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Chapter 1

Review of Basic Concepts in Survey
Sampling

Lecture 1
5th January

Survey sampling as a scientific discipline:
• Started from Jerzy Neyman’s 1934 paper (1894–1981).
• Fast development since the 1940s and 1950s.
• Became an important area of statistics and social science.
• (Used to be) the primary tool of data collection for official statistics and researchers in social science and

health studies.
• Face challenges in the big data and internet era.

Some ongoing well-known surveys:
• The Current Population Survey of the US (CPS).
• The National Health and Nutrition Examination Survey of the US (NHANES).
• The General Social Survey of Canada (GSS).
• The Canadian Community Health Survey (CCHS).
• The International Tobacco Control Policy Evaluation Surveys (The ITC Surveys, headquartered at UWater-

loo).
• The Canadian Longitudinal Study of Aging (CLSA, McMaster, McGill, and Dalhousie).

Statistics Canada:
One of the most respected survey organizations in the world.
Some Canadian survey statisticians:

• J.N.K. Rao (Carleton University, retired).
• David Bellhouse (University of Western Ontario, retired).
• Jiahua Chen (University of British Columbia).
• David Haziza (University of Ottawa).
• Carl E. Särndal (University of Montreal, retired).
• Louis-Paul Rivest (Laval University).
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CHAPTER 1. REVIEW OF BASIC CONCEPTS IN SURVEY SAMPLING 3

• David Binder (Statistics Canada, 1949–2012).
• Carl Schwarz (Simon Fraser University, retired).
• Steve Thompson (Simon Fraser University).
• Randy Sitter (Simon Fraser University, 1961–2007).
• V. P. Godambe (University of Waterloo, 1926–2016).
• Mary E. Thompson (University of Waterloo, retired).
• Matthias Schonlau (University of Waterloo).
• Changbao Wu (University of Waterloo).

Example 1.1. The Math Faculty plans to conduct a survey to study the well-being of recent graduates from the
faculty.

• What is exactly the group to be studied?
(The target population)

• What information is to be collected?
(Variables to be measured; sample data)

• From what can we select individuals to be surveyed?
(Sampling frame(s))

• How to select individuals to be surveyed?
(Sampling methods; sampling procedures)

• What method to use to collect data?
(The mode of data collection: Face-to-face? Telephone? Mailed questionnaire?)

• How to use the data to draw conclusions?
(Statistical analysis)

Three versions of survey populations (with reference to Example 1.1):
• The target population: The set of all units covered by the main objective of the study.

(All students who received a formal degree from Waterloo between 2016 and 2019)
• The frame population: The set of all units covered by the sampling frame(s).

(Sampling frame: The list of personal email addresses of students who graduated between 2016 and 2019)
• The sampled population (the study population): The population represented by the sample. Under probability

sampling, the sampled population is the set of all units which have a non-zero probability to be selected in
the sample.

– The sampled population is not the set of sampled units!
– Units which cannot be reached or do not respond to surveys (non-response) are not part of the

sampled population.
Population structures and sampling frames:

U = {1, 2, . . . , N},

where N is the population size, and the labels 1, 2, . . . , N represent the N units.
• Unstructured population: There exists a single complete list of all N units, which can be used as the

sampling frame.
• Stratified population: The population U has a stratified structure if it is divided into H non-overlapping

subpopulations:
U = U1 ∪ U2 ∪ · · · ∪ UH ,
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where the subpopulation Uh is called stratum h, with stratum population size Nh, h = 1, 2, . . . , H. It
follows that

N =
H∑

h=1
Nh.

Sampling frames for stratified sampling: H separate lists, each list consists of all units in one stratum.
• Clustered population: If the survey population can be divided into groups, called clusters, such that every

unit in the population belongs to one and only one group, we say the population is clustered.
First stage sampling frame for cluster sampling: A complete list of clusters (but not all the units within
each cluster).

• Stratified sampling versus cluster sampling:
– Under stratified sampling, sample data are collected from every stratum.
– Under cluster sampling, only a portion of the clusters has members in the final sample.

Example 1.2. Survey of the population of high school students in the Waterloo region. There are a total of 15
high schools. Take a sample of 300 students from the population.

• Plan A. Randomly select 20 students from each high school.
(Stratified sampling)

• Plan B. Randomly select 5 high schools from the list of 15 schools, and then randomly select 60 students
from each of the 5 selected schools.
(Two-stage cluster sampling)

• Plan C. The Waterloo region can be divided into KW area (8 high schools) and non-KW area (7 high
schools). First, randomly select 3 schools from the KW area and 2 schools from the non-KW area, then
randomly select 60 students from each of the 5 selected schools.
(Stratified two-stage cluster sampling)

Sampling units and observational units:
• Sampling units: Units used to select the survey sample.

– Under clustering sampling, sampling units are the clusters.
– Under non-clustering sampling, sampling units are the individual units.

• PSU and SSU: Under two-stage cluster sampling, the first stage sampling units are clusters, called the
primary sampling unit (PSU); the second stage sampling units are individual units, called the secondary
sampling unit (SSU).

• Observational units: Observational units are always the individual units from which measurements are
taken.

Example 1.3. An educational worker wanted to find out the average number of hours each week (of a certain
month and year) spent on watching television by four and five-year-old children in the Waterloo Region. She
conducted a survey using the list of 123 pre-school kindergartens administered by the Waterloo Region District
School Board. She first randomly selected 10 kindergartens from the list. Within each selected kindergarten,
she was able to obtain a complete list of all four and five-year-old children, with contact information for their
parents/guardians. She then randomly selected 50 children from the list and mailed the survey questionnaire to
their parents/guardians. The planned sample size is 10 × 50 = 500 and the sample data were compiled from
those who completed and returned the questionnaires.

• The target population: All four and five-year-old children in the Region of Waterloo at the time of the survey.
This is defined by the overall objective of the study.

• Sampling frames: Two-stage cluster sampling methods were used (further details to follow). The first
stage sampling frame is the list of 123 kindergartens administered by the school board. The second
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stage sampling frames are the complete lists of all four and five-year-old children for the 10 selected
kindergartens.

• Sampling units and observational units: The first stage sampling units are the kindergartens; the second
stage sampling units are the individual children (or equivalently, their parents); observational units are
individual children.

• The frame population: All four and five-year-old children who attend one of the 123 kindergartens in the
Region of Waterloo. It is apparent that children who are homeschooled are not covered by the frame
population. Thus, as is frequently the case, the frame population is not the same as the target population.

• The sampled population: All four and five-year-old children who attend one of the 123 kindergartens in the
Region of Waterloo and whose parents/guardians would complete and return the survey questionnaire if
the child was selected for the survey.

Lecture 2
10th January
Survey samples: A survey sample, denoted as S, is a subset of the population U = {1, 2, . . . , N}.
Sample size n = |S| is the number of units in the sample:

S = {i1, i2, . . . , in}a set of n “unordered” units.
We could simply use S = {1, 2, . . . , n}.
N = 10, n = 3:

U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
S = {7, 4, 9}

= {i1, i2, i3}.

S = {1, 2, 3}.

Non-probability samples versus probability samples:
Non-probability samples are selected by subjective or any convenient methods. Examples include

• Quota sampling: The sample is obtained by a number of interviewers, each of whom is required to sample
certain numbers of units with certain types or characteristics. How to select the units is completely left in
the hands of the interviewers.

• Judgement or purposive sampling: The sample is selected based on what the sampler believes to be “typical”
or “most representative” of the population.

• Restricted sampling: The sample is restricted to certain parts of the population which are readily accessible.
• Sample of convenience: The sample is taken from those who are easy to reach.
• Sample of volunteers: The sample consists of those who volunteer to participate.
• Web panels: The sample is selected from a panel of people who signed up to do surveys in order to receive

cash or other incentives.
The most serious issue with non-probability survey samples:
Biased sample with unknown inclusion probabilities.
Non-probability survey samples are not the focus of this course. But the topic is becoming important in recent
years, since data from non-probability survey samples become useful sources.
Yilin Chen’s PhD thesis research is on statistical analysis with non-probability survey samples, to be introduced
in the last lecture.
Probability samples, theoretically speaking, are selected through a probability measure over a pool of candidate
samples. Let

Ω = {S : S ⊆ U}



CHAPTER 1. REVIEW OF BASIC CONCEPTS IN SURVEY SAMPLING 6

be the set of all possible subsets of the survey population U . Let P be a probability measure over Ω such
that

P(S) ≥ 0 for any S ∈ Ω and
∑

S:S∈Ω
P(S) = 1.

A probability sample S is selected based on the probability sampling design, P .
P( · ) is a discrete probability measure.
Example 1.4. N = 3; U = {1, 2, 3}, n = 1 or 2.

• n = 1: S1 = {1}, S2 = {2}, S3 = {3}.
• n = 2: S4 = {1, 2}, S5 = {1, 3}, S6 = {2, 3}.
• n = 3: S7 = {1, 2, 3} (census).

S S1 S2 S3 S4 S5 S6 S7

P(S) 1/6 1/6 1/6 1/6 1/6 1/6 0
P(S) 0 0 0 1/3 1/3 1/3 0
P(S) 0 0 0 1/2 1/4 1/4 0

Note that we have P(S) ≥ 0 for any S ∈ Ω and∑{S:S∈Ω} P(S) = 1.
Sampling design P with fixed sample size: P(S) = 0 if |S| ≠ n. The probability measure is defined over

Ωn = {S : S ⊆ U and |S| = n}.

The cumulative sum method for generating a discrete random variable:

X ∼ f(x) : pi = f(xi) = P(X = xi), i = 1, 2, . . . .

• Step 1. Probability cumulation.

b0 = 0
b1 = p1

b2 = p1 + p2

b3 = p1 + p2 + p3

...

bj =
j∑

i=1
pi

...

• Step 2. Generate r ∼ U(0, 1).
• Step 3. Let X⋆ = xj if bj−1 < r ≤ bj .

