinct).

THEOREM 5.1.4. An s-t path P intersects every s-t cut.

Proof. Let G = (V,E) be a graph with a distinct pair of vertices s and t, let P be an s-t path of G, let U ⊆ V ,
and let δ(U) be an arbitrary s-t cut of G. Follow the path P starting from s to u where u is the last vertex of P
in U , and denote u′ the vertex that follows u in P. Note that u exists since s ∈ U , t /∈ U . Then by definition
uu′ is an edge that is in δ(U).

THEOREM 5.1.5. Let S ⊆ E be a set of edges that contains at least one edge from every s-t cut. Then
there exists an s-t path P that is contained in the edges of S.

41



CHAPTER 5. DUALITY THROUGH EXAMPLES 42

Proof. Let S ⊆ E be a set of edges that contains at least one edge from every s-t cut. Let U be the set of
vertices that contain s as well as all vertices u for which there exists a path from s to u only using edges in S.
We need to show that there exists an s-t path that is contained in the set of edges of S, i.e. t ∈ U . Suppose for
a contradiction that t /∈ U . We know δ(U) is an s-t cut by definition. By our hypothesis, there exists an edge
uu′ ∈ S, where u ∈ U , u′ /∈ U . By construction, there exists and s-u path Q that is contained in S. Then the
path obtained from Q by adding an edge uu′ is an s-u′ path contained in S. By definition of U , we have that
u′ ∈ U , contradiction.

Suppose G contains an s-t path. Let S ⊆ E be a set of edges that contains at least one edge from every s-t cut.
Then such S contains an s-t path.

xe :=
{

1, if edge e is in the shortest s-t path
0, otherwise

(IP)
min

∑
e∈E

cexe

subject to ∑
e∈δ(U)

xe > 1 (U ⊆ V, s ∈ U, t /∈ U)

xe > 0 (e ∈ E)
xe ∈ Z (e ∈ E)

If ce > 0 (e ∈ E) then optimal solutions of this IP correspond to shortest s-t paths. If some ce = 0 (e ∈ E),
then some optimal solutions will correspond to sets like set S above which contains a shortest s-t path.
Let (P) denote the LP relaxation of (IP) (replace xe{0, 1} with 0 6 xe 6 1 (e ∈ E)). Write down the dual of
(P): (D)

max
∑

(yU : δ(U) is an s-t cut)
subject to ∑

(yU : δ(U) is an s-t cut containing e) 6 ce (e ∈ E)
yU > 0 (U ⊆ V, s ∈ U, t /∈ U)

A consequence of Complementary Slackness for a shortest path problem is: Let P be an s-t path (as set of
edges) and let ȳ be a feasible solution of (D). Suppose

• every edge in P corresponds to an equality edge Σ(ȳU : δ(U) is an st-cut containing e ) = ce

• for every active cut (i.e. st-cut δ(U) such that ȳU > 0, P must contain at least one edge from that st- cut)
Then P is a shortest s-t path.
REMARK 5.1.6. ȳU := 0 for all s-t cuts δ(U) gives a feasible solution of (D)
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5.2 An Algorithm
Given y, slacky(e) is

ce − Σ(yU : δ(U) is a s-t cut containing e)
That is, slacky(e) is the length of e minus the total width of all s-t cuts using e.

Algorithm 3: Shortest path
Input :Graph G = (V,E), costs ce > 0 for all e ∈ E, s, t ∈ V , where s 6= t.
Output :A shortest s-t path P.

1 yw := 0 for all s-t cuts δ(W ). Set U := {s}
2 while t /∈ U do
3 Let ab be an edge in δ(U) of smallest slack for y where a ∈ U , b /∈ U
4 yU := slacky(ab)
5 U := U ∪ {b}
6 change edge ab into an arc ~ab
7 return A directed s-t path P.

This is similar to Dijkstra’s shortest path algorithm, but out algorithm also generates an optimality certifi-
cate.

