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Lecture 1
2nd May

1 Integers
• Natural numbers: N = {0, 1, 2, . . .}.

• Ring of integers: Z = {0, ±1, ±2, . . .}.

• Field of fractions Q = {a/b : a, b ∈ Z ∧ b ̸= 0}.

• Field of real numbers: R.

• Field of complex numbers: C = {a + bi : a, b ∈ R ∧ i =
√

−1}.

DEFINITION 1.1: Axioms

Set of integers as integral domains:

V1 Z has operations + (addition) and · (multiplication). It is closed under these operations, in that if
a, b ∈ Z, then a + b ∈ Z and a · b ∈ Z.

V2 Addition is associative: If a, b, c ∈ Z, then

a + (b + c) = (a + b) + c.

V3 There is an additive identity 0 ∈ Z: For all a ∈ Z,

a + 0 = 0 + a = a.

V4 Every element has an additive inverse: If a ∈ Z, there is an element −a ∈ Z such that

a + (−a) = 0 and (−a) + a = 0.

V5 Addition is commutative: If a, b ∈ Z, then

a + b = b + a.

V6 Multiplication is associative: If a, b, c ∈ Z, then

a · (b · c) = (a · b) · c.

V7 There is a multiplicative identity 1 ∈ Z: For all a ∈ Z,

a · 1 = a = 1 · a.

V8 Multiplication is commutative: If a, b ∈ Z, then

a · b = b · a.

V9 The Distributive Laws hold: If a, b, c ∈ Z, then

a · (b + c) = a · b + a · c,

(a + b) · c = a · c + b · c.

V10 There are no zero divisors: If a, b ∈ Z and a · b = 0, then either a = 0 or b = 0.
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REMARK 1.1

(i) As usual, we will often abbreviate m · n to mn.

(ii) The last axiom is equivalent to the cancellation law. If a, b, c ∈ Z, a ̸= 0, and ab = ac, then b = c.

ab = ac

ab − ac = 0
a(b − c) = 0.

Since there are no zero divisors, either a = 0 or b − c = 0. Since a ̸= 0 by assumption, we must
have b − c = 0, so b = c.
Notice that we did not divide both sides of the equation by a; we cancelled a from both sides. This
shows that division and cancellation are not the “the same thing.”

EXERCISE 1.1

If n ∈ Z, then prove that 0 · n = 0.

Solution:

0 · n = 0 · n + 0 V3
= 0 · n + 0 · n + (−0 · n) V4
= (0 + 0) · n + (−0 · n) V9
= 0 · n + (−0 · n) V3
= 0. V4

EXERCISE 1.2

If n ∈ Z, then prove that −n = (−1) · n.

Solution:

0 · n = 0
(−1 + 1) · n = 0 V4

(−1) · n + 1 · n = 0 V9
(−1) · n + n = 0 V7

(−1) · n = −n.

THEOREM 1.1: Well-Ordering Axiom (WOA)

Any non-empty subset of the positive integers (N) has a smallest element.

There are three main ways of using (WOA) in proofs.

(1) Pick the smallest element in a non-empty subset of N and show that there is a smallest element.

(2) If a subset of natural numbers contains no smallest element, then the set is empty.

(3) Any statement that implies there is an infinite strictly decreasing sequence of natural numbers must
be false. This is called the Principal of infinite descent.
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THEOREM 1.2: Principal of Mathematical Induction (POMI)

Let P (n) be a statement that depends on n ∈ N. If P (0) is true and for all k ∈ N, P (k) implies P (k + 1),
then P (n) is true for all n ∈ N.

EXERCISE 1.3

State the Principal of Strong Induction (POSI).

Let P (n) be a statement that depends on n ∈ N. If P (0) is true and for all k ∈ N, P (0), . . . , P (k) implies
P (k + 1), then P (n) is true for all n ∈ N.

Lecture 2
4th May

2 Divisibility

DEFINITION 2.1: Divides in Z

If a, b ∈ Z, we say a divides b, or that a is a factor of b, when b = ak for some k ∈ Z. We also say at times
that a is a divisor of b. When this happens, we write a | b, and when this does not happen, we write a ∤ b.

EXAMPLE 2.1

For example, −3 | 12, but 6 ∤ 9. Every a | 0 since 0 = a · 0, but 0 ∤ a when a ̸= 0. For otherwise, we would
have some k such that

0 ̸= a = 0 · k = 0.

The integers ±1 divide every integer b. Indeed, b = 1 · b and b = (−1)(−b).

PROPOSITION 2.1

Let a, b, c, x, y ∈ Z,

(1) a | b ∧ b | c =⇒ a | c.

(2) c | a ∧ c | b =⇒ c | (ax + by).

(3) a | b ∧ b ̸= 0 =⇒ |a| ≤ |b|.

(4) a | b ∧ b | a =⇒ a = ±b.

(5) a | b =⇒ ±a | ±b.

(6) a | b ∧ c | d =⇒ ac | bd.

(7) ±1 | a, ∀a ∈ Z.

(8) a | 0, ∀a ∈ Z.

(9) a | a, ∀a ∈ Z.

Proof:

(1) We have b = ak and c = bℓ for some k, ℓ ∈ Z. Then, c = (ak)ℓ = a(kℓ), and so a | c since kℓ ∈ Z.

(2) We have a = ck and b = cℓ for some k, ℓ ∈ Z. Then,

ax + by = ckx + cℓy = c(kx + ℓy).
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And so c | (ax + by) since kx + ℓy ∈ Z.

(3) We have b = ak for some k ∈ Z. Take absolute values to get |b| = |a||k|. Since b ̸= 0, we get |k| > 0,
but k ∈ Z so |k| ≥ 1. Hence, |a| ≤ |b|.

(4) We have b = ak and a = bℓ for some k, ℓ ∈ Z. So, b = (bℓ)k = b(ℓk). If b = 0, then a = 0 too,
whereby a = ±b. If b ̸= 0, cancel b to get 1 = ℓk. Thus, ℓ = ±1, and so a = ±b.

(5) We have b = ak for some k ∈ Z. Then, −b = a(−k) and so a | (−b). Also, b = (−a)(−k) and so
−a | b. Continuing for the other two cases, we get that a | ±b.

COROLLARY 2.1

Suppose a | b and a | c, then

(1) a | b ± c.

(2) a | mb for all m ∈ Z.

Proof: Exercise.
In words, (1) says that if a number divides two other numbers, then it also divides their sum and difference
as well. And (2) says that if a number divides another number, then it divides the multiple of the other
number.

EXAMPLE 2.2

Prove that if x is an even number, then x2 + 2x + 4 is divisible by 4.

If x is an even number, then x = 2m, where m ∈ Z. x2 + 2x + 4 is divisible by 4 implies ∃c ∈ Z such that

(2m)2 + 2(2m) + 4 = 4c.

Hence,

(2m)2 + 2(2m) + 4 = 4m2 + 4m + 4
= 4(m2 + m + 1)
= 4c =⇒ c = m2 + m + 1.

3 Quotients and Remainders
When divisibility fails, we do look for remainders. Here is an important result about division of integers. It will
have a lot of uses; for example, it’s the key step in the Euclidean Algorithm, which is used to compute greatest
common divisors.

THEOREM 3.1: The Division Algorithm

Let a and b be integers with a > 0, then there exists unique integers q, r such that

b = aq + r and 0 ≤ r < a.

Proof: The idea is to find the remainder r using Well-Ordering. What is division? Division is successive
subtraction. You ought to be able to find r by subtracting a’s from b till you can’t subtract without going
negative. That idea motivates the construction which follows.

6



Look at the set of integers
S = {b − an : n ∈ Z and b − an ≥ 0}.

In other words, we take b and subtract all possible multiples of a. If we choose n < b
a (there always an

integer less than any number), then an < b, so b − an > 0. This choice of n produces a positive integer
a − bn in S. Therefore, S is a non-empty set of non-negative integers and by WOA there is a smallest
element r ∈ S. Thus, r ≥ 0 and r = b − aq for q ∈ Z. Therefore,

b = aq + r.

Moreover, if r ≥ a, then r − a ≥ 0, so

b − aq − a ≥ 0 or b − a(q + 1) ≥ 0,

which implies b − a(q + 1) ∈ S, but r = b − aq > b − a(q + 1). This contradicts our assumption that r is
the smallest element of S. Therefore,

b = aq + r and 0 ≤ r < a.

To show r and q are unique, suppose r′ and q′ also satisfy these conditions:

b = aq′ + r′ and 0 ≤ r < a.

Also, assume without loss of generality that r ≤ r′. Then,

aq + r = aq′ + r′,

a(q − q′) = r′ − r.

Thus, r′ − r is a multiple of a. Thus, r′−r
a is an integer and hence r − r′ = 0 implies r = r′. Further,

b(q − q′) = 0 showing that q = q′.

DEFINITION 3.1

Let a, b be integers and a > 0. We write b = aq + r, where 0 ≤ r < a. Then a is called modulus, b is called
dividend, q is called quotient, and r is called remainder.

Note that for a > 0, the expression a | b simply means that in b = aq + r with r = 0.

EXAMPLE 3.1

(a) Apply the Division Algorithm to divide 59 by 7.

(b) Apply the Division Algorithm to divide −59 by 7.

1. 59 = 7(8) + 3.

2. −59 = 7(−8) + (−3).

Lecture 3
6th May

EXAMPLE 3.2

Prove that if n ∈ Z, then n2 does not leave a remainder of 2 or 3 when it’s divided by 5.
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Solution: We will do this using the Division Algorithm as an illustration. If n is divided by 5, the remainder
r satisfies 0 ≤ r < 5. Thus, r = 0, 1, 2, 3, 4. Hence, n can have one of the following forms:

5q + 0, 5q + 1, 5q + 2, 5q + 3, 5q + 4.

Check each case:

n2 = (5q)2 = 25q2 = 5(5q2) + 0
n2 = (5q + 1)2 = 25q2 + 10q + 1 = 5(5q2 + 2q) + 1
n2 = (5q + 2)2 = 25q2 + 20q + 4 = 5(5q2 + 4q) + 4
n2 = (5q + 3)2 = 25q2 + 30q + 9 = 5(5q2 + 6q + 1) + 4
n2 = (5q + 4)2 = 25q2 + 40q + 16 + 5(5q2 + 8q + 3) + 1.

In all cases, dividing n2 by 5 gave a remainder of 0, 1, or 4.

As an illustration, 191273 can’t be perfect square because it leaves a remainder of 3 when it’s divided by 5.

4 Greatest Common Divisor
DEFINITION 4.1

Let a, b ∈ Z (not both zero). A number d ∈ Z+ is called the greatest common divisor (GCD) of a and b if

(1) d | a and d | b,

(2) If c | a and c | b, then c | d.

In other words, the greatest common divisor of two integers (not both zero) is the largest integer which
divides both of them. If a and b are integers (not both 0), the greatest common divisor of a and b is
denoted (a, b). The greatest common divisor is sometimes called the greatest common factor or highest
common factor.

Here are some easy examples:

• (8, 6) = 2;

• (15, 15) = 15;

• (60, 0) = 60;

• (18, −15) = 3.

You were probably able to do the last examples by factoring the numbers in your head. For instance, to find
(8, 6), you see that 2 is the only integer bigger than 1 which divides both 8 and 6.

In case a = b = 0, it might make sense to say there is no greatest common divisor. Some say that (0, 0) = 0,
but in any case the issue for us will not arise.

When a and b are small integers, we can find (a, b) by inspection. The problem with this approach is that it
requires that you factor the numbers. However, once the numbers get too large — currently, “too large” means
“on the order of several hundred digits long” — this approach to finding the greatest common divisor won’t work.
Fortunately, the Euclidean algorithm computes the greatest common divisor of two numbers without factoring
the numbers. We will discuss it after discussing some elementary properties.
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PROPOSITION 4.1

Let a, b ∈ Z (not both zero). Then,

(1) (a, b) ≥ 1.