Can show X ∼ f(x).
Survey variables and population parameters:

• y: the response variable; x the vector of auxiliary variables.
• (yi; xi): the values of (y, x) associated with unit i, i = 1, 2, . . . , N .
• A common assumption in survey sampling: the values (yi, xi) can be measured without error if i is selected

in the sample.
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• Population totals:

Ty =
N∑

i=1
yi and Tx =

N∑
i=1

xi.

• Population means:

µy = 1
N

N∑
i=1

yi and µx = 1
N

N∑
i=1

xi.

• Population variance of y:

σ2
y = 1

N − 1

N∑
i=1

(yi − µy)2 = 1
N − 1

( N∑
i=1

y2
i − Nµ2

y

)
.

An important special case: y is a binary variable:

yi =
{

1, if unit i has attribute “A”,
0, otherwise.

N : the total number of units in the population (population size). M : the total number of units in the population
having attribute “A.”

• Population total:

Ty =
N∑

i=1
yi = M.

• Population mean:
µy = Ty

N
= M

N
= P,

where P is the population proportion of units with attribute “A.”
• Population variance:

σ2
y = 1

N − 1

( N∑
i=1

y2
i − Nµ2

y

)
= 1

N − 1(M − NP 2)

= N

N − 1P (1 − P )

≈ P (1 − P ) if N is large.

Probability sampling and design-based inference:
• The survey population U = {1, 2, . . . , N} is viewed as fixed.
• The values yi and xi attached to unit i and the population parameters such as Ty and µy are also viewed

as fixed.
• The values of the population parameters can be determined without error by conducting a census.
• The sample S is selected according to a probability sampling design P .
• The sample S is a random set under P .
• Each unit in the population has a probability to be included in the sample.
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• Randomization is induced by the probability sampling design for the selection of the survey sample.
Basic sampling techniques and advanced topics:

• Basic sampling techniques and theory are developed for the estimation of the population total Ty and the
population mean µy.
(Chapters 1–5 in the textbook)

• The basic methods and theory can be extended to handle more advanced topics, such as design-based
regression analysis using survey data.
(Chapters 6–11 in the textbook)



Chapter 2

Review of Simple Random Sampling

2.1 Simple Random Sampling Without Replacement (SRSWOR)
The task: Select a sample of size n from a population of size N with equal probability among all candidate
samples.
The total number of candidate samples:

(
N
n

)
= N(N−1)···(N−n+1)

n! .
The probability measure for the sampling design:

P(S) =
{ 1

(N
n) , if |S| = n

0, if |S| ≠ n.

P(S) cannot be used to select a sample in practice. N = 1000, n = 3:(
N

n

)
= 1000 × 999 × 998

3 .

P(S) is a theoretical tool.
Sampling scheme or sampling procedure: Select the survey sample through a sequential draw-by-draw
method; select units from the sampling frame, one-at-a-time, until the final sample is chosen.
SRSWOR is a sampling procedure to select a sample of size n with equal probability among all candidate
samples.
The sampling frame for SRSWOR: A complete list of N units in the population.
The SRSWOR sampling procedure:

1. Select the first unit from the N units on the sampling frame with equal probabilities 1/N ; denote the
selected unit as i1;

2. Select the second unit from the remaining N − 1 units on the sampling frame with equal probabilities
1/(N − 1); denote the selected unit as i2;

3. Continue the process and select the nth unit from the remaining N − n + 1 units on the sampling frame
with equal probabilities 1/(N − n + 1); denote the selected unit as in.

Theorem 2.1. Under simple random sampling without replacement, the selected sample satisfies the probability
measure P specified as

P(S) =
{

1/
(

N
n

)
, if |S| = n,

0, otherwise.

9
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Let S = {i1, i2, . . . , in} be the final sample.

P(S) = n(n − 1) · · · (2)(1)
N(N − 1) · · · (N − n + 1) = 1(

N
n

) .

• Survey sample selection always focuses on units, that is, the labels.
• Survey sample data:

{
(yi, xi), i ∈ S

}
.

Lecture 3
12th October
Sample mean and sample variance:

ȳ = 1
n

∑
i∈S

yi.

s2
y = 1

n − 1
∑
i∈S

(yi − ȳ)2 = 1
n − 1

(∑
i∈S

y2
i − nȳ2

)
.

Remarks:
• The sample mean ȳ and s2

y are useful statistics under simple random sampling, but not necessarily under
other sampling methods.

• The notation∑i∈S is preferred over∑n
i=1.

• The form of estimators for population parameters depends on the sampling methods.
• The combination of “sampling design” and “estimation method” is called a “sampling strategy” (Thompson,

1997; Rao, 2005).
Expectation and variance under design-based inferences:
In classic statistics: X1, X2, . . . , Xn are iid with E[Xi] = µ, V(Xi) = σ2. Let X̄ = 1

n

∑n
i=1 Xi.

• Sample mean:
E[X̄] = 1

n

n∑
i=1

E[Xi] = 1
n

n∑
i=1

µ = µ.

• Sample variance:
V(X̄) = 1

n2

n∑
i=1

V(Xi) = 1
n2

n∑
i=1

σ2 = σ2

n
.

Under SRSWOR:
E[ȳ] = E

[
1
n

∑
i∈S

yi

]
̸= 1

n

∑
i∈S

E[yi].

• S: a random set.
• ∑i∈S: a random “sum.”
• yi: a fixed quantity for the given i.

Three fundamental results in survey sampling under SRSWOR:
(a) The sample mean ȳ = n−1∑

i∈S yi is a design-unbiased estimator for the populationmean µy = N−1∑N
i=1 yi:

E[ȳ] = µy .

There are three possible ways to prove (a), depending on how the randomization under SRSWOR is handled.
Method 1. Use the probability measure P(S) for the survey design, that is, P(S) = 1

(N
n) for |S| = n.



CHAPTER 2. REVIEW OF SIMPLE RANDOM SAMPLING 11

Also, ȳ depends only on S.
ȳ = 1

n

∑
i∈S

yi = ȳ(S),

that is, ȳ is a function of S.

E[ȳ] =
∑

(value)(prob)

=
∑

S

ȳ(S)P(S)

=
∑

S:|S|=n

1
n

∑
i∈S

yi
1(
N
n

)
= 1

n

1(
N
n

) ∑
{S:|S|=n}

∑
i∈S

yi

= 1
n

1(
N
n

) N∑
i=1

tiyi

= 1
N

N∑
i=1

yi

= µy,

where ti = number of S which includes the unit i:

ti =
(

N − 1
n − 1

)
.

N = 3, n = 2: S1 = {1, 2}, S2 = {1, 3}, S3 = {2, 3}.∑
{S:|S|=2}

∑
i∈S

yi = (y1 + y2) + (y1 + y3) + (y2 + y3)

= 2y1 + 2y2 + 2y3.

Method 2. Use the sampling scheme, the sequential draw-by-draw procedure. Let Zk be the y-value from the kth

draw:
• S = {i1, i2, . . . , in}.
• Zk = yik for k = 1, 2, . . . , n.
• ȳ = 1

n

∑
i∈S yi = 1

n

∑n
k=1 Zk.

Hence,

E[ȳ] = E
[

1
n

n∑
k=1

Zk

]
= 1

n

n∑
k=1

E[Zk].

What’s the probability function of Zk?

Zk y1 y2 · · · yN

f( · ) 1/N 1/N · · · 1/N

Therefore,

E[Zk] =
N∑

i=1
yi

1
N

= µy.
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Method 3. Use the sample inclusion indicator variables.

Ai =
{

1, if i ∈ S,

0, if i /∈ S.
i = 1, 2, . . . , N.

The Ai’s are random variables.

P(Ai = 1) = p = P(i ∈ S) =
1 ×

(
N−1
n−1

)(
N
n

) = n

N
.

P(Ai = 0) = 1 − p.

E[Ai] = p = n

N
.

V(Ai) = p(1 − p) = n

N

(
1 − n

N

)
.

E[ȳ] = E
[

1
n

∑
i∈S

yi

]

= E
[

1
n

N∑
i=1

Aiyi

]

= 1
n

n∑
i=1

yi E[Ai]

= 1
N

N∑
i=1

yi

= µy.

(b) The design-based variance of ȳ under SRSWOR is given by

V(ȳ) =
(

1 − n

N

)
σ2

y

n
,

where σ2
y is the population variance. The term (1 − n/N) is called the finite population correction (fpc) factor;

The ratio n/N is called the sampling fraction.
This result can be proved using different methods. Use the indicator variables:

V(ȳ) = V
(

1
n

N∑
i=1

Aiyi

)

= 1
n2

( N∑
i=1

y2
i V(Ai) +

∑∑
i ̸=j

yiyj Cov(Ai, Aj)
)

.

V(Ai) = n

N

(
1 − n

N

)
.

Cov(Ai, Aj) = E[AiAj ] − E[Ai]︸ ︷︷ ︸
n/N

E[Aj ]︸ ︷︷ ︸
n/N

.
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E[AiAj ] =
∑

i

∑
j

aiaj P(Ai = ai) P(Aj = aj)

= P(Ai = 1, Aj = 1)
= P(i ∈ S, j ∈ S)

=
1 × 1 ×

(
N−2
n−2

)(
N
n

)
= n(n − 1)

N(N − 1) .

µ2
y = 1

N2

( N∑
i=1

yi

)2

= 1
N2

N∑
i=1

N∑
j=1

yiyj

= 1
N2

( N∑
i=1

y2
i +

∑∑
i̸=j

yiyj

)
.

(c) The sample variance s2
y is an unbiased estimator for the population variance σ2

y under SRSWOR, i.e.,
E[s2

y] = σ2
y .

(c)∗ An unbiased variance estimator for ȳ is given by

v(ȳ) =
(

1 − n

N

)
s2

y

n
,

which satisfies
E[v(ȳ)] = V(ȳ),

where
V(ȳ) =

(
1 − n

N

)
σ2

y

n
.

s2
y = 1

n − 1

(∑
i∈S

y2
i − nȳ2

)
= n

n − 1

(
1
n

∑
i∈S

y2
i

)
− n

n − 1 ȳ2.