2019-11-14

5.3 Minimum Cost Perfect Matching Problem in Bipartite Graphs
Given a bipartite graph G = (V,E) with bipartition [W,J ] whereW ∩ J = ∅ andW ∪ J = V with cost ce ∈ R
for each e ∈ E, we want to find a perfect matching of minimum cost.
What are necessary conditions for having a perfect matching in G?

• |W | = |J | = |V |
2

• For every S ⊆W , the neighbour set of S,

N (S) := {v ∈ V : uv ∈ E, u ∈ S, v /∈ S}

has as many vertices as S.

THEOREM 5.3.1 (Hall’s Theorem). LetG be a bipartite graph with bipartition [W,J ]. Suppose |W | = |S|,
then G has a perfect matching if and only if

|S| 6 |N (S)|

for each S ∈W .

Therefore, if G does not have a perfect matching, then G has a deficient set; a subset S ⊆W such that

|N (S)| < |S|

Moreover, there is an efficient algorithm to find such deficient sets.
(IP)

min
∑
e∈E

cexe
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subject to ∑
e∈δ(V )

xe = 1 ∀v ∈ V

x > 0
x ∈ ZE

Recall the meaning of xe:

xe :=
{

1 if edge e is in the minimum cost perfect matching
0 otherwise

(D)
max

∑
v∈V

yv

subject to
yu + yv 6 cuv ∀uv ∈ E

ȳ := min
uv∈E

{cuv}
2

is a feasible solution for (D).
Complementary Slackness Theorem implies: a feasible solution ȳ of (D) is optimal if and only if there exists a
feasible solution x̄ of (P) such that

x̄ > 0 =⇒ ȳu + ȳv = cuv

Let H = (V,E(ȳ)),
E(ȳ) = {uv ∈ E : ȳu + ȳv = cuv}

if we can find a perfect matching in H, then that perfect matching is an optimal solution of (IP).
If H does not have a perfect matching, then H has a deficient set S ⊆W .
Modify our dual solution:

ȳv :=


ȳv + ε v ∈ S
ȳv − ε v ∈ NH(S)
ȳv otherwise

Choose
ε := min{cuv − ȳu + ȳv : uv ∈ E, u ∈ S, v /∈ NH(S)}

If no such ε exists, (NH(S) = N (S)), then S is a definite set in G; moreover, (IP) and (P) are infeasible and
(D) is unbounded.
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Algorithm 4: Minimum Cost Perfect Matching in Bipartite Graphs
Input :Biparite graph G = (V,E) with biparition [W,J ] such that |W | = |J |, ce ∈ R, for each

e ∈ E
Output :A minimum cost perfect matching, or a deficient set S.

1 ȳv := 1/2 min
e∈E
{ce} for all v ∈ V

2 Construct H = (V,E(ȳ))
3 Find a perfect matching in H. If yes, STOP; we have a minimum cost perfect matching. Otherwise,

find a deficient set S in H.
4 If @ uv ∈ E such that u ∈ S, v /∈ NH(S), then STOP; G has no perfect matching, S is a deficient set

in G.
5 ε := min{cuv − ȳu + ȳv : uv ∈ E, u ∈ S, v /∈ NH(S)}

6 ȳv :=


ȳv + ε v ∈ S
ȳv − ε v ∈ NH(S)
ȳv otherwise

7 Go to step 2.

Note that in every iteration, ε > 0 and the objective value goes up by

ε(|S| − |NH(S)|) > 0

Note that when the algorithm stops with a minimum cost perfect matching, the current ȳ is a certificate of
optimality.

2019-11-19

Left class early due to questionable lecturer.

2019-11-21

DEFINITION 5.3.2. Given a set S ⊆ Rn, the convex hull of S is the smallest convex set which contains
S. Equivalently,

conv(S) =
⋂
C

where C ⊆ S is convex.