(2) (a, b) = (|a|, |b|).

(3) (a, b) = (a + kb, b), for any integer k.

Proof:

(1) Since 1 | a and 1 | b, (a, b) must be at least as big as 1.

(2) x | a if and only if x | −a; that is, a and −a have the same factors, but |a| is either a or −a, so a
and |a| have the same factors. Likewise, b and |b| have the same factors. Therefore, x is a common
factor of a and b if and only if it’s a common factor of |a| and |b|. Hence, (a, b) = (|a|, |b|).

(3) First, if x is a common factor of a and b, then x | a and x | b. Then, x | kb, so x | a + kb. Thus, x is a
common factor of a + kb and b. Likewise, if x is a common factor of a + kb and b, then x | a + kb
and x | b which implies

x | (a + kb) − kb = a.

Thus, x is a common factor of a and b. Therefore,

{common factors of a and b} = {common factors of a + kb and b}.

So their largest element are same. The largest element of the first set is (a, b), while the largest
element of the second set is (a + kb, b). Therefore, (a, b) = (a + kb, b).

EXAMPLE 4.1

Use the property that (a, b) = (a + kb, b) to compute (998, 996).

Solution: (998, 996) = (2 + 996, 996) = (2, 996) = 2.

EXAMPLE 4.2

Prove that if n ∈ Z, then (3n + 4, n + 1) = 1.

(3n + 4, n + 1) = (3(n + 1) + 1, n + 1) = (1, n + 1). Now, (1, n + 1) | 1, but the only positive integer that
divides 1 is 1. Hence, (1, n + 1) = 1, and so (3n + 4, n + 1) = 1.

REMARK 4.1

In this course, we often use the special case where (a, b) = 1.

DEFINITION 4.2

Let a, b ∈ Z (not both zero). If (a, b) = 1, then we say that a and b are relatively prime or coprime.

For example, 49 and 54 are relatively prime, but 25 and 105 are not.

PROPOSITION 4.2

If d = (m, n), then ( m
d , n

d ) = 1.
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Proof: Suppose m = da and n = db. Then (
m

d
,

n

d

)
= (a, b).

Suppose that ℓ ∈ Z+ be a common divisor of m and n. Since d is the greatest common divisor, d ≥ dℓ.
Therefore, 1 ≥ ℓ, so ℓ = 1 (since ℓ is a positive integer). 1 is the only positive common divisor of a and b.
Therefore, 1 is the greatest common divisor of a and b, that is,(

m

d
,

n

d

)
= (a, b) = 1.

5 The Euclidean Algorithm
The main method for calculating the GCD of two integers is the Euclidean Algorithm which is based on the
Division Algorithm and Proposition 4.1 (3).

Proposition 4.1 (2) shows that there’s no harm in assuming the integers are non-negative.
THEOREM 5.1

Let a, b ∈ Z with b > a > 0. Use the Division Algorithm repeatedly as follows:

r1 = b and r2 = a.

r1 = b = r2q1 + r3, 0 ≤ r3 < a = r2

r2 = r3q2 + r4, 0 ≤ r4 < r3

r3 = r4q3 + r5, 0 ≤ r5 < r4

...
rn−1 = rnqn−1 + rn+1,

with rn+1 = 0. Then (a, b) = (r2, r1) = (r3, r2) = · · · = (rn, 0) = rn. We will show that this smallest
positive integer rn is (a, b).

Proof: From Proposition 4.1 (3), we obtain

(a, b) = (b, a) = (r1, r2)
= (r2q1 + r3, r2)
= (r3, r2)
= (r2, r3)
= (r3q2 + r4, r3)
= (r4, r3)
...
= (rn+1, rn).

One last step we see that (a, b) = (rn+1, rn) = (0, rn) = rn.

Note: The Euclidean Algorithm always terminates as we have the decreasing remainders r1 > r2 > r3 >
· · · ≥ rn > rn+1: By WOA sooner or later some remainder becomes 0 because the sequence is bounded below by
0. After n steps, this sequence eventually reaches some smallest positive number rn.
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Lecture 4
9th May

EXAMPLE 5.1

Use the Euclidean algorithm to compute (124, 348).

Solution: Here are the divisions:

348 = 124 · 2 + 100
124 = 100 · 1 + 24,

100 = 24 · 4 + 4
24 = 4 · 6 + 0.

Therefore, (124, 348) = 4.
It’s easier to remember this visually by arranging the computations in a table. Compare the numbers
above to the numbers in the following table:

ri qi−1

348
124 2
100 1
24 4
4 6

The next remainder is 0, so we didn’t write it. The successive remainders go in the first column. The
successive quotients go in the second column.

To compute the greatest common divisors of three numbers, just compute the greatest common divisor of two
numbers at a time.

EXAMPLE 5.2

Compute (42, 105, 91).

Solution: Since (42, 105) = 21, so (42, 105, 91) =
(
(42, 105), 91

)
= (21, 91) = 7.

6 Bézout’s Identity
The next result is extremely important, and is often used in proving things about greatest common divisors. First,
We will recall a definition from linear algebra.

DEFINITION 6.1

If a and b are numbers, a linear combination of a and b (with integer coefficients) is a number of the form

ax + by, x, y ∈ Z.

For instance, 29 = 2·10+1 ·9 shows that 29 is a linear combination of 10 and 9. Further, 7 = (−2) ·10+3 ·9
shows that 7 is a linear combination of 10 and 9 as well.

EXAMPLE 6.1

Find the smallest positive integer c that has the form 12x + 8y = c, where x, y ∈ Z.
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Solution: We can see that 12(1) + 8(−1) = 4. The question is “can we get a smaller positive integer?”
Can we find x, y ∈ Z such that 12x+8y = 3? If we could, we would have 4(3x+2y) = 3. Since 3x+2y ∈ Z,
this would imply that 4 | 3 which is a contradiction. Using the same argument on 12x + 8y = 2 and
12x + 8y = 1, we see that none of these are possible. Hence, the smallest positive integer is 4. So, in this
case, the smallest positive integer of the form 12x + 8y = c is equal to (12, 8).

EXAMPLE 6.2

Find the smallest positive integer c that has the form 28x + 105y = c, where x, y ∈ Z.

THEOREM 6.1: Bézout’s Identity

Let a, b ∈ Z (not both zero). If d is the least positive integer combination of a and b, then d divides every
combination of a and b. Furthermore, d = (a, b).

Proof: We know that ax + by = d > 0. Now consider some integer combination

c = as + bt, s, t ∈ Z.

We want to show that d | c. By DA, there exists q, r ∈ Z such that

c = dq + r, 0 ≤ r < d.

Thus,

0 ≤ r

= c − dq

= as + bt − (ax + by)q
= a(s − q) + b(t − yq).

We see that r is an integer combination of a and b, which is less than d, and non-negative. Because d is
the least positive integer combination of a and b, the only option is that r = 0. Hence, d | c. In particular,
d | a and d | b. So d is a common divisor of a and b. We will now show that d = (a, b). Let d′ be a common
divisor of a and b. Then, d′ | a and d′ | b. Hence,

d′ | ax + by

by property 2 of Proposition 2.1. Thus, we have d′ | d, and by definition of GCD we have d = (a, b).

COROLLARY 6.1

The set of all linear combinations of integers a and b is the set of all multiples of (a, b).

Proof: On one hand,
(a, b) | ax + by, x, y ∈ Z.

So every linear combination of a and b is a multiple of (a, b). On the other hand,

(a, b) = ax + by so k(a, b) = a(kx) + b(ky),

that is, every multiple of (a, b) is a linear combination of a and b.
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COROLLARY 6.2

Two integers a and b are relatively prime if and only if ax + by = 1 for some x, y ∈ Z.

Proof: Suppose a and b are relatively prime; that is, (a, b) = 1. By Theorem 1 (Bézout’s Identity),

ax + by = (a, b) = 1, for some x, y ∈ Z.

On the other hand, suppose ax + by = 1 for some x, y ∈ Z. Since (a, b) | a and (a, b) | b, we have

(a, b) | ax + by = 1.

The only positive integer that divides 1 is 1. Therefore, (a, b) = 1

EXERCISE 6.1

Prove that if n ∈ Z, then (3n + 17, 2n + 11) = 1.

Solution: 2(3n + 17) − 3(2n + 11) = 1, and (2, 3) = 1. Therefore, (3n + 17, 2n + 11) = 1.

PROPOSITION 6.1

Let a, b, c ∈ Z. If (a, b) = 1, a | c, and b | c, then ab | c.

Proof: Since a | c and b | c, there exists d, f ∈ Z such that

c = ad and c = bf

=⇒ c

a
= d and

c

b
= f.

Further, since a and b are coprime, by Theorem 1 (Bézout’s Identity) there exist integers x and y such that

ax + by = 1.

Thus,

acx + byc = c
c

b
x + c

a
y = c

ab

fx + dy = c

ab
ab(fx + dy) = c,

which implies ab | c.

PROPOSITION 6.2

Let a, b, n ∈ Z. If (n, a) = 1 and n | ab, then n | b.

Proof: By Bézout’s Identity, there exists x, y ∈ Z such that

nx + ay = (n, a) = 1.

Multiplying by b gives
nxb + ayb = b.
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Since n | n and n | ab, we get by property 2 of Proposition 2.1 that

n | nxb + ayb.

Therefore, n | b.

7 The Extended Euclidean Algorithm
We will start by reviewing the Euclidean algorithm, in which the extended Euclidean algorithm is used.

EXAMPLE 7.1

Find (1914, 899). Further, find x, y ∈ Z such that 1914x + 899y = 29.

Solution: We first follow the Euclidean Algorithm,

1914 = 2 · 899 + 116
899 = 7 · 116 + 87
116 = 1 · 87 + 29
87 = 3 · 29 + 0.

(1)

We usually write this in tabular form:
ri qi−1

1914 899
899 2
116 7
87 1
29 3

So, (1914, 899) = 29. We can rewrite the first two equations as:

1914 − 2 · 899 = 116. (2)

899 − 7 · 116 = 87. (3)

Substitute (2) into (3) to get
899 − 7 · (1914 − 2 · 899) = 87.

−7 · 1914 + 15 · 899 = 87. (4)

We can now rewrite the third equation of (1) as:

116 − 1 · 87 = 29. (5)

Substituting (2) and (4) into (5) gives

(1914 − 2 · 899) − 1 · (−7 · 1914 + 15 · 899) = 29
8 · 1914 − 17 · 899 = 29.

Thus, x = 8 and y = 17.

The above procedure is painful to carry out by hand, or even with a basic calculator. Let’s explore a method
of calculations, i.e., an algorithm, for solving the equation

ax + by = (a, b), x, y ∈ Z.
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It is called a backward recurrence, and is due to S. P. Glasby. It will look a little complicated, but you’ll see that
it’s really easy to use in practice.

THEOREM 7.1

Let a, b ∈ Z+ with b > a. Define
r1 = b r2 = a
s1 = 1 s2 = 0
t1 = 0 t2 = 1

and sequences as:

ri+1 = ri−1 − qi−1ri

si+1 = si−1 − qi−1si

ti+1 = ti−1 − qi−1ti.

Then, for i ∈ Z+, we have
bsi + ati = ri.

In particular, if rn = (a, b), then
bsn + atn = (a, b).

Proof: Use induction on n.

EXAMPLE 7.2

Find x, y ∈ Z such that 1914x + 899y = (1914, 899).

Solution:
ri qi−1 si ti Check

1914 1 0
899 2 0 1
116 7 1 −2 1(1914) + (−2)(899) = 116
87 1 −7 15 (−7)(1914) + 15(899) = 87
29 3 8 −17 8(1914) + (−17)(899) = 29

You can fill the columns of si and ti for i ≥ 3 with

next s = previous to last s − (last q)(last s),
next t = previous to last t − (last q)(last t).