E[ȳ] = µy implies

E
[

1
n

∑
i∈S

y2
i

]
= 1

N

N∑
i=1

y2
i .

E[ȳ2] = V(ȳ) +
(
E[ȳ]

)2

=
(

1 − n

N

)
σ2

y

n
+ µ2

y.

Homework: Show that
E[s2

y] = σ2
y.

Summary of the main theoretical results under SRSWOR:
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• The population mean µy and the population variance σ2
y are fixed (but unknown) population parameters.

• The sample mean ȳ and the sample variance s2
y are random variables under the survey design.

• The ȳ is an unbiased estimator µy: E[ȳ] = µy.

• V(ȳ) =
(
1 − n

N

)σ2
y

n is the theoretical variance of ȳ and is a fixed, but unknown quantity depending on the
population variance σ2

y.

• v(ȳ) =
(
1 − n

N

) s2
y

n is unbiased estimator for ȳ (computable with the given sample data).
• The population size N is known under SRSWOR. (As part of the sampling frame information).

The R function for SRSWOR and SRSWR (next section) with specified N and n: sample(N,n)
N=10
n=4
sam=sample(N,n)
> sam
[1] 7 1 4 2
sam=sample(N,n,replace=T)
> sam
[1] 6 6 6 1
N=100
n=4
sam=sample(N,n)
> sam
[1] 57 67 62 91
sam=sample(N,n,replace=T)
> sam
[1] 88 73 9 63

Lecture 4
17th January
Summary of theoretical results under SRSWOR:

1 E[ȳ] = µy.

2 V(ȳ) = (1 − n
N ) σ2

y

n = ( 1
n − 1

N )σ2
y.

3 E[s2
y] = σ2

y.

4 E[v(ȳ)] = V(ȳ), where v(ȳ) = (1 − n
N ) s2

y

n .
Special cases where the response variable y is binary:

• µy = M
N = P ; σ2

y = N
N−1 P (1 − P ) ≈ P (1 − P ) if N is large.

• ȳ = 1
n

∑
i∈S yi = m

n = p.
– m = # units in S with attribute A.
– p = m

n = sample proportion.
• s2

y = n
n−1 p(1 − p) ≈ p(1 − p) if n is large.

• E[p] = P ; v(p) = (1 − n
N ) 1

n
n

n−1 p(1 − p) = (1 − n
N ) 1

n−1 p(1 − p).

2.2 Simple Random Sampling With Replacement (SRSWR)
The required sampling frame:
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A complete list of all N units in the population.
The sampling procedure:

1. Select the first unit from the N units on the sampling frame with equal probabilities 1/N ; denote the
selected unit as i1;

2. Select the second unit from the N units on the sampling frame with equal probabilities 1/N ; denote the
selected unit as i2;

3. Continue the process and select the nth unit from the N units on the sampling frame with equal probabilities
1/N ; denote the selected unit as in.

Note: SRSWR is not very useful in survey practice but has theoretical values due to its connection to iid
samples.
Two possible treatments for SRSWR:
(1) Keep duplicated units

Let S∗ = {i1, i2, . . . , in}. Under SRSWR, certain units might be included in S∗ more than once (S∗ may include
duplicated units).
Let Zk = yik be the y value from the kth selection, k = 1, 2, . . . , n. Let the sample mean be computed as

Z̄ = 1
n

n∑
k=1

Zk.

We have
E[Z̄] = µy and V(Z̄) =

(
1 − 1

N

)
σ2

y

n
.

(i) The Z1, Z2, . . . , Zn are iid random variables.
(ii) The common probability function for Z1, Z2, . . . , Zn:

Zk y1 y2 · · · yN

f( · ) 1/N 1/N · · · 1/N

iid∼ Discrete Uniform

(iii) The mean and variance of Zk:

E[Zk] =
N∑

i=1
yi × 1

N
= µy.

V(Zk) = E
[
(Zk − E[Zk])2]

= 1
N

N∑
i=1

(yi − µy)2

= N − 1
N

σ2
y

=
(

1 − 1
N

)
σ2

y.

E[Z̄] = µy, V(Z̄) = 1
n

V(Z1) =
(

1 − 1
N

)
σ2

y

n
.

(2) Remove duplicated units

Let S be the set of distinct units from SRSWR; let m = |S| be the number of distinct units.
Note: m is a random number under SRSWR.
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The sample mean based on the m distinct units is computed as

ȳm = 1
m

∑
i∈S

yi.

It can be shown that (Problem 2.2 of Chapter 2)

E[ȳm] = µy and V(ȳm) =
[
E
[

1
m

]
− 1

N

]
σ2

y.

(Proof is required for Stat 854).
Efficiency comparisons between SRSWOR and SRSWR:
Three estimators of the population mean µy (assume n ≥ 2):

1. ȳ under SRSWOR.
2. Z̄ under SRSWR.
3. ȳm under SRSWR.
• All three estimators are unbiased (first-order equivalence).
• ȳ is more efficient than the other two in terms of variance:

V(ȳ) =
(

1 − n

N

)
σ2

y

n
<

(
1 − 1

N

)
σ2

y

n
= V(Z̄).

V(ȳ) =
(

1
n

− 1
N

)
σ2

y <

[
E
[

1
m

]
− 1

N

]
σ2

y = V(ȳm).

Efficiency comparisons through Monte Carlo simulation studies:
1. Generate a finite population of size N , {y1, y2, . . . , yN } (from any distribution), and compute µy: This is

the “unknown” population mean.
2. Take a sample S of size n, and obtain the sample data {yi, i ∈ S}; compute the estimate µ̂1 for the

estimator µ̂y.
3. Repeat (2) a large number K (≥ 1000) times, independently, to obtain µ̂1, µ̂2, . . . , µ̂K .
4. Evaluate the performance of the estimator µ̂y using the relative bias (RB, in %) and the mean squared

error (MSE) from the simulation:
• RB (in %):

RB = 1
K

K∑
k=1

µ̂k − µy

µy
× 100,

if µy = 0 then we use the regular bias.
• MSE:

MSE = 1
K

K∑
k=1

(µ̂k − µy)2 = Var + Bias2.

(The MSE ≈ the variance if the RB is very small (i.e., < 1%)).
A simulation example in R comparing ȳ and Z̄:
set.seed(1234567,kind=NULL) #Results duplicable!
N=1000
n=200
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Y=rexp(N)
muy=mean(Y)
RB=c(0,0)
MSE=c(0,0)
K=1000
for(k in 1:K){
sam1=sample(N,n)
ysam1=Y[sam1]
sam2=sample(N,n,replace=T)
ysam2=Y[sam2]
mu1=mean(ysam1)
mu2=mean(ysam2)
RB[1]=RB[1]+mu1-muy
RB[2]=RB[2]+mu2-muy
MSE[1]=MSE[1]+(mu1-muy)^2
MSE[2]=MSE[2]+(mu2-muy)^2
}
RB=(RB/(K*muy))*100
MSE=MSE/K
> RB
[1] 0.09909944 -0.45677068
> MSE
[1] 0.003621282 0.004583952

Re-do the simulation with N = 20000 and n = 200:
> RB
[1] 0.2398581 0.1099942
> MSE
[1] 0.005152047 0.005227150

Note: The rule of thumb on how many decimal points to be reported
• For RB in percentages, two decimal points, i.e., 0.10% and −0.46% from the 1st example.
• For MSE, use two or three nearest decimal points to reflect the difference, i.e., 0.0036 and 0.0046 from the

1st example.
Homework:

• Install the R package on your laptop https://www.r-project.org.
• Re-run the simulation study with a different seed for the random number generator and compare the

results.
• Re-run the simulation study with fixed n = 200 and different sampling fractions n/N = 1%, 2%, 5%, 10%

and compare the results.
• Challenge part: Include ȳm in the simulation and compare the results.

Lecture 5
19th January

2.3 Central Limit Theorem and Confidence Intervals
Asymptotic framework for finite populations
(A frame to allow n → ∞):
We assume there is a sequence of finite populations (indexed by ν) and an associated sequence of survey samples.
Both the population size Nν and the sample size nν go to infinite as ν → ∞. The particular finite population

https://www.r-project.org


CHAPTER 2. REVIEW OF SIMPLE RANDOM SAMPLING 18

and the survey sample are part of the sequence.
We use n → ∞ or N → ∞, but the limiting process is under ν → ∞.
For stratified populations, there are two versions of the asymptotic framework:

• The total number of strata is bounded, but the stratum population sizes grow to infinity for the sequence
of populations.

• The stratum population sizes are bounded, but the total number of strata goes to infinity for the sequence
of populations.

The Hájek Theorem (1960)

Suppose that the sampling fraction n/N → f ∈ (0, 1) as n → ∞.
Suppose also that the population values of the response variable y satisfy

lim
N→∞

max1≤i≤N (yi − µy)2∑N
i=1(yi − µy)2

= 0.

Then under SRSWOR, the Wald-type statistic
ȳ − µy√

v(ȳ)
d−→ N (0, 1),

as n → ∞, where v(ȳ) =
(
1 − n

N

) s2
y

n is the estimated variance of ȳ.
We also have

ȳ − µy√
V(ȳ)

d−→ N (0, 1),

as n → ∞, where V(ȳ) =
(
1 − n

N

)σ2
y

n is the theoretical variance of ȳ.
Note that

ȳ − µy√
V(ȳ)

= ȳ − µy√
v(ȳ)

·
√

v(ȳ)√
V(ȳ)

and
√

v(ȳ)√
V(ȳ)

p−→ 1.

2.4 Sample Size Calculation
One of the major questions for survey design and planning: How large should the sample size n be? The answer
depends on three factors:

• The total budget for the survey.
• The cost for surveying one unit and taking all required measurements.
• The accuracy required for the main statistical inference problem from the survey data.

The answer also depends on the sampling methods: More efficient sampling methods require a smaller sample
size to achieve the same goal. We discuss sample size calculation under the simple scenario where

• The sampling method is SRSWOR.
• The accuracy requirements are for estimating the population mean.