Let S1 ⊇ S2, c ∈ Rn and consider

(P2) max{c>x : x ∈ S2}

(P1) max{c>x : x ∈ S1}

If we have an optimal solution x̄ of (P1) and x̄ ∈ S2, then x̄ is an optimal solution of (P2). Regardless of
whether x̄ ∈ S2, c>x̄ is an upper bound on the optimal value of (P2).

(IP ) max c>x

subject to
Ax = b
x > 0
x ∈ Zn
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(LP ) max c>x
subject to

Ax = b
x > 0

Find an optimal solution x̄ of (LP ). If x̄ ∈ Zn, then x̄ is optimal in (IP ). Otherwise, find a cut (x̄ ∈
Rn \ Zn)

a>x > α

such that
(i) a>x 6 α

(ii) a>x̄ > α

for all x feasible in (IP ). The inequality “cuts” the current optimal solution x̄ of (LP ).

EXAMPLE 5.3.3 (Cutting Plane Algorithm).
(IP ) max x2

subject to
3x1 + 2x2 6 6
−3x1 + 2x2 6 0
x = (x1, x2)> > 0

x ∈ Z2

Introduce slack variables x3, x4 ∈ Z>0. Then solve the LP relaxation:
z = − 1

4x3 − 1
4x4 + 3

2
x1 + 1

6x3 − x4 = 1
x+ 2 + 1

4x3 + 1
4x3 = 3

2

For every feasible solution of (IP ),

x3 + 1
4x3 + 1

4x4 = 3
2

=⇒ x2 +
⌊

1
4

⌋
x3 +

⌊
1
4

⌋
x4 6

3
2

Since there are no integers in (1, 3/2), every feasible solution of the (IP )

x2 6

⌊
3
2

⌋
= 1

we call this a cut since:
(i) we proved above
(ii) x̄2 = 3/2 > 1

Add the constraints x2 + x5 = 1, with x5 > 0 to the LP relaxation and solve.
z = − x5 + 1
x1 − 1

3x4 + 2
5x5 = 2

3
x2 + x5 = 1

x3 + x4 − 4x5 = 2

Add the constraints x1 + x4 + x6 = 0 with x6 > 0 to the LP relaxation and solve.
z = − x5 + 1
x1 + x5 − 1

2x6 = = 1
x2 + x5 = 1

x3 − 5x5 + 3
2x6 = 1
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x∗ = (1, 1)> with objective value z = 1 is optimal in (LP ).

Another idea for solving IPs is Branch-and-Bound (related to Divide-and-Conquer). Separate the problem
at hand into exhaustive and mutually exclusive sub-problems (Branching). For each sub-problem, solve its
relaxation and get an upper bound on the optimal objective value of the sub-problem. If the upper bound is
less than the objective value of the current best integer solution, fathom this branch.



Chapter 6

Non-linear Optimization

2019-11-26

All linear programs are non-linear programs.

6.1 Convexity

DEFINITION 6.1.1. Let f : Rn → R. Then x̄ ∈ Rn is a local minimizer if for some ε ∈ R>0 we have
that f(x) > f(x̄) where

||x− x̄|| < ε

for all x ∈ Rn.

DEFINITION 6.1.2. Let f : Rn → R. Then x̄ ∈ Rn is a global minimizer if for each x ∈ Rn,

f(x) > f(x̄)

6.1.1 Convex Functions and Epigraphs

DEFINITION 6.1.3. Let C ⊆ Rn be a convex set. Let f : C → R. f is convex if for each x,y ∈ Rn and
λ ∈ [0, 1]

f(λx+ (1− λ)y) 6 λf(x) + (1− λ)f(y)

DEFINITION 6.1.4. Let f : Rn → R. The epigraph of f is the following set:

epi(f) :=
{(

µ
x

)
∈ R× Rn : f(x) 6 µ

}

THEOREM 6.1.5. Let f : Rn → R be convex. f is convex if and only if epi(f) is convex.