EXERCISE 7.1

Compute (187, 102) and express it as a linear combination of 187 and 102.

Solution: We first follow the Euclidean Algorithm,

ri qi−1 si ti Check

187 1 0
102 1 0 1
85 1 1 −1 1(187) + (−1)(102) = 85
17 5 −1 2 (−1)(187) + (2)(102) = 17

Therefore,
187 · (−1) + 102 · 2 = (187, 102) = 17.
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EXERCISE 7.2

Find the smallest c, and x, y such that c = 246x + 194y.

Solution:
ri qi−1 si ti Check

246 1 0
194 1 0 1
52 3 1 −1 1(246) + (−1)(194) = 52
38 1 −3 4 (−3)(246) + (4)(194) = 38
14 2 4 −5 (4)(246) + (−5)(194) = 14
10 1 −11 14 (−11)(246) + (14)(194) = 10
4 2 15 −19 (15)(246) + (−19)(194) = 4
2 2 −41 52 (−41)(246) + (52)(194) = 2.

Thus, x = −41, y = 52, and c = 2.

EXERCISE 7.3

Find x, y ∈ Z such that 126x + 91y = (126, 91).

Lecture 5
11th May

8 Diophantine Equations
A polynomial equation in several variables in which we are only interested in integer solutions is called a
Diophantine equation. Diophantine equations are named after the 3rd century mathematician Diophantus of
Alexandria who wrote a series of books called Arithmetica wherein he raised the matter of solving the equations
now named in his honour.

EXAMPLE 8.1

Let a, b, c, n ∈ Z. Some famous Diophantine equations are:

• ax + by + c: Linear Diophantine equation in two variables.

• x2 + y2 = z2: Pythagorean Triple.

• x2 − dy2 ± 1, where d ∈ Z+ is non-square: Pell’s Equation.

• axn + byn = czn, where n ∈ Z, n ≥ 3: Fermat type Equation.

For now, we will just look at linear Diophantine equation in two variables,

ax + by = c,

where a, b, c are fixed integers and x, y are integer variables. When analyzing equations, we would like to answer
the following questions.

(1) Does a solution exist?

(2) If solutions exist, how many of them exist? (finite, infinite, countably, or uncountably many)

(3) What are the solutions?

(4) Are there any algorithms which generates the solution(s)?

We address the same questions when analyzing Diophantine equations.

16



THEOREM 8.1

Let a, b, c ∈ Z. Let (x, y) be a pair of integers satisfying the Diophantine equation

ax + by = c.

(a) If (a, b) ∤ c, then no solutions exist for ax + by = c.

(b) If (a, b) = d | c, then there are infinitely many solutions of the form

x′ = x0 − b

d
t,

y′ = y0 + a

d
t,

where the pair (x0, y0) is a particular solution to the equation ax + by = c, and t ∈ Z.

Proof:

(a) Suppose (a, b) ∤ c. Let the pair (x′, y′) be solutions of the equation ax+ by = c; that is, ax′ + by′ = c.
Since (a, b) | a and (a, b) | b,

(a, b) | ax + by = c

by property 2 of Proposition 2.1, which is a contradiction. Hence, no solution exists.

(b) Suppose (a, b) = d | c, then c = dk for some k ∈ Z. By Bézout’s Identity, there are integers m, n
such that

am + bn = d = (a, b).
Then,

amk + bnk = dk = c.

Hence, the pair (mk, nk) is a solution.
Suppose the pair (x0, y0) is a particular solution. Then,

a

(
x0 − b

d
t

)
+ b

(
y0 + a

d
t

)
= ab

d
t − ab

d
t + (ax0 + by0) = 0 + c = c,

which proves that the pair (x0 − b
d t, y0 + a

d t) is a solution for every t ∈ Z.
Let (x′, y′) and (x0, y0) be the pairs such that ax′ + by′ = c and ax0 + by0 = c. Hence,

a(x0 − x′) = b(y′ − y0)

=⇒ a(x0 − x′)
d

= b(y′ − y0)
d

.

Now, b
d | a

d (x0 − x′). However, ( a
d , b

d ) = 1 by Proposition 4.2. Therefore,

b

d
| x0 − x′,

(using Proposition 6.2) would imply

x0 − x′ = t
b

d
, for some t ∈ Z.

Thus,
x′ = x0 − b

d
t.

Substituting x0 − x′ = t b
d into the equation a(x0 − x) = b(y − y0), we see that

y′ = y0 + a

d
t.
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Lecture 6
13th May

EXAMPLE 8.2

Solve the Diophantine equation 6x + 9y = 5.

Solution: Since (9, 6) = 3 ∤ 5, the equation has no solution.

EXAMPLE 8.3

Find all the solutions (x, y) to the Diophantine equation

11x + 13y = 369.

Solution: Since (11, 13) = 1 | 369, there are infinitely many solutions. It is hard to guess the particular
solution, so we will use the EEA:

ri qi−1 si ti Check

13 1 0
11 1 0 1
2 5 1 −1 (1)(13) + (−1)(11) = 2
1 2 −5 6 (−5)(13) + (6)(11) = 1

(11)(6) + (13)(−5) = 1
(11)(2214) + (13)(−1845) = 369.

So, (2214, −1845) is a particular solution. The general solution is

x = 2214 − 13t, y = −1845 + 11t, t ∈ Z.

EXERCISE 8.1

Find all solutions of the linear Diophantine equation

132x + 84y = 144.

Solution:
ri qi−1 si ti Check

132 1 0
84 1 0 1
48 1 1 −1 132(1) + 84(−1) = 48
36 1 −1 2 132(−1) + 84(2) = 36
12 1 2 −3 132(2) + 84(−3) = 12

Hence,

132(2) + 84(−3) = 12
132(2 · 12) + 84(−3 · 12) = 12 · 12

132 · 24 + 84 · (−36) = 144.
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So, (x0, y0) = (24, −36) is a particular solution. The general solution is:

x = x0 − b

d
t = 24 − 84

12 t = 24 − 7t,

y = y0 − a

d
t = −36 + 132

12 t = −36 + 11t, t ∈ Z

Consider a 3-variable equation
ax + by + cz = d.

The equation has solutions if (a, b, c) | d. If it has a solution, there will be infinitely many, determined by two
integer parameters.

EXERCISE 8.2

Find the general solution to the Diophantine equation

8x + 14y + 5z = 11.

Solution:
2(4x + 7y) + 5z = 11.

Let w = 4x + 7y, so
2w + 5z = 11.

Now, w = −22 and z = 11 is a particular solution, so

w = −22 + 5s, z = 11 − 2s, s ∈ Z.

Then,
4x + 7y = w = −22 + 5s.

x = −44 + 10s and y = 22 − 5s is a particular solution. The general solution is

x = −44 + 10s + 7t

y = 22 − 5s − 4t

z = 11 − 2s.

9 Prime Numbers
DEFINITION 9.1

An integer p is called prime when p ̸= 0, p ̸= ±1, and the only factors that p have are ±1 and ±p.

Clearly, p is prime if and only if p is prime. To avoid this double counting of primes we shall work only with
positive primes and to be brief we shall usually omit the word “positive.”

LEMMA 9.1

Every integer greater than 1 is divisible by at least one prime.

Proof: Let’s use induction. To begin with, the result is true for n = 2 since 2 is prime.
Suppose 2, 3, 4, . . . , k −1 is divisible by at least one prime. If k is prime, it is divisible by a prime — namely
itself! If k is composite, then k = ab, where 1 < a < k and 1 < b < k. Since a and b are among the
integers 2, 3, 4, . . . , k − 1, each of them is divisible by at least one prime; that is, there exists p such that
p | a and a | k implies p | k, so k has a prime factor as well. This shows that the result is true for all n > 1
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by induction.

And now comes a classic discovery and its proof occur as Proposition 20 in Book 9 of Euclid’s Elements.
PROPOSITION 9.1: Euclid’s Theorem

There are infinitely many prime numbers.

Proof: Suppose on the contrary that there are only finitely many primes p1, . . . , pn. Look at

p1p2 · · · pn + 1.

This number is not divisible by any of the primes p1, . . . , pn because it leaves the remainder of 1 when
divided by any of them. According to Lemma 1, there exists a new prime number q such that q |
p1p2 · · · pn + 1, a contradiction. This contradiction implies that there cannot be finitely many primes; that
is, there are infinitely many.

The special thing about primes is that there is only one way to write an integer into primes. Ambiguous
factoring such as

30 = (6)(5) = (15)(2)

do not occur when only primes are involved in the factors. To prove the Unique factorization, we need what we
can only be called the signature property of primes.

PROPOSITION 9.2: Euclid’s Lemma

Let a, b ∈ Z. If p is a prime number and p | ab, then p | a or p | b.

Proof: Assume p | ab, then there exists n ∈ Z such that pn = ab. Further, assume p ∤ a. Since a is not a
multiple of p and the only factors of p are 1 and p, we must have (a, p) = 1. So by Bézout’s Identity, there
exists x, y ∈ Z such that

ax + py = 1.

abx + pby = b.

pnx + pby = b.

p(nx + by) = b.

Since nx + by ∈ Z, p | b.

Note that Proposition 9.2 fails when p is not a prime. For instance 6 | 12 = (3)(4), but 6 ∤ 3 and 6 ∤ 4.

Lecture 7
16th May

PROPOSITION 9.3

Let n, a1, . . . , an ∈ Z+. If p | a1 · · · an, then there exists some i ∈ [1, n] such that p | ai.

Proof: If n = 1, then p | a1 and we are done. Assume p | a1 · · · ak implies there exists some i ∈ [1, n] such
that p | ai. Then, by Euclid’s Lemma, p | a1 · · · ak+1 implies p | ak+1 or p | a1 · · · ak. If p | ak+1, then we
are done. If p | a1 · · · ak, then we are also done by the inductive hypothesis. Hence, the result is true for
n = k + 1 which implies the result is true for n ∈ Z+.
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THEOREM 9.1: Fundamental Theorem of Arithmetic (FTA)

Every integer greater than 1 can be written uniquely (up to ordering) as the product of primes.

Proof: We will start by proving that every positive integer greater than 1 can be written as a product
of primes. Let S denote the collection of all positive integers greater than 1 that cannot be written as
a product of primes. Suppose that S is non-empty. Since S ⊂ N and by WOA, there exists a smallest
element of S, say n. Then n cannot be a prime as otherwise it would not be in S. Thus, n is composite,
say n = ab. Since a and b are both less than n, they can be written as products of prime numbers. Say

a = pα1
1 · · · pαk

k , b = qβ1
1 · · · qβℓ

ℓ .

But then,
n = pα1

1 · · · pαk

k q1β1 · · · qβ1
1 · · · qβℓ

ℓ ,

which is a contradiction. This means that S is empty. So every integer greater that 1 is a product of primes.
To prove uniqueness, consider two distinct prime factorizations of n as

pα1
1 · · · pαk

k = q1β1 · · · qβ1
1 · · · qβℓ

ℓ .

Note here the p’s are distinct primes, the q’s are distinct primes, and all the exponents are greater than or
equal to 1.
Consider p1. It divides the left side, so it divides the right side. Using Proposition 1 p1 | qβi

i for some i
which implies p1 = qi since they are both prime numbers. To avoid a mess, renumber the q’s so qi becomes
q1 and vice versa. Thus, p1 = q1, and the equation reads

pα1
1 · · · pαk

k = p1β1 · · · qβ1
1 · · · qβℓ

ℓ .

If α1 > β1, then we have
pα1−β1

1 pα2
2 · · · pαk

k = qβ2
2 · · · qβℓ

ℓ .