(1) Accuracy specified by the absolute tolerable error

We want the estimator ȳ for estimating the parameter µy to satisfy

P
(
|ȳ − µy| ≥ e

)
≤ α,

or equivalently,
P
(
|ȳ − µy| < e

)
≤ 1 − α,
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for a given α ∈ (0, 1) and a pre-specified error margin e. What is the required n?
We assume that

ȳ − µy√
V(ȳ)

d−→ N (0, 1)

can be used as an approximation to derive the required sample size.
We compare

P
(

|ȳ − µy|√
V(ȳ)

<
e

V(ȳ)

)
≥ 1 − α

with
P
(
|Z| < Zα/2

)
= 1 − α,

where Z ∼ N (0, 1) and Zα/2 is the upper α/2 quantile of N (0, 1).

e√
V(ȳ)

= Zα/2 =⇒ V(ȳ) = e2

Z2
α/2(

1
n

− 1
N

)
σ2

y = e2

Z2
α/2

.

Doing some algebra,

n =
Z2

α/2σ2
y/e2

1 + (Z2
α/2σ2

y/e2)/N
= n0

1 + n0/N
< n0

n0 = Z2
α/2σ2

y/e2,

where n ≈ n0 for large N (N = +∞).
(2) Accuracy specified by the relative tolerable error

Suppose that µy ̸= 0. We want the estimator ȳ satisfies

P
(

|ȳ − µy|
|µy|

≥ e

)
≤ α.

What is the required n?
Why is sometimes relative tolerable error preferred?
The absolute tolerable error e specified in |ȳ − µy| < e is scale-dependent. The choice of e in the relative tolerable
error is scale-free, and can easily be decided as, for instance, 0.01–0.03 (that is, 1%–3%).
The accuracy requirement can be re-written as

P
(
|ȳ − µy| ≥ e∗) ≤ α,

where e∗ = e|µy|. The required sample size n is given by

n = n0

1 + n0/N
.

n0 = Z2
α/2σ2

y/(e∗)2

= Z2
α/2

(
σ2

y

µ2
y

)
/e2

= Z2
α/2
[
CV(y)

]2
/e2,
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where CV(y) = σy

µy
.

A useful result: if yi = axi for all i, then CV(y) = CV(x).
Notes on sample size calculations:

• The question of sample size calculation or sample size determination is part of the survey planning; the
actual survey sample data are not available at this stage.

• Formulas for sample size calculations typically involve unknown population quantities such as µy and σ2
y.

• How to obtain the required population information to calculate n?
– Existing data sources:

∗ Other similar surveys.
∗ Census data.

– Pilot surveys
∗ Do a small survey first (n = 50?)

• The population information for sample size calculations does not need to be very accurate, because the
calculated n is used for survey planning, which needs to be further adjusted by cost and other factors.

Example 2.1. Sample size calculation for estimating a population proportion

Suppose that the goal is to estimate the population proportion P = M/N using a survey sample to be selected
by SRSWOR. Using the sample proportion p = m/n to estimate P , a common absolute tolerable error is 3% and
the α is set to 0.05. In other words, the estimation accuracy is specified as

P
(
|p − P | ≤ 0.03

)
≥ 0.95.

Noting that 0.95 = 19/20, the probability statement is often quoted in media reports as “The result is accurate
within three percentage points, 19 times out of 20.”
What is the required sample size n?

n = n0

1 + n0/N
< n0.

n0 is a conservative choice for any N .
σ2

y ≈ P (1 − P ) ≤ 1
4 .

n0 = Z2
α/2σ2

y/e2

= 1.962σ2
y/0.032

≤ 1.962 × 1
4/0.032

≈ 1067.



Chapter 3

Stratified Sampling and Cluster
Sampling

Lecture 6
24th January

3.1 Stratified Simple Random Sampling
The survey population is divided into H non-overlapping strata:

U = U1 ∪ · · · ∪ UH ,

with corresponding break-down of population size as

N =
H∑

h=1
Nh,

where Nh is the size of stratum h.
For any stratified sampling designs, there are two basic features:

• A sample Sh of size nh is taken from stratum h using a chosen sampling design, and this is done for every
stratum.

• The H stratum samples Sh, h = 1, 2, . . . , H are selected independent of each other.
The stratum sample sizes (n1, n2, . . . , nH) are pre-determined at the design stage. The total sample size is

n =
H∑

h=1
nh.

Stratified Simple Random Sampling:
The stratum sample Sh is selected by SRSWOR, for every stratum h = 1, 2, . . . , H.
The required sampling frames:
Complete list of Nh units in stratum h, for every stratum h = 1, 2, . . . , H.
Notes:

• The population size N and the stratum sizes Nh are all known under stratified sampling (as part of the
frame information).

21
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• Even if a complete list of all N units is available, it does not imply that stratified sampling frames are
automatically available.

The stratum weights:
Wh = Nh

N
, h = 1, 2, . . . , H.

H∑
h=1

Nh = N,

H∑
h=1

Wh = 1.

The variables:
(yhi, xhi): the value of (y, x) for unit i in stratum h, i = 1, 2, . . . , Nh, h = 1, 2, . . . , H.
The population (i.e., the census) “data file”:{

(yhi, xhi) : i = 1, 2, . . . , Nh, h = 1, 2, . . . , H
}

.

The sample data set: {
(yhi, xhi) : i ∈ Sh, h = 1, 2, . . . , H

}
.

3.1.1 Population parameters
The stratum population mean and population total:

µyh = 1
Nh

Nh∑
i=1

yhi, and Tyh =
Nh∑
i=1

yhi.

Tyh = Nhµyh, and µyh = Tyh

Nh
.

The overall population mean and population total:

µy = 1
N

H∑
h=1

Nh∑
i=1

yhi, and Ty =
H∑

h=1

Nh∑
i=1

yhi.

The relations between µy, Ty and µyh, Tyh:

Ty =
H∑

h=1
Tyh =

H∑
h=1

Nhµyh.

µy =
H∑

h=1
Whµyh.

The stratum population variances:

σ2
yh = 1

Nh − 1

Nh∑
i=1

(yhi − µyh)2, h = 1, 2, . . . , H.

The overall population variance:

σ2
y = 1

N − 1

H∑
h=1

Nh∑
i=1

(yhi − µy)2.

The relation between σ2
y and σ2

yh:

σ2
y ≈

H∑
h=1

Whσ2
yh +

H∑
h=1

Wh(µyh − µy)2.

Total variation = Variation within stratum + Variation between strata.
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(N − 1)σ2
y =

H∑
h=1

Nh∑
i=1

(yhi − µy)2

=
H∑

h=1

Nh∑
i=1

(
(yhi − µyh) + (µyh − µy)

)2
=

H∑
h=1

Nh∑
i=1

(yhi − µyh)2 +
H∑

h=1

Nh∑
i=1

(µyh − µy)2 + 2
H∑

h=1

Nh∑
i=1

(yhi − µyh)(µyh − µy)

=
H∑

h=1
(Nh − 1)σ2

yh +
H∑

h=1
Nh(µyh − µy)2

σ2
y =

H∑
h=1

Nh − 1
N − 1 σ2

yh +
H∑

h=1

Nh

N − 1(µyh − µy)2,

where
Wh = Nh

N
,

Nh − 1
N − 1 ≈ Wh,

Nh

N − 1 ≈ Wh.

3.1.2 Sample data and summary statistics
Let’s focus on the study variable y. The sample data under stratified sampling are given by

{yhi, i ∈ Sh, h = 1, 2, . . . , H}.

The stratum sample mean and the stratum sample variance are defined as

ȳh = 1
nh

∑
i∈Sh

yhi, s2
yh = 1

nh − 1
∑
i∈Sh

(yhi − ȳh)2,

where nh is the stratum sample size.
The overall sample mean

ȳ = 1
n

H∑
h=1

∑
i∈Sh

yhi

is not a useful statistic (generally a biased estimator for µy).

3.1.3 Estimation of the overall population mean µy

In general, the overall population mean µy =
∑H

h=1 Whµyh can be estimated by

µ̂y =
H∑

h=1
Whµ̂yh,

where µ̂yh is an estimator of µyh using the data from the hth stratum.
Three general properties of µ̂y under any stratified sampling designs:

1. E[µ̂y] =
∑H

h=1 Wh E[µ̂yh].
2. V(µ̂y) =

∑H
h=1 W 2

h V(µ̂yh).
3. v(µ̂y) =

∑H
h=1 W 2

h v(µ̂yh).
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Estimation of µy under stratified simple random sampling:

ȳst =
H∑

h=1
Whȳh.

This is called the stratified sample mean estimator.
Under stratified simple random sampling,

• The stratum weights Wh, h = 1, . . . , H are known constants.
• ȳh, h = 1, . . . , H are independent.
• E[ȳh] = µyh.
• E[s2

yh] = σ2
yh.

• V(ȳh) =
(
1 − nh

Nh

)σ2
yh

nh
.

• v(ȳh) =
(
1 − nh

Nh

) s2
yh

nh
.

Three main properties of ȳst under stratified simple random sampling:
(a) E[ȳst] =

∑H
h=1 Wh E[ȳh] =

∑H
h=1 Whµyh = µy.

(b) V(ȳst) =
∑H

h=1 W 2
h V(ȳh) =

∑H
h=1 W 2

h

(
1 − nh

Nh

)σ2
yh

nh
.

(c) v(ȳst) =
∑H

h=1 W 2
h

(
1 − nh

Nh

) s2
yh

nh
.

Homework: Show that the overall sample mean

ȳ = 1
n

H∑
h=1

∑
i∈Sh

yhi

is not an unbiased estimator of µy under stratified simple random sampling unless
nh

n
= Wh, h = 1, . . . , H.

(This is called the so-called proportional sample size allocation)

ȳ = 1
n

H∑
h=1

nhȳh.

3.1.4 Justifications for using stratified sampling
• Administrative convenience. A survey at the national level can be organized more conveniently if each

province surveys the allocated portion of the sample independently. In this case the provinces would be a
natural choice for stratification.