48
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Proof. ( =⇒ ) Suppose f : Rn → R is convex. Let
(
µ1
x

)
,

(
µ2
y

)
∈ epi(f) and λ ∈ [0, 1]. We have

f(λx+ (1− λ)y) 6 λf(x) + (1− λ)f(y) 6 λµ1 + (1− λ)µ2

which implies (
λµ1 + (1− λ)µ2
λx+ (1− λ)y

)
∈ epi(f)

(⇐= ) Suppose epi(f) is convex. Let x,y ∈ Rn and λ ∈ [0, 1]. Then,
(
f(x)
x

)
,

(
f(y)
y

)
∈ epi(f). Hence,

λ

(
f(x)
x

)
+ (1− λ)

(
f(y)
y

)
∈ epi(f)

Hence, by definition of epi(f),

f(λx+ (1− λ)y) 6 λf(x) + (1− λ)f(y)

Thus, f is a convex function.

6.1.2 Level Sets and Feasible Region

DEFINITION 6.1.6. Let f : Rn → R be a convex function and β ∈ R. The level set of f is:

Sβ = {x ∈ Rn : f(x) 6 β}

THEOREM 6.1.7. Let f : Rn → R be a convex and β ∈ R. Then the level set is a convex set.

Proof. Since f is convex, we know that

f(λx+ (1− λ)y) 6 λf(x) + (1− λ)f(y)
6 λβ + (1− λ)β
= β

Thus, λx+ (1− λ)y ∈ Sβ . Thus, Sβ is a convex set.

2019-11-28

6.2 Relaxing Convex NLPs

6.2.1 Subgradients

DEFINITION 6.2.1. Let g : Rn → R be convex, and let x̄ ∈ Rn. We say that s ∈ R is a subgradient at x̄
if for every x ∈ Rn the following inequality holds:

g(x̄) + s>(x− x̄) 6 g(x)

{x ∈ Rn : g(x) 6 0} ⊆ {x ∈ Rn : s>x 6 s>x̄− g(x̄)} Consider the NLP

(PC) min c>x
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subject to
gi(x) 6 0

gi convex for all i ∈ 1, . . . ,m.
Let x̄ be feasible in (PC): gi(x) 6 0 for all i ∈ {1, . . . ,m}.
Consider the LP problem

(LPC) min c>x

subject to
(s(i))>x 6 (s(i))>x̄− gi(x̄)

s(i) ∈ Rn is a subgradient of gi at x̄
For (LPC), we know that x̄ is optimal if and only if

−c ∈ {cone of tight constraints at x̄}

If this condition holds, then x̄ is optimal in (LPC) as well as (PC).

THEOREM 6.2.2. Let x̄ ∈ Rn be a feasible solution of (PC). Let s(i) ∈ Rn denote the subgradients of gi
at x̄ for all i ∈ J(x̄), where J(x̄) := {i : gi(x̄) = 0}. Then, if

−c ∈ cone{s(i) : i ∈ J(x̄)}

x̄ is optimal in (PC).

The convex function f is differentiable at x̄, but not differentiable at x̂.
Let f : Rn → R, let x̄ ∈ Rn, then f is differentiable at x̄ if there exists s ∈ Rn such that

lim
h→0

f(x̄+ h)− f(x̄)− s>h
||h||2

= 0

If f is differentiable at x̄, then such an s is a subgradient of f at x̄ (and it is unique). We denote such s
by

∇f(x̄)

gradient of f at x̄. If f is continuously differentiable at x̄, then

∇f(x̄) =


∂f
∂x1...
∂f
∂xn


For example, consider f : R2 → R, f(x) = 1

4x1
2 + x2

2. What is the subgradient of f at x̄ := (2, 1)>?

∇f(x) = (1
2x1, 2x2)>

The subgradient at x̄ is ∇f(x̄) = (1, 2)>.
Consider the constraint g(x) = 1

4x
2
1 + x2

2 − 2 6 0.
Consider a convex NLP:

min f(x)
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subject to

g1(x) 6 0
...