This is impossible since now p1 divides the left side, but not the right. For the same reason, α < β1 is
impossible. It follows that α1 = β1, so we can cancel the p1’s off both sides leaving

pα2
2 · · · pαk

k = qβ2
2 · · · qβℓ

ℓ .

Keep going. At each stage, we pair up a power of p with a power of q, and the preceding argument shows
the powers are equal. We can’t wind up with any primes left over at the end, or else I’d have a product of
primes equals to 1. So everything must have paired up, and the original factorizations were the same
(except possibly for the order of the factors).

EXAMPLE 9.1

Consider the set H of all numbers of the form 4n + 1 where n is a non-negative integer, that is,

H = {1, 5, 9, 13, 17, 21, 25, 29, . . .}.

These numbers are called Hilbert numbers. Observe that H is closed under multiplication, that is, if we
multiply any two Hilbert numbers, we get another Hilbert number. Indeed,

(4x + 1)(4y + 1) = 4(4xy + x + y) + 1.

A number in H , other than 1, that has no divisor in H other than 1 and itself is called Hilbert prime. The
first few Hilbert Primes are 5, 9, 13, 17, 21, and 29. Note 25 is a Hilbert composite because 5 is in the set.
The set H does not have unique prime factorization. Indeed, 693 = (9)(77) = (21)(33).

21



EXAMPLE 9.2: Why is 1 is not a prime in Z?

Some might argue that the integer 1 deserve to be called a prime. After all, it cannot be factored down
any further. However, if we allow 1 to be prime then Unique factorization goes out the window. Indeed,
we can factor the integer 1 from any integer a as much as we like:

a = (1)(1)(1) · · · (1)(a).

True prime don’t do that. The number of times they appear in the Unique factorization of a is unique.
That’s what allows the factorization to be called “unique.” Better to leave 1 out of the basket of integers
known as primes.

10 Gaussian Integer
The Gaussian integers were introduced by Gauss in 1832.

DEFINITION 10.1: Gaussian Integers

The set
Z[i] = {x + iy : x, y ∈ Z ∧ i2 = −1}

is called the set of Gaussian integers.

Observe that Z ⊂ Z[i] since a + 0i ∈ Z.
DEFINITION 10.2: Axioms in Z[i]

The Gaussian integers have all the same important properties as Z. This means that ∈ Z[i] satisfies the
following axioms:

V1 Z[i] has operations + (addition) and · (multiplication). It is closed under these operations, in that if
a, b ∈ Z[i], then a + b ∈ Z[i] and a · b ∈ Z[i].

V2 Addition is associative: If a, b, c ∈ Z[i], then

a + (b + c) = (a + b) + c.

V3 There is an additive identity 0 ∈ Z: For all a ∈ Z[i],

a + 0 = 0 + a = a.

V4 Every element has an additive inverse: If a ∈ Z[i], there is an element −a ∈ Z[i] such that

a + (−a) = 0 and (−a) + a = 0.

V5 Addition is commutative: If a, b ∈ Z[i], then

a + b = b + a.

V6 Multiplication is associative: If a, b, c ∈ Z[i], then

a · (b · c) = (a · b) · c.

V7 There is a multiplicative identity 1 ∈ Z[i]: For all a ∈ Z[i],

a · 1 = a = 1 · a.
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V8 Multiplication is commutative: If a, b ∈ Z[i], then

a · b = b · a.

V9 The Distributive Laws hold: If a, b, c ∈ Z[i], then

a · (b + c) = a · b + a · c,

(a + b) · c = a · c + b · c.

V10 There are no zero divisors: If a, b ∈ Z[i] and a · b = 0, then either a = 0 or b = 0.

Clearly, Z[i] is an integral domain.

Our goal is to determine “whether the Gaussian integers have unique prime factorization or not?” To do this,
we try to mimic what we did in the integers.

Notice that it is uncommon for the division of one Gaussian Integer by another to yield a Gaussian Integer
as its quotient (the analogous statement in Z is also seen to be true). For example, we can divide these two
elements in C to find:

1 + 6i

4 + 7i
= 46

75 + 17
75 i

is not a Gaussian integer. However, we find that some particular divisions do yield a quotient in Z[i]:

2 + 5i

i
= 5 − 2i

−6 + 8i

1 + 7i
= 1 + i.

To further understand this divisibility behaviour, we develop a tool to measure the size of a Gaussian integer
called the norm so that we have a meaning to be bigger or smaller in the Gaussian integers.

DEFINITION 10.3: Norm

If z = x + iy ∈ Z[i], then we define the norm of z by

N(z) = x2 + y2 = zz̄.

EXAMPLE 10.1

We have

N(1) = 12 + 02 = 1
N(−2i) = 0 + (−2)2 = 4

N(−3 + 2i) = (−3)2 + 22 = 13.

So, by one Gaussian integer z being smaller than another Gaussian integer w, we mean that N(z) < N(w).

However before we go back to trying to figure out the Division in Gaussian integers, it makes sense to think
about the properties of the norm.

EXERCISE 10.1

Create a bunch of your own examples with the purpose of trying to figure out what properties the norm
might have.
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THEOREM 10.1

If z, w ∈ Z[i], then

(1) N(z) ∈ N ∪ {0}.

(2) N(z) = 0 ⇐⇒ z = 0.

(3) N(zw) = N(z)N(w).

11 Divisibility and units in Z[i]
We now define divisibility in Z[i] analogously to divisibility in Z, using the norm’s multiplicativity to great effect.

DEFINITION 11.1: Divides in Z[i]

If α, β ∈ Z[i], we say that z divides w, and write z | w, provided that w = zX for some X ∈ Z[i]. In this
case, w is a multiple of z and z is a factor of w.

EXAMPLE 11.1

1 + 2i divides 5 + 0i in Z[i] because

5 + 0i = (1 + 2i)(1 − 2i).

Let us collect some facts and definitions regarding divisibility. The next theorem turns out to be very useful.
THEOREM 11.1

If z | w in Z[i], then N(z) | N(w) in Z.

EXERCISE 11.1

Find q, r ∈ Z[i] such that w = qz + r for each pair w, z ∈ Z[i].

(1) w = 3 + 7i, z = 4 + 5i.

(2) w = 7 − 3i, z = 2 + 7i.

(3) w = 1 + 2i, z = 3 − i.

Solution:

Exercise 11.1 shows that unlike in Z, the quotient and remainder are not unique in the Gaussian integers.

Lecture 8
18th May

12 Primes in Z[i]
Recall that our goal here is to look at prime factorizations in Z[i]. So, we are in need to define primes in Z[i].

In Z[i], we classified every number into one of four types: zero, unit, prime, or composite. We do the same
for Z[i]. The first two definitions are the same: we have a number 0, and a number z ∈ Z[i] is a unit, if there
exists a number w ∈ Z[i], such that zw = 1; that is, z must divide 1. However, in Z[i], our definitions for primes
and composite numbers are not good. In Z, we talked about positive divisors, but we do not have a concept
of positive or negative numbers in Z[i]. Therefore, we need to come up with better definitions for prime and
composite numbers. To do this, we must first make sure that we understand units.
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DEFINITION 12.1: Unit in Z[i]

If z is a unit in Z[i], then there exists w ∈ Z[i] such that zw = 1.

EXAMPLE 12.1

Find all units in Z.

THEOREM 12.1

A number z is a unit in Z[i] if and only if N(z) = 1.

Proof: If z is a unit in Z[i], then by definition there exists w ∈ Z[i] such that zw = 1. Hence, we have

N(zw) = N(1)
N(z)N(w) = 1.

Thus, N(z) | 1 in Z. Therefore, N(z) = 1 since N(z) ∈ N.
On the other hand, if z = x + iy ∈ Z[i] such that N(z) = 1, then x2 + y2 = 1. Since x, y ∈ Z, the only
possibilities are z = 1 + 0i, z = −1 + 0i, z = 0 + i, and z = 0 − i. It is easy to verify that each of these
numbers are units in Z[i].

DEFINITION 12.2: Prime in Z[i]

Let z ∈ Z[i]. z is called a prime in Z[i] if

(i) z is not a unit, and

(ii) any factorization z = wu forces w or u to be a unit in Z[i].

EXERCISE 12.1

Are all prime numbers in Z also prime numbers in Z[i]?

EXAMPLE 12.2

The integer 2 is a prime in Z, but is not a prime in Z[i] since 2 = (1 + i)(1 − i), and neither 1 + i nor 1 − i
is a unit. The number 3 is a prime in both Z and Z[i]. Suppose that 3 = zw for some z, w ∈ Z[i]. Then,

N(zw) = N(3) = 9
N(z)N(w) = 9,

which means that N(z) | 9 and N(w) | 9. Hence, N(z) equals one of 1, 3, or 9.

• If N(z) = 1, then z must be a unit by Theorem 12.1.

• If N(z) = 3, let z = x + iy, then
3 = N(z) = x2 + y2.

If y ̸= 0, then x2 + y2 ̸= 3. If y = 0, then x2 = 3 is a perfect square not equal to 3. Therefore,
N(z) ̸= 3. Analogously, N(w) ̸= 3.

• If N(z) = 9, then N(w) = 1, and as seen already this forces w to be unit.
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EXERCISE 12.2

Prove that 7 is prime in Z[i].

Solution: Note that
N(zw) = N(7) = 49 ⇐⇒ N(z)N(w) = 49,

which means that N(z) | 49 and N(w) | 49. Hence, N(z) equals to one of 1, 7, or 49.

• If N(z) = 1, then z must be a unit by Theorem.

• If N(z) = 7, let z = x + iy, then
7 = x2 + y2.

If y ̸= 0, then x2 + y2 ̸= 7. If y = 0, then x2 = 7 is a perfect square not equal to 3. Therefore,
N(z) ̸= 3. Analogously, N(w) ̸= 3.

• If N(z) = 49, then N(w) = 1, and as seen already this forces w to be a unit.

EXERCISE 12.3

Prove that 2 + i is prime in Z[i].

Solution: Note that

N(zw) = N(2 + i) = 32 + 12 = 10 ⇐⇒ N(z)N(w) = 10,

which means that N(z) | 10 and N(w) | 10. Hence, N(z) equals to one of 1, 2, 5, or 10.

• If N(z) = 1, then z must be a unit by Theorem.

• If N(z) = 2, let z = x + iy, then
2 = x2 + y2.

If y ̸= 0, then x2 + y2 ̸= 2. If y = 0, then x2 = 2 is a perfect square not equal to 2. Therefore,
N(z) ̸= 2. Analogously, N(w) ̸= 2.

• If N(z) = 5, let z = x + iy, then
5 = x2 + y2.

If y ̸= 0, then x2 + y2 ̸= 5. If y = 0, then x2 = 5 is a perfect square not equal to 5. Therefore,
N(z) ̸= 5. Analogously, N(w) ̸= 5.

• If N(z) = 10, then N(w) = 1, and as seen already this forces w to be a unit.

EXERCISE 12.4

Make a conjecture to which primes in Z are also prime in Z[i].

Lecture 9
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Next, we want to look at the GCD in Z[i].
DEFINITION 12.3: Greatest Common divisor in Z[i]

Let z, w ∈ Z[i] not both zero. We define the set of common divisors of z and w as

{X ∈ Z[i] : X | z ∧ X | w}.

There will be an element d ∈ Z[i] with maximal norm in this set, and that we call the greatest common
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divisor of z and w; that is, if c | z and c | w, then N(d) ≥ N(c).

The Euclidean Algorithm also works for finding a GCD of two numbers in Z[i].
EXAMPLE 12.3

Use the Euclidean Algorithm to find a GCD of z = 11 + 3i and w = 1 + 8i.

Solution: We have

11 + 3i = (1 − i)(1 + 8i) + 2 − 4i

1 + 8i = (−2 + i)(2 − 4i) + 1 − 2i

2 − 4i = 2(1 − 2i) + 0.