• Estimation of subpopulation parameters. Large surveys often have multiple objectives. In addition to
estimates for the entire population, estimates for certain subpopulations could also be required.

• Efficiency considerations. With suitable stratification and reasonable sample size allocation, stratified
sampling leads to more efficient statistical inference.

• More balanced or controlled samples. Stratified sampling can protect from possible disproportionate samples
under probability sampling among subpopulations

Lecture 7
26th January
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3.2 Sample Size Allocation Under Stratified Sampling
Sample size allocations need to be addressed at the survey design stage. There are practical constraints on
sample size allocations.
We consider three theoretical questions on sample size allocations:

• For a given overall sample size n, how to find the “optimal allocation” (n1, n2, . . . , nH)?
• For a total cost C and cost per unit, how to find the “optimal allocation?”
• For a pre-specified requirement on variance of the estimators, how to find the “optimal allocation?”

Sample size allocations can be complicated by the use of complex survey sampling methods within each of the
strata and more advanced inferential problems.
We focus on stratified simple random sampling and the estimation of the population mean µy.

3.2.1 Proportional allocation

The overall sample size n has already been decided. The question is how to choose nh such that∑H
h=1 nh =

n.
The proportional allocation method chooses nh ∝ Nh under the constraint∑H

h=1 nh = n.

nh = cNh, h = 1, . . . , H.

n =
H∑

h=1
cNh = cN.

c = n

N
, nh = n

N
Nh.

The allocation methods leads to
nh = n

N
Nh = nWh, h = 1, . . . , H.

Under stratified simple random sampling with proportional allocation:
• The point estimator ȳst remains unbiased for µy.
• The theoretical variance formula V(ȳst) reduces to

Vprop(ȳst) =
(

1 − n

N

)
1
n

H∑
h=1

Whσ2
yh.

V(ȳst) =
H∑

h=1
W 2

h

(
1 − nh

Nh

)
σ2

yh

nh
.

nh = nWh = n
Nh

N
=⇒ nh

Nh
= n

N
.

Wh · 1
nh

= 1
n

.

Wh

(
1 − nh

Nh

)
1

nh
=
(

1 − n

N

)
1
n

.

A comparison between ȳ under SRSWOR and ȳst under stratified simple random sampling with proportional
allocation, with the same overall sample size n:

• Point estimators: Both ȳ and ȳst are unbiased for µy under the respective sampling design.



CHAPTER 3. STRATIFIED SAMPLING AND CLUSTER SAMPLING 26

• The two variances satisfy

V(ȳ) − Vprop(ȳst) ≈
(

1 − n

N

)
1
n

H∑
h=1

Wh(µyh − µy)2.

V(ȳ) =
(

1 − n

N

)
1
n

σ2
y.

Vprop(ȳst) =
(

1 − n

N

)
1
n

H∑
h=1

Whσ2
yh.

σ2
y ≈

H∑
h=1

Whσ2
yh +

H∑
h=1

Wh(µyh − µy)2.

Two important implications:
• The stratified simple random sampling design under proportional sample size allocation always provides

more efficient estimate of the population mean than SRSWOR.
• The gain of efficiency under stratified sampling is larger when units within each stratum are more

homogeneous, or equivalently, the units from different strata are more heterogeneous so that the between
strata variation is large.

Example. N = 10; {y1, . . . , y10} = {0, 1, 0, 0, 1, 1, 1, 0, 0, 0}.

µy = 4
10 , σ2

y = N

N − 1P (1 − P ) = 10
9

4
10

6
10 .

Take a sample with n = 4:
(a) SRSWOR: ȳ, E[ȳ] = µy, V(ȳ) = · · · .
(b) Stratified sampling: N1 = 6, N2 = 4.

{0, 0, 0, 0, 0, 0}︸ ︷︷ ︸
n1=2

, {1, 1, 1, 1}︸ ︷︷ ︸
n2=2

.

ȳst = W1ȳ1 + W2ȳ2 = 6
10 × 0 + 4

10 × 1 = 4
10 = µy.

3.2.2 Neyman allocation
The overall sample size n is fixed. Find the optimal allocation (n1, . . . , nH) such that V(ȳst) is minimized subject
to the constraint∑H

h=1 nh = n.
This is called the Neyman allocation (Neyman, 1934). The solution is given by

nh ∝ Whσyh, h = 1, 2, . . . , H.

The constraint∑H
h=1 nh = n leads to the allocation formula

nh = n
Whσyh∑H

k=1 Wkσyk

= n
Nhσyh∑H

k=1 Nkσyk

, h = 1, 2, . . . , H.

nh = cWhσyh, h = 1, . . . , H.

n =
H∑

h=1
nh = c

H∑
h=1

Whσyh.
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c = n∑H
h=1 Whσyh

.

V(ȳst) =
H∑

h=1
W 2

h

(
1 − nh

Nh

)
σ2

yh

nh

=
H∑

h=1
W 2

h

(
1

nh
− 1

Nh

)
σ2

yh.

L(n1, . . . , nH) = V(ȳst) + λ

( H∑
h=1

nh − n

)
.

0 = ∂L

∂nh
= − 1

n2
h

W 2
h σ2

yh + λ.

n2
h = 1

λ
W 2

h σ2
yh,

that is, nh ∝ Whσyh.
The theoretical variance V(ȳst) under Neyman allocation reduces to

Vneym(ȳst) = 1
n

( H∑
h=1

Whσyh

)2
− 1

N

H∑
h=1

Whσ2
yh.

(Details can be skipped)
Two major implications of Neyman allocation:

nh ∝ Whσyh, h = 1, 2, . . . , H.

• Under Neyman allocation, population strata with bigger size Nh or bigger variation (i.e., bigger σ2
yh) or

both should be assigned to a bigger sample size nh.
• If all strata have similar variation, i.e., similar values of σ2

yh, Neyman allocation reduces to nh ∝ Wh, which
is proportional allocation.

3.2.3 Optimal allocation with pre-specified cost or variance
The total direct cost for the overall sample is C1. Cost for sampling one unit in stratum h is ch. The cost constraint
for allocation (n1, . . . , nH):

C1 =
H∑

h=1
chnh.

The variance formula V(ȳst) can be re-written as

V(ȳst) =
H∑

h=1
W 2

h

σ2
yh

nh
−

H∑
h=1

W 2
h

σ2
yh

Nh
.

The variance constraint for allocation (n1, . . . , nH):

V1 =
H∑

h=1
W 2

h

σ2
yh

nh
.

Under both allocation constraints, the overall sample size n depends on C1 and V1.
Two optimal allocation methods: Find (n1, . . . , nH) to
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• Minimize V1 with a pre-specified C1.
• Minimize C1 with a pre-specified V1.

The solution to (either) the optimal allocation:

nh ∝ Whσyh/
√

ch, h = 1, 2, . . . , H.

The formulas for calculating the nh are given by

nh = n
Whσyh/

√
ch∑H

k=1 Wkσyk/
√

ck

, h = 1, 2, . . . , H,

where the overall sample size n is determined by the pre-specified C1 or V1.
The Cauchy-Schwarz inequality: (

E[XY ]
)2 ≤ E[X2] E[Y 2].( n∑

i=1
xiyi

)2
≤

n∑
i=1

x2
i ·

n∑
i=1

y2
i .

The equality holds iff yi = axi for all i.
Consider

V1C1 =
( H∑

h=1
W 2

h σ2
yh

1
nh

)
·
( H∑

h=1
chnh

)

≥
( H∑

h=1
Whσyh

1√
nh

·
√

ch
√

nh

)2
,

where we note that the RHS does not involve nh.
The minimum of V1C1 is achieved when

Whσyh
1

√
nh

∝
√

ch
√

nh =⇒ nh ∝ Whσyh/
√

ch.

Implications of the two optimal allocation methods:

nh ∝ Whσyh/
√

ch, h = 1, 2, . . . , H.

1. With unequal costs for different strata, the more expensive stratum should be assigned a smaller sample
size.

2. With equal cost for all strata, the two versions of optimal allocation both reduce to Neyman allocation, and
hence the stratum sample size nh is decided by the stratum population size Nh and the stratum variance
σ2

yh.
3. With equal or nearly equal cost and no information on stratum variations, proportional allocation would

be the natural choice for sample size allocations.

3.3 Post-stratification
(Problem 3.7 in the textbook)

• Stratified sampling cannot be implemented if the sampling frames are not available, such as stratification
by the gender and age groups for a large human population.
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• Stratum membership can be determined relatively easily for all units in the sample once the sample is
selected.

• Post-stratification: Divide a “non-stratified” sample into subsamples by the stratum membership, and
construct a stratified estimator from the non-stratified sample data set, assuming the stratum weights Wh,
h = 1, . . . , H are known.

Let {yi, i ∈ S} be the survey data set and S is a sample of size n selected by SRSWOR. The sample S can be
post-stratified as

S = S1 ∪ · · · ∪ SH ,

with corresponding breakdown of n as n = n1 + · · · + nH .
The post-stratified estimator of µy is computed as

ȳpost =
H∑

h=1
Whȳh.

The key differences between ȳpost and ȳst:
• Under stratified sampling, the stratum sample sizes nh are decided at the survey design stage and are

fixed.
• Under post-stratification, the stratum sample sizes nh are random numbers. The technical arguments for

ȳst cannot be used directly for ȳpost.
Homework for STAT 854: Argue that the post-stratified estimator ȳpost is usually more efficient than ȳ under
SRSWOR. (Hint: Need to go through Problem 3.7)
Lecture 8
31st January

Basic Concepts of Cluster Sampling:
• The population consists of K clusters (groups).
• Single-stage cluster sampling: A subset of the clusters is selected, and all units in the selected cluster are

observed for the final sample.
• Two-stage cluster sampling: A subset of the clusters is selected, and within each selected cluster, a subset of

units is selected for the final sample.
• Sampling frames for single-stage and two-stage cluster sampling:

(1) First stage sampling frame: A complete list of clusters in the population
(2) Second stage sampling frames: A complete list of units for each selected cluster

• More complex sampling designs: Stratified multi-stage cluster sampling with unequal selection probabilities
at each stage.