gm(x) 6 0

Note that we can relax any constraint gi(x) 6 0 of NLP by replacing it with

s>x 6 s>x̄− gi(x̄)

where x̄ is a subgradient of gi at x̄. Note that since f is convex, if it differentiable, then

f(x) > f(x̄) +∇f(x̄)(x− x̄)

In dealing with the convex NLP, we can use the LP problem

min∇f(x̄)>x+ f(x̄)−∇f(x̄)>x̄

subject to

∇g1(x̄)> 6 g1(x̄)> − g1(x̄)
...

∇gm(x̄)> 6 gm(x̄)> − gm(x̄)

x̂ is called a Slater point for the NLP if

gi(x̂) < 0 ∀i ∈ {1, . . . ,m}

THEOREM 6.2.3 (Karush-Kuhn-Tucker). Consider a convex NLP that has a Slater point. Let x̄ ∈ Rn be a
feasible solution and assume that f, g1, g2, . . . , gm are differentiable at x̄. Then x̄ is an optimal solution of
NLP if and only if

−∇f(x̄) ∈ cone{∇gi(x̄) : i ∈ J(x̄)}

EXAMPLE 6.2.4. (NLP)
min f(x) := −x1 + x2

g1(x) := (x1 − 1)2 + (x2 − 1)2 − 1 6 0

g2(x) := x2
1 + x2

2 − 1 6 0

• Is x̃ := (0, 1)> optimal?
• Is x̄ := (1, 0)> optimal?

Solution. We can see that x̂ := (1/2, 1/2)> is a Slater point.

−∇f(x̄) = (1,−1)>

g1(x̄) = (0,−2)>, g2(x̄) = (2, 0)>

Thus,
−∇f(x̄) = 1

2g1(x̄) + 1
2g2(x̄)

=⇒ −∇f(x̄) ∈ cone {∇g1(x̄), g2(x̄)}

Hence, x̄ is optimal in NLP.
Exercise: Show that x̃ is not optimal.
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2019-12-03

Graphical representation of last example was done.

DEFINITION 6.2.5. Given an NLP, let F ⊆ Rn denote its feasible region. x̄ ∈ F is called a local
minimizer if ∃ ε > 0 such that

f(x̄) < f(x)

for all x ∈ F ∩ {x : ||x− x̄||2 < ε}

DEFINITION 6.2.6. Given an NLP, let F ⊆ Rn denote its feasible region. x̄ ∈ F is called a global
minimizer if

f(x̄) < f(x)

for all x ∈ F .

THEOREM 6.2.7. For convex NLPs, every local minimizer is a global minimizer.

Proof. Let F denote the feasible region of the NLP, and let x̄ ∈ F be a local minimizer. Suppose for a
contradiction that x̄ is not a global minimizer. Then there exists a x̂ ∈ F such that

f(x̂) < f(x̄)

Since f is convex, for all λ ∈ [0, 1],
[λx̄+ (1− λ)x̂ ∈ F ]

So,
f(λx̄+ (1− λ)x̂) 6 λf(x̄) + (1− λ)f(x̂) < f(x̄)

contradiction.

Interesting Future (Optimization) Courses
• CO 351: Network Flow Theory (Assignment, Shortest Path, Perfect Matching)
• CO 367: Non-linear Optimization
• CO 353: Computational Discrete Optimization (Transportation, Branch and Bound)
• CO 370: Deterministic OR Models (First Weeks of CO 250)
• CO 372: Portfolio Optimization (see 2.0.16)
• CO 342: Graph Theory
• CO 454: Scheduling
• CO 456: Introduction to Game Theory (Dual Variables in Shortest Path, Allocation of Resources)
• Advanced Courses (80%+∗):

– CO 450, 452, 463, 466, 471, 673
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