Therefore, a GCD of z = 11 + 3i and w = 1 + 8i is 1 − 2i.

EXERCISE 12.5

Use the Euclidean Algorithm to find a GCD of z = 3 + 10i and z = 2 + 4i.

Solution:

3 + 10i

2 + 4i
= 23 + 4i

10 ∼ 2 + 0i

2 + 4i

−1 + 2i
= 1.2 − 1.6i ∼ 1 − 2i

−1 + 2i

−1 = 1 − 2i.

3 + 10i = (2 + 0i)(2 + 4i) + (−1 + 2i)
2 + 4i = (1 − 2i)(−1 + 2i) + (−1)

−1 + 2i = (1 − 2i)(−1) + 0.

So, (3 + 10i, 2 + 4i) = 1 − 2i.

EXERCISE 12.6

What are all GCD of w = 11 + 3i and z = 1 + 8i?

We now prove Bezout’s Identity in Z[i]. You should be looking and thinking about the difference between
this proof and the proof of Bezout’s Identity in Z.

THEOREM 12.2: Bezout’s Identity in Z[i]

Let z, w ∈ Z[i] not both zero. If d is a GCD of z, then for any x, y ∈ Z[i], d | (zx + wy). Moreover, there
exists s, t ∈ Z[i] such that

zs + wt = d.

Proof: Let c = zx + wy for some x, y ∈ Z[i]. By definition of GCD, we have z = da and w = db for some
a, b ∈ Z[i]. Thus,

c = (da)x + (db)y = d(ax + by).
Since ax + by ∈ Z[i], we have d | c in Z[i].
Let S =

{
N(zs + wt) : s, t ∈ Z[i] ∧ N(zs + wt) > 0

}
. Observe that S is non-empty since z and w are

both non-zero. Also, S ⊂ N since N(zs + wt) ∈ N, so we can pick the smallest element in S by WOA.
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Let d = zs + wt be the number in Z[i] corresponding to the smallest element in S.
By the Division Algorithm, there exists q, r ∈ Z[i] such that z = qd + r, where N(r) < N(d). Then,

r = z − qd = z − (zs + wt)q = z(1 − sq) + w(−tq).

If N(r) > 0, then N(r) ∈ S with N(r) < N(d) which is a contradiction. So, we must have N(r) = 0
which implies r = 0. Thus, d | z. Similarly, we can show that d | w.
Let c be any other common divisor of z and w. Then, there exists s′, t′ ∈ Z[i] such that z = cs′ and
w = ct′. Hence,

d = zs + wt = cs′s + ct′t = c(s′s + t′t).

So, c | d and hence N(c) ≤ N(d).

The Extended Euclidean Algorithm also works in Z[i].
EXAMPLE 12.4

Let z = 3 + 10i and w = 2 + 4i. Find s, t ∈ Z[i] such that zs + wt equals to a GCD of z and w.

EXAMPLE 12.5

Let z = 32 + 9i and w = 4 + 11i. Find s, t ∈ Z[i] such that zs + wt equals to a GCD of z and w.

EXERCISE 12.7

Let z = 11 + 3i and w = 1 + 8i. Find s, t ∈ Z[i] such that zs + wt equals to a GCD of z and w.

Solution: We know that a GCD of z and w is 1 − 2i. We want to find x, y ∈ Z[i] such that

(11 + 3i)s + (1 + 8i)t = 1 − 2i.

EEA:
ri qi−1 si ti Check

11 + 3i 1 0
1 + 8i 1 − i 0 1
2 − 4i −2 + i 1 −1 + i (1)(11 + 3i) + (−1 + i)(1 + 8i) = 2 − 4i
1 − 2i 2 2 − i 3i (2 − i)(11 + 3i) + (3i)(1 + 8i) = 1 − 2i

So, (2 − i, 3i) is a particular solution.

Since GCDs are not unique, we define relatively prime in terms of the norm.
DEFINITION 12.4

Two numbers z, w ∈ Z[i] are relatively prime (coprime) if there exists x, y ∈ Z[i] such that

N(zx + wy) = 1.

Finally, we prove the analogue of Euclid’s Lemma for Z[i].
PROPOSITION 12.1: Euclid’s Lemma in Z[i]

If p is a prime in Z[i] and p | zw, then p | z or p | w.

Proof: Suppose p | zw, so there exists ℓ ∈ Z[i] such that zw = ℓp. Suppose p ∤ z. Let d be the GCD of p
and z. So

d = zs + pt for some s, t ∈ Z[i] and u | p and u | z
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Write p = dk for some k ∈ Z[i]. Since p is a Gaussian prime, one of u or k is unit in Z[i].
If k is unit, then d = pk−1, and we see p | d and d | z which implies p | z, a contradiction. Thus, d is unit
with d−1 ∈ Z[i]. Now multiply d = zs + pt by w to get

dw = wzs + wpt

w = d−1wzs + d−1wpt

w = d−1ℓps + d−1wpt

= d−1p(ℓs + pt)

Thus, p | w.

We are now in a position to prove we have unique prime factorization in Z[i].
THEOREM 12.3

Every z ∈ Z[i], with N(z) > 1 has a unique factorization into primes (up to reordering and multiplication by
units).

13 Congruences
Throughout this section, we fix a positive integer n, and call it a modulus. This comes from the Latin word for a
“measure,” or as we might say, a “yardstick.” This modulus is used to compare two integers.

DEFINITION 13.1

Two integers a and b are said to be congruent modulo n, and we write

a ≡ b (mod n),

provided a and b have equal remainders between 0 and n − 1 when they are each divided by n; that is, if

a = q1n + r1 and b = q2n + r2,

where 0 ≤ r1, r2 < n, then r1 = r2.

When n = 1, we see that the only possible remainder upon division by 1 is 0. This is the trivial and
interesting case. So, keep the story worthwhile, we typically assume that n ≥ 2.

EXAMPLE 13.1

For instance, when the modulus is n = 5, here are all the integers congruent to each other with a remainder
r (0 ≤ r < 5) is of the form 5q + r, where q is any integer.

• The integers with a remainder of 0:

{5q : q ∈ Z} = {0, ±5, ±10, . . .}.

• The integers with a remainder of 1:

{5q + 1 : q ∈ Z} = {. . . , −9, −4, 1, 6, 11, . . .}.

• The integers with a remainder of 2:

{5q + 2 : q ∈ Z} = {. . . , −8, −3, 2, 7, 12, . . .}.
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• The integers with a remainder of 3:

{5q + 3 : q ∈ Z} = {. . . , −7, −2, 3, 8, 13, . . .}.

• The integers with a remainder of 4:

{5q + 4 : q ∈ Z} = {. . . , −6, −1, 4, 9, 14, . . .}.

The same observation applies to any modulus n. Given a modulus n ≥ 2, the set of integers Z gets
partitioned into n disjoint pieces according to the n possible remainders 0, 1, 2, . . . , n − 1.

EXAMPLE 13.2

• We have 23 ≡ 37 (mod 7) since 23 and 37 both have a remainder of 2 when divided by 7.

• We have 12 ≡ 12 (mod 5) since 12 and 2 both have a remainder of 2 when divided by 5.

EXERCISE 13.1

Are the following statements true or false?

(1) 37 ≡ 13 (mod 6).

(2) 15 ≡ 15 (mod 5).

(3) 31 ≡ −4 (mod 7).

Solution:

(1) True.

(2) True.

(3) False.

EXERCISE 13.2

Find the smallest non-negative integer satisfying the congruence.

(1) 101 ≡ a (mod 3).

(2) −7 ≡ a (mod 5).

(3) 45 ≡ a (mod 11).

Solution:

(1) a = 2.

(2) a = 3.

(3) a = 1.

A rather surprising fact is that the congruence relation (≡) behaves much likely the equality relation (=).
PROPOSITION 13.1

The congruence relation (≡) is an equivalence relation (=); that is, it satisfies the following axioms:

(1) Reflexivity: If a is any integer, then a ≡ a (mod n),
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(2) Symmetry: If a ≡ b (mod n), then b ≡ a (mod n),

(3) Transitivity: If a ≡ b (mod n) and b ≡ c (mod n), then a ≡ c (mod n).

Proof: Exercise.

Here is a quick and alternate way to tell if a ≡ b (mod n).
PROPOSITION 13.2

Two integers a and b are congruent modulo n if and only if n | (a − b).

Proof: If a ≡ b (mod n), then
a = q1n + r and b = q2n + r,

for some integers q1, q2, and r, where 0 ≤ r < n. Then,

a − b = (q1 − q2)n,

which clearly shows that n | (a − b).
On the other hand, suppose n | (a − b) which implies a − b = nk for some k ∈ Z. According to Divison
Algorithm, we have integers q, t, r, and s such that

a = nq + r, 0 ≤ r < n and b = nt + s, 0 ≤ s < n.

Then,

r − s = (a − nq) − (b − nt)
= a − b + n(t − q)
= nk + n(t − q)
= n(k + t − q)

So, n | (r − s). If r − s ̸= 0, then by Proposition 2.1(3) n ≤ |r − s|. Since 0 ≤ r < n where 0 ≤ s < n, we
also have |r − s| which contradicts n < n. This forces us to conclude that r − s = 0 implies r = s and
a ≡ b (mod n).

Week 4 | Monday
23rd May

Victoria Day.

Lecture 10
25th May

PROPOSITION 13.3

Let a, b, c, d ∈ Z, and suppose that

a ≡ b (mod n),
c ≡ d (mod n).

Then,

a ± c ≡ b ± d (mod n),
ac ≡ bd (mod n).

Proof: Use Proposition 2.1.
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COROLLARY 13.1

Suppose a, b, c ∈ Z, n ≥ 2, and a ≡ b (mod n), then

a ± c ≡ b ± d (mod n),
ac ≡ bd (mod n).

COROLLARY 13.2

Let a, b ∈ Z, n ≥ 2, and f(x) be a polynomial with integer coefficient. If a ≡ b (mod n), then

f(a) = f(b) (mod n).

EXAMPLE 13.3

Simplify 994 · 996 · 997 · 998 (mod 100) to a number in the range {0, 1, . . . , 999}.

Solution: Rather than deal with large “positive” numbers, we’ll convert them to small “negative” numbers:

994 ≡ −6 (mod 1000)
996 ≡ −4 (mod 1000)
997 ≡ −3 (mod 1000)
998 ≡ −2 (mod 1000).

Therefore, 994 · 996 · 997 · 998 ≡ (−6)(−4)(−3)(−2) (mod 1000) ≡ 144 (mod 1000).

EXAMPLE 13.4

Let f(x) = x5 − 10x + 7. Compute the remainder of f(27) divided by 5.

Solution: Note that 27 ≡ 2 (mod 5), so

f(27) ≡ f(2) (mod 5) ≡ 34 (mod 5) ≡ 4 (mod 5).

Therefore, 4 is the remainder of f(27) divided by 5.

PROPOSITION 13.4

Let a ∈ Z and n ≥ 2. If (a, n) = 1, then there exists b ∈ Z such that ab ≡ 1 (mod n).

If (a, n) = 1, then by Bezout’s Identity, there exists b, c ∈ Z such that

ab + cn = 1.

By Proposition 13.2, ab ≡ 1 (mod n).

DEFINITION 13.2

Let a ∈ Z and n ∈ Z+ such that (a, n) = 1. We call the integer b such that ab ≡ 1 (mod n) the inverse of
a modulo n and write

b ≡ a−1 (mod n).
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EXAMPLE 13.5

Find 47−1 (mod 61).