3.4 Single-stage Cluster Sampling

3.4.1 Notation
• K: The total number of clusters in the population.
• Mi: The total number of units in cluster i.
• yij: The value of y for unit j in cluster i.
• N =

∑K
i=1 Mi: The overall population size.
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The mean and the total for the ith cluster are given by

µi = 1
Mi

Mi∑
j=1

yij , Ti =
Mi∑
j=1

yij = Miµi, i = 1, 2, . . . , K.

The population total is given by

Ty =
K∑

i=1

Mi∑
j=1

yij =
K∑

i=1
Ti =

K∑
i=1

Miµi,

and the population mean is given by µy = Ty/N .

3.4.2 Single-stage cluster sampling with clusters selected by SRSWOR
The sampling procedure:

1. Select k clusters from the list of K clusters using SRSWOR, with a pre-specified k. Let Sc be the set of
labels for the k selected clusters.

2. For i ∈ Sc, select all Mi units for the final sample.
The total number of units in the final sample (overall sample size):

n =
∑
i∈Sc

Mi.

The sample data on the y-variable:
{yij : j = 1, 2, . . . , Mi, i ∈ Sc}.

The cluster total Ti =
∑Mi

j=1 yij is known for i ∈ Sc. The “condensed” sample data set:

{Ti, i ∈ Sc}.

Other information available from the sampling frames and the design:
• The total number of clusters, K.
• The number of clusters selected, k.
• The cluster size Mi for i ∈ Sc (selected clusters). Mi may not be known if i /∈ Sc.

Other notes:
• The overall sample size n =

∑
i∈Sc

Mi is typically a random number and is not controlled at the design
stage except for the special case where the cluster sizes Mi = M are all equal. In this case, n = kM .

• The overall population size N =
∑K

i=1 Mi is often unknown.
• Estimation of Ti =

∑K
i=1 Ti does not lead to estimation of µy = Ty/N and vice versa.

• Need to have an estimator for N .

3.4.3 Estimation of the population total Ty

Re-write the population total as

Ty =
K∑

i=1
Ti = K

(
1
K

K∑
i=1

Ti

)
= KµT .
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The question: Why do we introduce

µT = 1
K

K∑
i=1

Ti? µy = 1
N

N∑
i=1

yi.

The answer: The µT is not a parameter of interest, but it is a “population mean” and can be estimated by the
corresponding “sample mean” under SRSWOR,

µ̂T = 1
k

∑
i∈Sc

Ti. ȳ = 1
n

∑
i∈S

yi.

This leads to T̂y = Kµ̂T , where K is known.
Main results on estimating Ty: Under single-stage cluster sampling with clusters selected by SRSWOR,
(a) An unbiased estimator for the population total Ty is given by

T̂y = K

(
1
k

∑
i∈Sc

Ti

)
= Kµ̂T ,

where µ̂T = k−1∑
i∈Sc

Ti is the sample mean of cluster totals.

(b) The design-based variance of T̂y is given by

V(T̂y) = K2
(

1 − k

K

)
σ2

T

k
,

where σ2
T = (K − 1)−1∑K

i=1(Ti − µT )2, and µT = K−1∑K
i=1 Ti is the population mean of cluster totals.

(c) An unbiased variance estimator for T̂y is given by

v(T̂y) = K2
(

1 − k

K

)
s2

T

k
,

where s2
T = (k − 1)−1∑

i∈Sc
(Ti − µ̂T )2 and µ̂T = k−1∑

i∈Sc
Ti.

3.4.4 Estimation of the population mean µy

If N is known, we can simply use µ̂y = T̂y/N .
If N =

∑K
i=1 Mi is unknown, we re-write the population mean as

µy = 1
N

K∑
i=1

Ti =
∑K

i=1 Ti∑K
i=1 Mi

=
K−1∑K

i=1 Ti

K−1∑K
i=1 Mi

= µT

µM
,

where
µM = 1

K

K∑
i=1

Mi

is the “population mean” for the variable Mi (average cluster size), and can be estimated by the corresponding
“sample mean”

µ̂M = 1
k

∑
i∈Sc

Mi.

The population mean µy can be estimated by

µ̂y = µ̂T

µ̂M
=

k−1∑
i∈Sc

Ti

k−1∑
i∈Sc

Mi
=
∑

i∈Sc
Ti∑

i∈Sc
Mi

= 1
n

∑
i∈Sc

Mi∑
j=1

yij ,
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where n =
∑

i∈Sc
Mi is the overall sample size.

Notes:
• The overall sample size n is usually a random number.
• The µ̂y looks like a sample mean, but its theoretical properties need to be derived using a “ratio estimator.”
• Ratio estimators will be discussed in Chapter 5.

3.4.5 A comparison between SRSWOR and Single-stage cluster sampling
(This is technically a challenge topic under general scenarios with unequal Mi)
Consider a simple scenario where

• All clusters have the same size: Mi = M (M ≥ 2).
• The overall population size is N = KM (and is known).
• The overall sample size is n = kM (and is a fixed number).
• The sampling fraction n/N = (kM)/(KM) = k/K.
• The estimators µ̂M and µ̂y reduce to

µ̂M = k−1
∑
i∈Sc

Mi = M, µ̂y = µ̂T

µ̂M
= M−1µ̂T ,

and µ̂T = 1
k

∑
i∈Sc

Ti is a “sample mean.”
• The µ̂y is an unbiased estimator of µy.

Under single-stage cluster sampling with clusters selected by SRSWOR,

V(µ̂y) = 1
M2

(
1 − k

K

)
σ2

T

k
=
(

1 − n

N

)
M−1σ2

T

n
.

It can be shown (Problem 3.8 for STAT 854)

M−1σ2
T ≈ σ2

y

(
1 + (M − 1)ρ

)
,

where ρ is the intra-cluster correlation coefficient and is defined as follows: Randomly select a cluster, and then
randomly select two units from the cluster without replacement; let Z1 and Z2 be the values of y for the two
selected units,

ρ = Cov(Z1, Z2)√
V(Z1) V(Z2)

.

We have
V(µ̂y) ≈

(
1 − n

N

)
σ2

y

n

(
1 + (M − 1)ρ

)
.

Key results for the comparison of two sampling strategies:
• Under the simple scenario with single stage cluster sampling,

V(µ̂y) ≈
(

1 − n

N

)
σ2

y

n

(
1 + (M − 1)ρ

)
.

• If we take a sample of the same overall size n by SRSWOR and use the sample mean ȳ to estimate µy, we
have

V(ȳ) =
(

1 − n

N

)
σ2

y

n
.
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(i) It is very common in survey practice that units within the same cluster are positively correlated, i.e., ρ > 0
and consequently single-stage cluster sampling is less efficient than SRSWOR.

(ii) For situations where ρ < 0, cluster sampling can be more efficient.
(iii) When ρ = 0, the clusters behave like random groups of units from the population. Under such scenarios

single-stage cluster sampling will result in a final sample which is similar to the one selected by non-cluster
sampling methods.

• Homework: Find examples of the three scenarios listed above.
Lecture 9
2nd February

3.5 Two-stage Cluster Sampling
Primary sampling unit (PSU): clusters.
(The first-stage sample selects k clusters from the population of K clusters)
Secondary sampling unit (SSU): units within clusters.
(The second-stage sample selects mi units from the list of Mi units if cluster i is selected in the first stage)

3.5.1 Two-stage cluster sampling with SRSWOR at both stages
The sampling procedures:

1. Select k clusters from the list of K clusters using SRSWOR, with a pre-specified k. Let Sc be the set of
labels for the k selected clusters.

2. For i ∈ Sc and a pre-specified mi, select a second-stage sample Si of mi units from the list of Mi units in
cluster i using SRSWOR; the processes are carried out independently for different clusters.

The overall sample size is
n =

∑
i∈Sc

mi.

The choice of mi (as part of the survey design):
• A constant mi = m is used across all clusters; n = mk is fixed.
• A fixed second-stage sampling fraction, i.e., choose mi such that mi/Mi = c for a pre-specified proportion

c across all clusters; n = c
∑

i∈Sc
Mi is a random number (e.g., c = 5%, 10%, . . .).

The sample data on the y-variable:
{yij : j ∈ Si, i ∈ Sc}.

Other information available:
• The total number of clusters, K, and the number of clusters sampled, k.
• The cluster size Mi and the second-stage sample size mi for i ∈ Sc.

The cluster mean and the cluster variance (cluster level population parameters):

µi = 1
Mi

Mi∑
j=1

yij , σ2
i = 1

Mi − 1

Mi∑
j=1

(yij − µi)2.

Note:
• Under stage-stage cluster sampling, both µi and σ2

i can be computed from the sample data for cluster
i ∈ Sc.
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• Under two-stage cluster sampling, both µi and σ2
i are unknown even if cluster i is selected in the first

stage.
• Under two-stage cluster sampling, Ti =

∑Mi

j=1 yij = Miµi are unknown.

3.5.2 Estimation of the population total Ty

The second-stage cluster sample mean and sample variance:

ȳi = 1
mi

∑
j∈Si

yij , s2
i = 1

mi − 1
∑
j∈Si

(yij − ȳi)2.

The second-stage sample Si of size mi is selected by SRSWOR from the cluster of Mi units:

E[ȳi] = µi, V(ȳi) =
(

1 − mi

Mi

)
σ2

i

mi
.

The cluster total Ti = Miµi can be estimated by
T̂i = Miȳi.

Note: Mi is known for i ∈ Sc. (Part of second stage frame info).
The “introduced bridge parameter” µT = K−1∑K

i=1 Ti can be estimated by

µ̃T = 1
k

∑
i∈Sc

T̂i = 1
k

∑
i∈Sc

Miȳi.

Comparison to single-stage cluster sampling:

µ̂T = 1
k

∑
i∈Sc

Ti.

(Difference in notation: tilde vs hat).
The population total Ty =

∑K
i=1 Ti = KµT can be estimated by

T̃y = Kµ̃T .

K is available from the first-stage sampling frame information.
1. E[T̃y] = K E[µ̃T ].
2. V(T̃y) = K2 V(µ̃T ).
3. v(T̃y) = K2 v(µ̃T ).

Main theoretical results on µ̃T : Under two stage-cluster sampling with SRSWOR at both stages,
(a) The estimator µ̃T is unbiased for µT .
(b) The design-based variance of µ̃T is given by

V(µ̃T ) =
(

1 − k

K

)
σ2

T

k
+ 1

k

1
K

K∑
i=1

M2
i

(
1 − mi

Mi

)
σ2

i

mi
,

where σ2
T = (K − 1)−1∑K

i=1(Ti − µT )2 and σ2
i is the cluster variance.

(c) An unbiased variance estimator for µ̃T is given by

v(µ̃T ) =
(

1 − k

K

)
σ̂2

T

k
+ 1

K

1
k

∑
i∈Sc

M2
i

(
1 − mi

Mi

)
s2

i

mi
,

where σ̂2
T = (k − 1)−1∑

i∈Sc
(T̂i − µ̃T )2 and s2

i is the cluster sample variance.
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Two technical arguments for the proofs of (a), (b) and (c):
1. For any random variables X and Y , we have

E[X] = E
[
E[X | Y ]

]
,

and
V(X) = E

[
V(X | Y )

]
+ V

(
E[X | Y ]

)
.

The proofs involve
• E1[ · ] and V1( · ): the expectation and the variance with respect to the first stage sampling design.
• E2[ · ] and V2( · ): the conditional expectation and the conditional variance with respect to the second stage

sampling design given the first stage sample.
Proof of (a):

µ̃T = 1
k

∑
i∈Sc

Miȳi.

E[µ̃T ] = E1
[
E2[µ̃T ]

]
= E1

[
1
k

∑
i∈Sc

Mi E2[ȳi]
]

= E1

[
1
k

∑
i∈Sc

Miµi

]

= E1

[
1
k

∑
i∈Sc

Ti

]

= 1
K

K∑
i=1

Ti

= µT .

Proof of (b):
µ̃T = 1

k

∑
i∈Sc

Miȳi.

V(µ̃T ) = V1
(
E2[µ̃T ]

)
+ E1

[
V2(µ̃T )

]
= V1

(
1
k

∑
i∈Sc

Ti

)
+ E1

[
1
k2

∑
i∈Sc

M2
i

(
1 − mi

Mi

)
σ2

i

mi

]

=
(

1 − k

K

)
σ2

T

k
+ 1

k
E1

[
1
k

∑
i∈Sc

M2
i

(
1 − mi

Mi

)
σ2

i

mi︸ ︷︷ ︸
first stage sample mean

]

=
(

1 − k

K

)
σ2

T

k
+ 1

k

1
K

K∑
i=1

M2
i

(
1 − mi

Mi

)
σ2

i

mi︸ ︷︷ ︸
first stage population mean

.

(2) Re-write V(µ̃T ) as
V(µ̃T ) =

(
1
k

− 1
K

)
σ2

T + 1
k

W,
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where
σ2

T = 1
K − 1

K∑
i=1

(Ti − µT )2, W = 1
K

K∑
i=1

M2
i

(
1 − mi

Mi

)
σ2

i

mi
.

The “plug-in” estimator
σ̂2

T = 1
k − 1

∑
i∈Sc

(T̂i − µ̃T )2

is not unbiased for σ2
T , and instead satisfies (homework for STAT 854, hints from Problem 3.11 in the

textbook)
E[σ̂2

T ] = σ2
T + W.

Proof of (c):
V(µ̃T ) =

(
1
k

− 1
K

)
σ2

T + 1
k

W,

W = 1
K

K∑
i=1

M2
i

(
1 − mi

Mi

)
σ2

i

mi
.

(i) Homework: Show that E[Ŵ ] = W (using the same argument from (a)), where

Ŵ = 1
k

∑
i∈Sc

M2
i

(
1 − mi

Mi

)
s2

i

mi
.

(ii) E[σ̂2
T ] = σ2

T + W .
(iii) Homework: Show that E

[
v(µ̃T )

]
= V(µ̃T ), where

v(µ̃T ) =
(

1
k

− 1
K

)
σ̂2

T + 1
K

Ŵ.



Chapter 4

General Theory and Methods of Unequal
Probability Sampling

Lecture 10
7th February

4.1 Sample Inclusion Probabilities
The first order and the second order inclusion probabilities:

πi = P(i ∈ S), πij = P(i, j ∈ S).

• Inclusion probabilities are defined for all units in the population.
• Inclusion probabilities are usually only computed for units in the sample (to construct point and variance

estimators).
• Inclusion probabilities are the fundamental tool for general theory of unequal probability sampling.
• A useful special case: πii = πi:

πii = P(i ∈ S, i ∈ S) = P(i ∈ S) = πi

Inclusion probabilities for some simple sampling designs
(1) SRSWOR (N , n):

πi = P(i ∈ S) =
(

N−1
n−1

)(
N
n

) = n

N
.

πij = P(i ∈ S, j ∈ S) =
(

N−2
n−2

)(
N
n

) = n(n − 1)
N(N − 1) , i ̸= j.

(2) Stratified SRSWOR:
• U = U1 ∪ · · · ∪ UH ;
• N = N1 + · · · + NH ;
• n = n1 + · · · + nH .

37
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πi = nh

Nh
, i ∈ Uh.

πij =


nh(nh − 1)
Nh(Nh − 1) , i, j ∈ Uh

nh

Nh
· nh′

nh′
, i ∈ Uh, j ∈ Uh′ .

(3) Single-stage cluster sampling with clusters selected by SRSWOR (Sc, K, k):

S : n =
∑
i∈Sc

Mi.

πi = P(i ∈ S) = k

K
.

πij =


k

K
, i, j in the same cluster,

k(k − 1)
K(K − 1) , i, j in two different clusters.

(4) Two-stage cluster sampling with SRSWOR at both stages (Sc, K, k; Si, Mi, mi):

πi = P(i ∈ S)
= P(i ∈ Sℓ, ℓ ∈ Sc)
= P(ℓ ∈ Sc) P(i ∈ Sℓ | ℓ ∈ Sc)

= k

K
· mℓ

Mℓ
.

πij =


k

K
· mℓ(mℓ − 1)

Mℓ(Mℓ − 1) , i, j in cluster ℓ,

k(k − 1)
K(K − 1) · mℓ

Mℓ
· mℓ′

Mℓ′
, i in cluster ℓ; j in cluster ℓ′.

4.1.1 Equalities related to inclusion probabilities
The sample indicator variables are the basic tool:

Ai = 1, i ∈ S, Ai = 0, i /∈ S.

(1) For any sampling design,

E[Ai] = P(i ∈ S) = πi, V(Ai) = πi(1 − πi).

(2) For any sampling design, with i ̸= j:

Cov(Ai, Aj) = E[AiAj ] − E[Ai] E[Aj ] = πij − πiπj .

E[AiAj ] = P(Ai = 1, Aj = 1) = P(i ∈ S, j ∈ S) = πij .

If i = j, then
Cov(Ai, Ai) = V(Ai) = πii − πiπi = πi(1 − πi).

(3) For any sampling design,
N∑

i=1
Ai = n,
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where n is the overall sample size (could be a random number under certain designs).
This leads to

N∑
i=1

πi = E[n].

If the design has a fixed sample size, we have
N∑

i=1
πi = n.

(4) For any sampling design,
N∑

j=1
AiAj = nAi,

N∑
i=1

N∑
j=1

AiA
2
j = n2,

which leads to
N∑

j=1
πij = E[nAi],

N∑
i=1

N∑
j=1

πij = E[n2].

When n is random, E[nAi] ̸= E[n] E[Ai].
For sampling designs with a fixed sample size n, we have

N∑
j=1

πij = nπi,

N∑
i=1

N∑
j=1

πij = n2,

N∑
i ̸=j

N∑
j=1

πij = n(n − 1).

Those equalities are useful to check computational errors in applications or simulation studies.

4.2 The Horvitz-Thompson Estimator

4.2.1 The general setting and the estimator

• The parameter of interest: Ty =
∑N

i=1 yi.
• A general sampling design with πi > 0 and πij > 0.
• The survey data: {yi, i ∈ S}, or

{
(i, yi), i ∈ S

}
(with labels/ID).

• Information available from the survey design:

{πi, i ∈ S}, {πij , i, j ∈ S}.

The Horvitz-Thompson (HT, 1952 JASA) estimator of Ty:

T̂yHT =
∑
i∈S

yi

πi
=
∑
i∈S

diyi,

where di = 1/πi are called the basic design weights.
Narain (1953) published a paper in an Indian journal with the same proposed estimator.
Notes on the Horvitz-Thompson estimator:

• The HT estimator is the most important fundamental piece of modern design-based sampling theory.
• The HT estimator was adopted (much later) by researchers on missing data problems as the inverse

probability weighted (IPW) estimator.
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• The value of the basic design weight di = 1/πi can be interpreted as: “the number of units in the survey
population which are represented by unit i selected for the survey sample.”
In SRSWOR: N = 100, n = 5, we have

πi = 5
100 = 1

20 , di = 1
πi

= 20

4.2.2 Properties of the Horvitz-Thompson estimator
(1) The HT estimator is design unbiased for Ty.

E[T̂yHT] = Ty (Point Estimator).

(2) The theoretical variance of T̂yHT is given by

V(T̂yHT) =
N∑

i=1

N∑
j=1

(πij − πiπj) yi

πi

yj

πj
(Theoretical Variance).

(3) An unbiased variance estimator for T̂yHT is given by

v(T̂yHT) =
∑
i∈S

∑
j∈S

πij − πiπj

πij

yi

πi

yj

πj
(Variance estimator).