Solution: Apply the Extended Euclidean Algorithm to 61 and 47:

ri qi−1 si ti Check

61 1 0
47 1 0 1
14 3 1 −1 (1)(61) + (−1)(47) = 14
5 2 −3 4 (−3)(61) + (4)(47) = 5
4 1 7 −9 (7)(61) + (−9)(47) = 4
1 4 −10 13 (−10)(61) + (13)(47) = 1

Write the linear combination, then reduce mod 61:

(−10) · 61 + 13 · 47 = 1
13 · 47 ≡ 1 (mod 61).

Hence, 47−1 ≡ 13 (mod 61).

COROLLARY 13.3

Let a, b ∈ Z and n ∈ Z. If (a, n) = 1 and ab ≡ ac (mod n), then b ≡ c (mod n).

We can strengthen Corollary 13.3 further.
PROPOSITION 13.5

If (a, n) = d and ab ≡ ac (mod n), then b ≡ c (mod n
d ).

Proof: Proof. Suppose, ab ≡ ac (mod n), then n | ab − ac which implies there exists k ∈ Z such that

ab − ac = kn

Then,
(b − c)a

d
= k

n

d

Notice both a
d and n

d are integers because (a, n) = d. Since a
d divides the RHS, it must divide the LHS,

that is, a
d | k n

d . Further, by Proposition 4.2, ( a
d , n

d ) = 1, hence

a

d
| k by Proposition 6.2

k = a

d
ℓ for some ℓ ∈ Z

Hence,
(b − c)a

d
= a

d
ℓ
n

d
,

which implies
b − c = l

n

d

Thus,
b ≡ c (mod n

d
).
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EXAMPLE 13.6

Reduce 513 (mod 17).

Solution: We have

51 ≡ 5 (mod 17)
52 ≡ 25 ≡ 8 (mod 17)
54 ≡ 64 ≡ −4 (mod 17)
58 ≡ 16 ≡ −1 (mod 17)

513 ≡ (−1)(−4)(5) ≡ 3 (mod 17).

EXERCISE 13.3

Find the remainder when 306100 is divided by 7.

Solution: TODO

In practice, in order to compute ak (mod n) for some large power n, we utilize the so-called Double-and-Add
Algorithm. The algorithm is as follows: first write the integer k in its binary expansion, that is,

k =
t∑

i=0
ci2i = ct · 2t + ct−1 · 2t−1 · · · + c1 · 2 + c0,

where ci ∈ {0, 1}. Then,

ak ≡ act·2t+ct−1·2t−1···+c1·2+c0

≡ (a2t

)ct(a2t−1
)ct−1 · · · (a2)c1(a0)c0 (mod n).

But then note that for j such that 2 ≤ j ≤ t, we can deduce the value of a2j from a2j−1 (mod n) as follows:

a2j

≡ (a2j−1
)2 (mod n).

Therefore, we can compute a2, a22
, . . . a2t in t − 1 steps.

EXAMPLE 13.7

Let us compute n ≡ 7114 (mod 23) such that 0 ≤ n < 23.

Solution: Note that
114 = 26 + 25 + 24 + 2 = 64 + 32 + 16 + 2.

Then,

72 ≡ 49 ≡ 3 (mod 23)
74 ≡ (72)2 ≡ 32 ≡ 9 (mod 23)
78 ≡ (74)2 ≡ 92 ≡ 81 ≡ 12 (mod 23)

716 ≡ (78)2 ≡ 122 ≡ 144 ≡ 6 (mod 23)
732 ≡ (716)2 ≡ 62 ≡ 36 ≡ 13 (mod 23)
764 ≡ (732)2 ≡ 132 ≡ 169 ≡ 8 (mod 23).
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Thus,

7114 ≡ 764+32+16+2 (mod 23)
≡ 76473271672 (mod 23)
≡ (8)(13)(6)(3) (mod 23)
≡ 1872 (mod 23)
≡ 9 (mod 23).

Lecture 11
27th May

We will now take a look at some interesting applications of modular arithmetic. For example, it can be used to
demonstrate that certain Diophantine equations have no solutions.

EXAMPLE 13.8

Show that the Diophantine equation
x2 + y2 = 4z + 3

has no integer solutions x, y, z.

Solution: Since there are infinitely many possibilities for x, y, z, it seems a bit daunting to show that
none of them work. But a little trick with congruences and replacement makes this problem quite
straightforward. This is the same as solving the congruence

x2 + y2 ≡ 3 (mod 4)

in integers x and y. Since every integer is congruent to either 0, 1, 2, 3 modulo 4, there are essentially 16
possible combinations of x and y that we can check. However, the problem becomes even simpler if we
note that

02 ≡ 0, 12 ≡ 1, 22 ≡ 0, 32 ≡ 1 (mod 4).

Thus, every perfect square is congruent to either 0 or 1 modulo 4. Since we are dealing with the sum of
two perfect squares, there are only three options left to check, namely

0 + 0 ≡ 0, 0 + 1 ≡ 1, 1 + 1 ≡ 2 (mod 4).

As we can see, none of them add up to 3, which implies that x2 + y2 ≡ 3 (mod 4) has no solution in
integer x, y. Therefore, there are no solutions to the Diophantine equation x2 + y2 = 4z + 3.

EXAMPLE 13.9

Show that x5 ≡ x (mod 5) for all x ∈ Z.

Solution: Every integer x is congruent mod 5 to one of its possible remainders 0, 1, 2, 3, 4. If the desired
congruence holds for these remainders, then, by replacement, the congruence holds for any integer x. By
routine calculation we see that

05 ≡ 0, 15 ≡ 1, 25 ≡ 2, 35 ≡ 3, 45 ≡ 4 (mod 5).

Having verified the result on the five possible remainders, replacement gives the result for all integers.
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14 The Ring of Residue Classes Zn

Assume that the modulus n is a positive integer (n ≥ 2). By the Division Algorithm, every integer b can be
written as

b = qn + a, 0 ≤ a < n.

Reducing this equation mod n, we have
b ≡ a (mod n).

Since 0 ≤ a < n, we have a ∈ {0, 1, 2, . . . , n − 1}. In other words, mod n every integer can be reduced to a
number in {0, 1, 2, . . . , n − 1}. This set is called the standard residue system mod n, and answers to modular
arithmetic problems will usually be simplified to a number in this range.

DEFINITION 14.1

Let a ∈ Z. The set
[a] = {qn + a : q ∈ Z} = {b ∈ Z : b ≡ a (mod n)}

is called the residue class (equivalence class of a modulo n). The integer a is called a representative of the
residue class [a]. The finite set of residues mod n will be denoted Zn.

Remark: [a] = [b] ⇐⇒ b ≡ a (mod n).

EXAMPLE 14.1

For Example 3 (Lecture 9), the five residue classes of Zn are:

[0] = {0 + 5q : q ∈ Z}
[1] = {1 + 5q : q ∈ Z}
[2] = {2 + 5q : q ∈ Z}
[3] = {3 + 5q : q ∈ Z}
[4] = {4 + 5q : q ∈ Z}

EXERCISE 14.1

Let n ∈ Z+. Prove that the residue clases [0], [1], . . . , [n − 1] modulo n partition Z, that is,

[0] ∪ [1] ∪ · · · ∪ [n − 1] = Z,

[a] ∩ [b] ̸= ∅ =⇒ [a] = [b].

PROPOSITION 14.1

Let n ∈ Z+ and consider the collection Zn of all residues modulo n. Define the binary operation +, −, and ·
as follows:

[a] ± [b] = [a ± b], [a] · [b] = [a · b].

Then, under these binary operations, Zn forms a commutative ring with identity [1].

Proof: Use Proposition 1 (Lecture 10).

EXAMPLE 14.2

(a) What are the residue classes of modulo 6?
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(b) Construct an addition table and multiplication table.

(c) Does the ring Z6 form an integral domain?

Lecture 12
30th May

15 Linear Congruences

DEFINITION 15.1

An equation of the form
a1x1 + a2x2 + · · · + akxk ≡ b (mod n)

with unknowns x1, x2, . . . , xk is a linear congruence equation in k variables.

Observe that by definition of mod, we can rewrite a linear congruence equation as

a1x1 + a2x2 + · · · + akxk − nxk+1 = b,

which is a Diophantine equation in k + 1 variables.
Observe that a linear congruence equation either has no solution or infinitely many solutions. Indeed, if

xi = si, 1 ≤ i ≤ k is solutions of the form

a1x1 + a2x2 + · · · + akxk ≡ b (mod n),

then
xi = si + qn, 1 ≤ i ≤ k

is also a solution for all q ∈ Z. This implies that the corresponding Diophantine equation also either has no
solution or infinitely many solutions.

Remark: When writing the solutions of a linear congruence equation ax ≡ b (mod n), we typically either
write all solutions in the form

x ≡ s (mod n)
or we say that s is the unique solution modulo n.

THEOREM 15.1

Let a, b ∈ Z and n ∈ Z+. Let (a, n) = d and consider the linear congruence

ax ≡ b (mod n).

If d | b, then the linear congruence has no solution. If d | b, then the linear congruence has exactly d distinct
solutions modulo n.

Proof: Solving the congruence ax ≡ b (mod n) is equivalent to solving the linear Diophantine equation
ax + ny = b for some y. If d ∤ b, then the Diophantine equation has no solution, so the congruence has no
solution either. If d | b, then by Theorem 1 (Lecture 5), the solution of the Diophantine equation take the
form

x = x0 − n

d
t, y = y0 + a

d
t,

where (x0, y0) is any particular solution (obtained from the Euclidean algorithm, for instance).
We need to show that of these infinitely many solutions, there are exactly d distinct solutions mod n.
Suppose two solutions of this form are congruent mod n, that is,

x0 − n

d
t1 ≡ x0 − n

d
t2 (mod n).
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Then,
n

d
t1 ≡ n

d
t2 (mod n).

Now,
(

n
d , n

)
= n

d , so by Proposition 3 (Lecture 10), we can divide this congruence by n
d to obtain

t1 ≡ t2 (mod d).

Likewise, suppose t1 ≡ t2 (mod d). This means that t1 and t2 differ by a multiple of d, that is,

t1 − t2 = kd.

So,
n

d
t1 − n

d
t2 = n

d
kd = nk.

This implies that
n

d
t1 ≡ n

d
t2 (mod n).

By Corollary 1 (Lecture 10),
x0 − n

d
t1 ≡ x0 − n

d
t2 (mod n).

We have proven that two solutions of the above form are equal mod n if and only if their parameter values
are equal mod d, that is, If we let t range over a complete system of residues mod d, then x0 + n

d t ranges
over all possible solutions mod n. To be very specific, all the solutions mod n are given by

x0 + n

d
t (mod n), t = 0, 1, 2, . . . , d − 1.

COROLLARY 15.1

Let a, b ∈ Z and n ∈ Z+. If (a, n) = 1, then the equation

ax ≡ b (mod n)

has a solution. Moreover, the unique solution modulo n is

x ≡ a−1b (mod n).

EXAMPLE 15.1

Solve 6x ≡ 7 (mod 8).

Solution: Since (6, 8) = 2 | 7, there are no solutions.

EXAMPLE 15.2

Solve 3x ≡ 7 (mod 4).

Solution: Since (3, 4) = 1 | 7, there is exactly one solution modulo 7. We have 3x + 4y = 7 for some
y ∈ Z. By the EEA, we have

ri qi−1 si ti Check

4 1 0
3 1 0 1
1 3 1 −1 4 · 1 + 3 · (−1) = 1
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So, 4 · 7 + 3 · (−7) = 7. Thus, x0 = −7, y0 = 7 is a particular solution. So the general solution is:

x = −7 − 4t, y = 7 + 3t.

The y equation is irrelevant, and the x equation says

x ≡ 1 (mod 4).

EXAMPLE 15.3

Find all solutions of 7x ≡ 5 (mod 39).