Also, E
[
v(T̂yHT)

]
= V(T̂yHT).

Sketch of Proofs: (1) and (2): Use indicators Ai.

T̂yHT =
∑
i∈S

yi

πi
=

N∑
i=1

Ai
yi

πi
.

E[T̂yHT] =
N∑

i=1
E[Ai]︸ ︷︷ ︸

πi

yi

πi
=

N∑
i=1

yi = Ty.

V(T̂yHT) =
N∑

i=1

N∑
j=1

Cov(Ai, Aj)︸ ︷︷ ︸
πij−πiπj

yi

πi

yj

πj
.

(3): A more general question: How to estimate a quadratic quantity

Q =
N∑

i=1

N∑
j=1

c(yi, yj)?

The answer:
Q̂ =

∑
i∈S

∑
j∈S

c(yi, yj)
πij

.

Homework: Show that E[Q̂] = Q.

Q̂ =
N∑

i=1

N∑
j=1

AiAj
c(yi, yj)

πij
.
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4.2.3 Estimation of the population mean µy and the Hájek estimator
(1) When the population size N is known, the Horvitz-Thompson estimator for the population mean µy is

given by
µ̂yHT = 1

N

∑
i∈S

yi

πi
= 1

N
T̂yHT.

It is a design-unbiased estimator for µy with theoretical variance and variance estimator given respectively
by

V(µ̂yHT) = 1
N2 V(T̂yHT), v(µ̂yHT) = 1

N2 v(T̂yHT).

(2) When the population size N is unknown, which is often the case for two-stage or multi-stage cluster
sampling, an exactly design-unbiased estimator of µy might not be available.
A design-unbiased estimator for N :

N̂ =
∑
i∈S

1
πi

=
∑
i∈S

di.

(i) N̂ =
∑N

i=1 Ai
1
πi

=⇒ E[N̂ ] = N .

(ii) N̂ = T̂yHT when yi = 1 for all i: Ty = N .
The population mean µy can be estimated by the Hájek estimator

µ̂yH = 1
N̂

∑
i∈S

yi

πi
= 1

N̂

∑
i∈S

diyi =
∑

i∈S diyi∑
i∈S di

.

(Properties to be discussed in Chapter 5).
Lecture 11

9th February

4.2.4 The Yates-Grundy-Sen Variance Formula for the HT Estimator

For sampling designs with fixed sample size n, there are useful alternative expressions for V(T̂yHT) and
v(T̂yHT).
(1) The theoretical variance

V(T̂yHT) = 1
2

N∑
i=1

N∑
j=1

(πiπj − πij)
(

yi

πi
− yj

πj

)2
.

(2) The variance estimator
v(T̂yHT) = 1

2
∑
i∈S

∑
j∈S

πiπj − πij

πij

(
yi

πi
− yj

πj

)2
.

Proof. Not required for tests; results useful.

4.3 PPS Sampling and the HT Estimator: An Optimal Strategy

4.3.1 A hypothetical scenario
Suppose that yi > 0 for all i. All values {y1, y2, . . . , yN } are known. We select a sample size S of fixed size n
with πi ∝ yi. We must have

N∑
i=1

πi = n, πi = cyi =⇒ c

N∑
i=1

yi = n =⇒ c = n

Ty
.
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This leads to
πi = n

yi

Ty
, i = 1, 2, . . . , N.

The HT estimator of Ty =
∑N

i=1 yi is given by

T̂yHT =
∑
i∈S

yi

πi
= Ty

∑
i∈S

yi

nyi
= Ty.

The HT estimator equals exactly the true value Ty (no error in estimation).

4.3.2 A practical scenario
There exists a variable z which is correlated to y and provides a measure for the “size” of the sampling units.
Some examples:

• Expenditure survey: y — expenses; z — previous income;
• Agriculture survey: y — yield of a farm product; z — acreage of the farm;
• Business survey: y — total sales; z — number of workers;
• Multi-stage cluster sampling: z — cluster size (Mi).

We assume that
• The values z1, z2, . . . , zN are available at the survey design stage;
• The value zi provides a measure of the “size” for unit i, and zi > 0 for all i;
• The size variable z and the study variable y are positively correlated.

The PPS (the inclusion probability proportional to size) sampling design, i.e., πi ∝ zi:

πi = n
zi

Tz
, i = 1, 2, . . . , N.

For most of the discussions going forward, we assume that the size variable z is re-scaled such that
N∑

i=1
zi = 1.

Equal inclusion probabilities:

z1 = z2 = · · · = zN = 1
N

, πi = nzi = n

N
(SRSWOR).

We have
πi = nzi, i = 1, 2, . . . , N.

The re-scaled size variable must satisfy zi ≤ 1/n with the given n.

4.3.3 An optimal strategy
We assume that zi > 0 for all i, and yi and zi are highly correlated.
We show that the PPS sampling design, combined with the Horvitz-Thompson estimator for the population total,
is an “optimal strategy” in terms of the “anticipated variance.”
(1) The concept of superpopulation models

The finite population values
{

(yi, zi), i = 1, 2, . . . , N
}
are treated as fixed under the design-based frame-

work.
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Under the superpopulation model concept,
{

(yi, zi), i = 1, 2, . . . , N
}
are viewed as a random sample from a

statistical model, denoted as ξ.

Super population ξ → Finite population U → Survey sample S.

Example (⋆). Suppose that the finite population values
{

(yi, zi), i = 1, 2, . . . , N
}
follow a simple linear regression

model (ξ),
yi = βzi + ziεi, i = 1, 2, . . . , N,

where the error terms are independent and satisfy

Eξ[εi] = 0, Vξ(εi) = τ2,

with Eξ[ · ] and Vξ( · ) denoting expectation and variance under the model, ξ. We have

Eξ[yi | zi] = βzi, Vξ(yi | zi) = z2
i τ2.

A semi-parametric model specified through the first two conditional moments.
(2) An optimal estimator of Ty

A well-known (negative) result (Godambe, 1955): The minimum variance linear unbiased estimator does not
exist among the general Godambe-class of linear estimator under the design-based framework.
A useful concept for optimality: The anticipated variance under a superpopulation mode (ξ).

Eξ

[
Vp(T̂yHT)

]
,

where Vp(T̂yHT) is the design-based variance (p: probability sampling design).
• Under the probability sampling design, p: (yi, zi) are fixed, but S is random.
• Under the super population model, ξ: yi is random given zi and the sampling selection becomes irrelevant

(the survey design is non-informative: the superpopulation model holds for the sample).
An important (positive) result (Godambe, 1955): The anticipated variance of the HT estimator under model
(⋆) is minimized under the PPS sampling design with πi ∝ zi and fixed sample size n.
n is fixed; The Yates-Grundy-Sen variance formula for the HT estimator:

Vp(T̂yHT) =
N∑

i=1

N∑
j=1

(πiπj − πij)
(

yi

πi
− yj

πj

)2
.

Eξ

[
Vp(T̂yHT)

]
=

N∑
i=1

N∑
j=1

(πiπj − πij) Eξ

[(
yi

πi
− yj

πj

)2
]

.

Need to find
Eξ

[(
yi

πi
− yj

πj

)2
]

, i ̸= j.

Major steps for the proof:
• Under the model (⋆) and for i ̸= j, we have

Eξ

[(
yi

πi
− yj

πj

)2
]

= β2
(

zi

πi
− zj

πj

)2
+ τ2

(
z2

i

π2
i

+
z2

j

π2
j

)
.

Eξ[Y 2] =
(
Eξ[Y ]

)2 + Vξ(Y ).
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From earlier, we know that:
Eξ[yi | zi] = βzi, Vξ(yi | zi) = z2

i τ2.

Therefore,
Eξ

[
yi

πi
− yj

πj

]
= β

(
zi

πi
− zj

πj

)
.

Vξ

(
yi

πi
− yj

πj

)
= τ2

(
z2

i

π2
i

+
z2

j

π2
j

)
.

• Identities under any fixed sample size design:
N∑

i=1

N∑
j ̸=i,j=1

(πiπj − πij) z2
i

π2
i

=
N∑

i=1
πi(1 − πi)

z2
i

π2
i

,

N∑
i=1

N∑
j ̸=i,j=1

(πiπj − πij)
z2

j

π2
j

=
N∑

i=1
πi(1 − πi)

z2
i

π2
i

First equation you get by:
N∑

i=1

( N∑
j ̸=i,j=1

(πiπj − πij)
)

z2
i

π2
i

.

N∑
i̸=j,j=1

(πiπi − πij) = πi(n − πi) − (nπi − πii) = πi(1 − πi).

πi(1 − πi)
z2

i

π2
i

= z2
i

π2
i

− z2
i .

• Use the Yates-Grundy-Sen variance formula to obtain

Eξ

[
Vp(T̂yHT)

]
= β2

2 D1 + τ2D2 − τ2D3,

where
D1 =

N∑
i=1

N∑
j ̸=i,j=1

(πiπj − πij)
(

zi

πi
− zj

πj

)2
,

D2 =
N∑

i=1

z2
i

πi
,

D3 =
N∑

i=1
z2

i .

• Under the constraint∑N
i=1 πi = n, D2 is minimized when πi ∝ zi.

L(π1, . . . , πN ) =
N∑

i=1

z2
i

πi
+ λ

( N∑
i=1

πi − n

)
.

∂L
∂πi

= − z2
i

π2
i

+ λ = 0.

π2
i = 1

λ
z2

i =⇒ πi ∝ zi.

• The anticipated variance Eξ

[
Vp(T̂yHT)

]
is minimized when πi ∝ zi.
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– D2 is minimized when πi ∝ zi.
– D3 does not depend on πi.
– D1:

D1 = Vp(T̂zHT) ≥ 0.

D1 = 0, if πi ∝ zi.

• The PPS sampling design combined with the HT estimator is an optimal strategy. An important aspect
of the optimal strategy is the assumption that the response variable y and the size variable z is positively
correlated.

4.4 PPS Sampling Procedures
Lecture 12
14th February

Lecture 13
16th February
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