Solution: Since (7, 5) = 1 | 39, there is exactly one solution modulo 39. We have 7x + 39y = 5 for some
y ∈ Z. By the EEA, we have

ri qi−1 si ti Check

39 1 0
7 5 0 1
4 1 1 −5 39(1) + 7(−5) = 4
3 1 −1 6 39(−1) + 7(6) = 3
1 3 2 −11 39(2) + 7(−11) = 1

So,

7(−11) + 39(2) = 1
7(−11 · 5) + 39(2 · 5) = 1 · 5
7(−55) + 39(10) = 5.

Thus, x0 = −55, y0 = 10 is a particular solution. The general solution is:

x ≡ x0 + n

d
(0) ≡ −55 ≡ 23 (mod 39).

16 Linear Equations in Zn

Let n be a modulus. We will now turn our attention to equations in Zn. Let a, b ∈ Z, and consider

[a][x] = [b]

in Zn where x ∈ Z is unknown.
EXAMPLE 16.1

The linear equation [2][x] = [3] has only one solution in Z9, namely [x] = [6].

EXAMPLE 16.2

The equation [3][x] = [7] has no solution in Z9.

EXAMPLE 16.3

The linear equation [3][x] = [6] has three solutions in Z9, namely [x] = [2], [x] = [5], and [x] = [8].

Note: From Example 6, we see the principal difference between the linear equations in Zn and the linear
equation cx = d in Z. The only way cx = d can have more than one solution is if c = d = 0.
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It turns out that the tools that we have in our hands right now can help us to solve the linear congruence
easily. Observe that

[a][x] = [b]
[ax] = [b],

and this is the same as solving the linear congruence

ax ≡ b (mod n).

PROPOSITION 16.1

Let a, b ∈ Z, n ∈ Z+ and a ̸= 0. The linear equation [a][x] = [b] in Zn if d = (a, n) | b and total no. of
residue classes satisfying [a][x] = [b] in Zn is equal to d = (a, n).

EXAMPLE 16.4

Solve [440][x] = [80] in Z300.

Solution: By the EEA, the general solution to 440x + 300y = 80 is

x = −8 − 15t, y = 12 + 22t, t ∈ Z.

By evaluating −8 − 15t at t = 0, 1, . . . , 19, we obtain 20 distinct solutions in Z300.

PROPOSITION 16.2

Let a, b ∈ Z, n ∈ Z+, and (a, n) = 1. The linear equation [a][x] = [b] has a unique solution in Zn.

17 Chinese Remainder Theorem
Around the year 300 a solution to the following mathematical problem appeared in the mathematical manual of
Chinese Master, Sun Tzu Suan Ching.

“We have a number of things, but we do not know exactly how many. If we count them by threes, we have
two left over. If we count them by fives, we have three left over. If we count them by sevens, we have two left
over. How many things are there?”

The master was asking us to solve the three simultaneous congruences:

x ≡ 2 (mod 3)
x ≡ 3 (mod 5)
x ≡ 2 (mod 7).

The Chinese remainder theorem tells us that x ≡ 23 (mod 105) is the solution to above problem.
Before proceeding to its statement, let us prove the following result.
PROPOSITION 17.1

Let m and n be integers greater than 1 that are coprime (relatively prime). Then the congruence

a ≡ b (mod mn)

is true if and only if both the congruences

a ≡ b (mod m)
a ≡ b (mod n)
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are true.

Proof: Suppose that a ≡ b (mod mn), then mn | (a − b), so m | (a − b) and n | (a − n). Therefore,
a ≡ b (mod m) and a ≡ b (mod n). On the other hand, suppose that a ≡ b (mod m) and a ≡ b (mod n),
Then, m | (a − b) and n | (a − b). Since (m, n) = 1, mn | (a − b) by Proposition 1 (Lecture 4). Thus,
a ≡ b (mod mn).

THEOREM 17.1: The Chinese Remainder Theorem (CRT)

If m, n are coprime (relatively prime) moduli and a, b ∈ Z, then

x ≡ a (mod m)
x ≡ b (mod n)

have a common solution x0. Furthermore, any two solutions x0, y0 to this pair of congruences must be such
that x0 ≡ y0 (mod mn). The congruences have a unique solution.

Proof: Since m, n are coprime, by Bezout’s Identity there exists x, y ∈ Z such that

mx + ny = 1.

Multiplying both sides by (b − a), we obtain a solution to

mx′ + ny′ = b − a,

where x′ = (b − a)x and y′ = (b − a)y. Thus, a + mx′ = b − ny′ = x0, we see that

x0 ≡ a (mod m)
x0 ≡ b (mod n).

So x0 is a common solution. Now, let y0 be any other solution to the system of congruences, then

x0 ≡ y0 (mod m)
x0 ≡ y0 (mod n).

So, by Proposition 3, we conclude that

x0 ≡ y0 (mod mn).

Lecture 13
1st June

Here is an alternate proof for Chinese Remainder Theorem.
We have that there exists s ∈ Z such that x = ms + a. Substituting this into the other congruence gives

ms + a ≡ b (mod n)
ms ≡ (b − a) (mod n).

Since (m, n) = 1, there exists c ∈ Z such that ms ≡ 1 (mod n). Multiplying by c gives

s ≡ c(b − a) (mod n).

Thus, there exists t ∈ Z such that s = tn + c(b − a).
Hence,

x = m
(
tn + c(b − a)

)
+ a

= mnt + mc(b − a) + a.

41



Thus, the unique solution is
x ≡ mc(b − a) + a (mod mn).

We can easily generalize this result to arbitrary number of coprime moduli.
THEOREM 17.2: Generalized Chinese Remainder Theorem

Suppose n1, . . . , nk are moduli that are pairwise coprime. If a1, . . . , ak ∈ Z then there exists x ∈ Z such that

x ≡ a1 (mod n1),
...

x ≡ ak (mod nk).

Furthermore, if x0 is a solution of these congruences, then the complete solution to all the equations is given
by all

x ≡ x0 (mod n1 · · · nk).

Process to solve systems of congruences with CRT:

• Begin with the largest modulus x ≡ ak (mod nk). Rewrite it as x = nkjk + ak for some jk ∈ Z.

• Substitute the expression for x into the congruence with the next largest modulus, that is,

x ≡ ak−1 (mod nk−1) =⇒ nkjk + ak ≡ ak−1 (mod nk−1).

• Solve this congruence for jk.

• Write the solved congruence as an equation, and then substitute this expression for jk into the equation for
x.

• Continue substituting and solving the congruences until the equation for x implies the solution to the
system of congruences.

EXAMPLE 17.1

Solve the system of congruences:

x ≡ 3 (mod 6)
x ≡ 7 (mod 13).

Solution: First, x ≡ 7 (mod 13) ⇐⇒ x = 13j + 7 for some j ∈ Z. Then,

x ≡ 3 (mod 6) =⇒ 13j + 7 ≡ 3 (mod 6).

Now, solve for j to get: j ≡ 2 (mod 6) ⇐⇒ j = 6k + 2 for some k ∈ Z. Then,

x = 13(6k + 2) + 7 = 78k + 33 =⇒ x ≡ 33 (mod 78).

EXERCISE 17.1

Solve the system of congruences:

x ≡ 6 (mod 11)
x ≡ 13 (mod 16)
x ≡ 9 (mod 21)
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EXERCISE 17.2

Calvin Butterball keeps pet meerkats in his backyard. If he divides them into 5 equal groups, 4 are left
over. If he divides them into 8 equal groups, 6 are left over. If he divides them into 9 equal groups, 8 are
left over. What is the smallest number of meerkats that Calvin could have?

Sometimes we can solve a system even if moduli aren’t relatively prime.
THEOREM 17.3

Consider the system of congruences:

x ≡ a (mod m)
x ≡ b (mod n).

(a) If (m, n) ∤ (a − b), then there are no solutions.

(b) If (m, n) | (a − b), then there is a unique solution mod [m, n].

Proof: Exercise.

18 Euler φ Function and Euler’s Theorem
Firstly, we will study the units for Zn.

DEFINITION 18.1

Let n ≥ 2. An element [a] in Zn is a unit provided the equation [a][x] = [1] has a unique solution. The
integer a representing [a] is then called unit modulo n. The unique [x] is called the inverse of [a] in Zn.
The set of all units of Zn is denoted by Z∗

n.

Remark: Proposition 2 (Lecture 12) tells the ways to think about units. An element [a] ∈ Zn is unit if and
only if a is coprime with n.

PROPOSITION 18.1

If p is a prime and [a] ̸= 0 in Zp, then [a] is a unit. In other words, every non-zero element of Zp is a unit.

The importance of Proposition 1 lies in the fact that Zp behaves just like the well understood sets of numbers
Q, R, C. Namely, Zp admits addition, subtraction, multiplication, and division by everything except zero. Indeed,
if [a] ̸= 0 in Zp, then [a][x] = [b] always has a solution. So we can divide. Systems that admits all four of the
arithmetic operation are usually called fields.

PROPOSITION 18.2

Let n ≥ 2. Then,

i. The product of a unit is another unit, that is, if [a], [b] ∈ Z∗
n, then [a][b] ∈ Z∗

n.

ii. The product of units is associative, that is, ([a][b])[c] = [a]([b][c]) for all [a], [b], [c]Z∗
n.

iii. The residue class [1] is always a unit, that is, [1] ∈ Z∗
n.

iv. The inverse of a unit is also a unit, that is, if a ∈ Z∗
n and x ∈ Z∗

n is a unique residue class that gives
[a][x] = [1], then [x] ∈ Z∗

n. The product of units is commutative, that is, [a][b] = [b][a] in Z∗
n.

Any set that enjoys the five properties of Proposition 2 is called an Abelian Group.
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EXAMPLE 18.1

Compute Z∗
10 and construct its multiplication table.

Solution: The integers that are coprime to 10 are 1, 3, 7, and 9. Thus, Z∗
10 = {[1], [3], [7], [9]} and its

multiplication table is TODO.

Lecture 14
3rd June

As you may have noticed already, the condition that numbers are relatively prime is useful and interesting. So, it
should not be surprising that there are times when it is useful to restrict a complete residue system modulo n to
just the numbers which are relatively prime to n.

DEFINITION 18.2

Let φ(n) denote the number of integers m such that 0 ≤ m < n and (m, n) = 1. The function φ is called
the Euler’s totient function.

EXAMPLE 18.2

Find φ(18).

Solution: Numbers from 0 to 17 that are coprime with 18 are 1, 5, 7, 11, 13, 17. So, φ(18) = 6.

EXAMPLE 18.3

Find φ(101).

Solution: Since 101 is itself prime, the full list of numbers that are coprime with 101 are 1, 2, 3, . . . , 100.
Thus, φ(101) = 100.

Remark: For any prime p, the numbers 1, 2, . . . , (p − 1) are coprime with p. Therefore, φ(p) = p − 1.
THEOREM 18.1: Euler’s Theorem

If [a] ∈ Z∗
n, then [a]φ(n) = [1].

Proof: Let k = φ(n). Let [u1], . . . , [uk] be the complete list of residues of Z∗
n. Form a new list

[a][u1], . . . , [a][uk].

Since Z∗
n is a group, this list of residues is also in Z∗

n. Furthermore, no element appears in this list twice,
so if [a][ui] = [a][uj ] for some i ̸= j, then [ui] = [uj ] by cancelling the unit [a]. Hence, the second list is a
permutation of the original list.
It follows that the product of residues in the first list equals to the product of residues in the second list.
After all, the two lists contain the same residues, only written in a different order. Thus, we obtain

[u1][u2] · · · [uk] = ([a][u1]) · · · ([a][uk]).

Now, we can cancel the unit element [u1] · · · [uk] and conclude that [a]φ(n) = [1].

In the language of congruences, Euler’s Theorem translates to

aφ(n) ≡ 1 (mod n)
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for any integer that is invertible modulo n, that is, (a, n) = 1. In other words, if a is coprime with modulus n,
then

aφ(n) − 1
n

∈ Z.

EXAMPLE 18.4

Prove 6231222 ≡ 1 (mod 1223).

Solution: φ(1223) = 1222 and (1223, 623) = 1. Hence, by Euler’s Theorem 6231222 ≡ 1 (mod 1223).

When the modulus is a prime, say p, we know that φ(p) = p − 1. Thus, Euler’s Theorem specializes to another
famous result attributed by Fermat.

THEOREM 18.2: Fermat’s Little Theorem

If p is a prime and p ∤ a for p ∈ Z∗
n, then

[a]p−1 = [1].

In other words,
ap−1 ≡ 1 (mod p).

COROLLARY 18.1: Fermat Variant

If p is a prime and a ∈ Z, then
ap = a (mod p).

Proof: If p ∤ a, then ap−1 ≡ 1 (mod p) by Fermat’s Theorem. Multiplying by a to get ap ≡ a (mod p). On
the other hand, if p | a, then a ≡ 0 (mod p), in which case it is obvious that

ap ≡ 0p ≡ 0 ≡ a (mod p).

So the result holds for all a ∈ Z.

19 Pseudoprimes
The converse of Fermat’s Little Theorem is not true in general, that is, if there exists a such that an−1 ≡ 1 (mod n),
then we can not infer that n is prime.

DEFINITION 19.1

A number n that is composite and satisfies an−1 ≡ 1 (mod n) is called a Fermat pseudoprime to base a.
In the special case of a = 2, it is sometimes called the Poulet number.

EXAMPLE 19.1

The following table gives us the first Fermat pseudoprime to some small bases a:

a Fermat pseudoprime

2 341, 561, 645, 1105, 1387, 1729, 1905
3 91, 121, 286, 671, 703, 949, 1105, 1541, 1729
4 15, 85, 91, 341, 435, 561, 645, 703
5 4, 124, 217, 561, 781, 1541, 1729, 1891

The first example of even pseudoprime (n = 161038) to the base 2 was given by Lehmer in 1950.
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EXAMPLE 19.2

Prove that 341 is a Fermat pseudoprime to the base 2.

Solution: We want to show that 2340 ≡ 1 (mod 341). Note that 341 = 11 × 31. By FLT, 210 ≡ 1 (mod 11).
Thus,

2340 ≡ (210)34 ≡ 134 ≡ 1 (mod 11).

Thus, 11 | (2340 − 1). Also, 25 ≡ 32 ≡ 1 (mod 31). So,

2340 ≡ (25)68 ≡ 1 (mod 31).

Thus, 31 | (2340 − 1). So, by Proposition 1 (Lecture 4), 341 | (2340 − 1).

EXERCISE 19.1

Show that 341 is not a Fermat pseudoprime.

Solution: We want to show that 3340 ̸≡ 1 (mod 341). Note that 341 = 11 × 31. By FLT, 310 ≡ 1 (mod 11).
Thus, 3340 = (310)34 ≡ 134 ≡ 1 (mod 11). So we need to show that 3340 ̸≡ 1 (mod 31). Note that
340 = 30 × 11 + 10 and by FLT 330 ≡ 1 (mod 31).

3340 ≡ (311)30310 ≡ 130310 ≡ 310 (mod 31).

So, 32 ≡ 9 (mod 31), 33 ≡ 27 ≡ −4 (mod 31), 34 ≡ 81 ≡ 19 (mod 31), 36 ≡ (33)2 ≡ (−4)2 ≡
16 (mod 31). Therefore,

310 ≡ 36 · 34 ≡ 16 · 19 ≡ 304 (mod 31) ≡ 25 (mod 31).

Note that 3340 ≡ 25 ̸≡ 1 (mod 31).

20 Polynomial Congruence
We have seen how to solve linear congruences ax ≡ b (mod n). What about polynomial congruences? These, of
course, are also important in number theory.

We first note that there are some immediate differences from what we are used to with solving polynomials
over R.

For example, we know the polynomial f(x) = x2 + 1 has no roots over R, but

x2 + 1 ≡ 0 (mod 5)

has x = 2 and x = 3 as solutions.
Also, we are used to dth degree polynomials having exactly d roots, but

x2 + x ≡ 0 (mod 6)

has four distinct roots modulo 6, namely x = 0, 2, 3, 5.
The Chinese Remainder Theorem can also be utilized to solve polynomial congruences.
DEFINITION 20.1

Let d be a positive integer and consider a polynomial

f(x) = cdxd + · · · + c1x + c0,

where c0, . . . , cd ∈ Z and cd ̸= 0. Then the congruence of the form f(x) ≡ 0 (mod n) is called a
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polynomial congruence.

Goal: Find all x ∈ Z which satisfy the above congruence.

Note that if we replace ci with [ci], then we reduce the polynomial from Z to Zn. Solving the above congruence
is equivalent to solving f([x]) = [0] in Zn. If such an equation is satisfied by some residue class [x0], we say that
[x0] is a root of f(x) in Zn.

Lecture 15
6th June

THEOREM 20.1

If f(x) is a polynomial with integer coefficients and f(a) ≡ 0 (mod n), then there exists a polynomial g(x)
with integer coefficients such that f(x) ≡ (x − a)g(x) (mod n).

Proof: Using Polynomial division, we can divide f(x) by (x − a) to get

f(x) = (x − a)g(x) + b, b ∈ Z.

Substitute a to get f(a) = b. Thus,
b ≡ f(a) ≡ 0 (mod n).

Hence, f(x) ≡ (x − a)g(x) (mod n).

EXAMPLE 20.1

Factor f(x) = x2 + 1 (mod 5).

Solution: We saw that x = 2 is a root of f(x) modulo 5. Using long division, we have x2 + 1 =
(x − 2)(x + 2) (mod 5). Alternatively, observe that

x2 + 1 ≡ x2 − 4 ≡ (x − 2)(x + 2) (mod 5).

PROPOSITION 20.1

Let f(x) be a polynomial with integer coefficients. Let m and n be coprime moduli.

f(x) ≡ 0 (mod mn) ⇐⇒ f(x) ≡ 0 (mod m) ∧ f(x) ≡ 0 (mod m).

Proof: Similar to the proof of Proposition 3 (Lecture 12).

If n = pe1
1 · · · pek

k is the prime factorization of n, and x1, . . . , xk ∈ Z satisfy

f(xi) ≡ 0 (mod pei
i ), i = 1, . . . , k,

then we can find x such that x ≡ xi (mod pei
i ) for all i using the GCRT, but then such an x would satisfy

f(x) ≡ 0 (mod pei
i ) for all i, and so f(x) ≡ 0 (mod n). It follows that if each congruence f(x) ≡ 0 (mod psi

i )
has a solution si, then f(x) ≡ 0 (mod n) has s1 · · · sk solutions by the GCRT.

Now, we would show that a polynomial congruence f(x) ≡ 0 (mod p) has at most d solutions, where d is the
degree of f(x).

PROPOSITION 20.2: Lagrange’s Theorem

If p is a prime and f(x) is a non-zero polynomial of degree d modulo p, then f(x) ≡ 0 (mod p) has at most d
distinct roots modulo p.
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Proof: Omitted.

EXAMPLE 20.2

Solve the polynomial congruence:

x49 + 2x33 + 24 ≡ 0 (mod 119).

Solution: Note that 119 = 7 × 17. So by Proposition 1, there is a one-to-one correspondence between the
roots of the above congruence and the roots to the system of congruences

x49 + 2x33 + 24 ≡ 0 (mod 7)
x49 + 2x33 + 24 ≡ 0 (mod 17).

Consider n = 7 with φ(7) = 6. Note that x ≡ 0 (mod 7) is not a solution. This means that (x, 7) = 1, so
by Euler’s Theorem

x49 + 2x33 + 24 ≡ x8·6+1 + 2x5·6+3 + 24
≡ x + 2x3 + 24
≡ 2x3 + x + 24 (mod 7).

After evaluating the LHS at x = 1, . . . , 6, we see that the only solutions are

x ≡ 2 (mod 7), x ≡ 6 (mod 7).

Consider n = 17 with φ(17) = 16. Note that x ≡ 0 (mod 17) is not a solution. This means that (x, 17) = 1,
so by Euler’s Theorem

x49 + 2x33 + 24 ≡ x3·16+1 + 2x2·16+1 + 24
≡ x + 2x + 24
≡ 3x + 24 (mod 17).

Thus, we need to solve the congruence

3x + 24 ≡ 0 (mod 17)
3x ≡ 10 (mod 17)

6 · 3x ≡ 6 · 10
x ≡ 9 (mod 17).

By Theorem 1 (Lecture 12), this is the only solution. Since there are two solutions modulo 7 and only one
solution modulo 17, we conclude that there are 2 · 1 solutions modulo 119. These solutions correspond to
two system of equations {

x ≡ 2 (mod 7)
x ≡ 9 (mod 17),

{
x ≡ 6 (mod 7)
x ≡ 9 (mod 17).

x ≡ 2 (mod 17) ⇐⇒ x = 7j + 2 ≡ 9 (mod 17)
7j ≡ 7 (mod 17)
j ≡ 1 (mod 17) ⇐⇒ j = 17k + 1.

So x = 7(17k + 1) + 2 = 119k + 9. Therefore, x ≡ 9 (mod 119) is a solution to the first system. The
second system of congruences can be solved analogously and gives us a solution x ≡ 111 (mod 119).
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EXERCISE 20.1

Find all the roots of f(x) = x3 + 3x2 + 31x + 23 modulo 35.

EXERCISE 20.2

Find all solutions of f(x) = x2 + x modulo 6.

EXAMPLE 20.3

Note that 2x − 4 ≡ 0 (mod 6) has two roots, namely

x ≡ 2 (mod 6), x ≡ 5 (mod 6).

But the degree of the polynomial is 1.

Lecture 16
8th June

21 The Order of Elements in Z∗
n

Let n be a modulus. We already looked at certain kinds of equations in Zn. For example, in Lecture 11, we
learned that neither [x]2 + [y]2 = 3 in Z4 nor [x]2 + [y]2 + [z]2 = 7 in Z8 have solutions. In Lecture 12, we
studied the equation [a][x] = [b] in Zn and saw that the usual application of the Extended Euclidean Algorithm
allows us to produce all of its solutions.

Now, we want to understand how to handle exponential equations in Z∗
n. In these kinds of equations, we

are given residue classes [a] and [b] from Z∗
n, and we want to determine all integer solutions x to the equation

[a]x = [b]. This is essentially the same as solving the congruence

ax ≡ b (mod n).

The problem of finding solutions to these exponential equations is known as the discrete logarithm problem, or
DLP.

EXAMPLE 21.1

We already saw an example of an exponential equation in Z∗
n, namely

ax ≡ 1 (mod n).

According to Euler’s Theorem, this equation always has a non-zero solution whenever a and n are coprime.
In particular, any x ≡ 0 (mod φ(n)) satisfies the above congruence, for if x ≡ φ(n)k for some integer k,
then

ax ≡ aφ(n)k ≡ (aφ(n))k ≡ 1k ≡ 1 (mod n).

However, we do not know whether there are no other solutions to this equation. Depending on the choice
of a, there might exist other solutions as well.

In order to understand how solutions to ax ≡ b (mod n) look like, we need to understand certain fundamental
properties of group units in Z∗

n.
DEFINITION 21.1

If a ∈ Z∗
n, the order of a is the smallest exponent k ≥ 1 such that [a]k = 1. The order is denoted by

k = ord(a).
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EXAMPLE 21.2

The order of [5] in Z∗
13 is 4. Indeed, [5]4 = [1].

From Euler’s Theorem, it follows that for all a ∈ Z∗
n, it is the case that ord(a) ≤ φ(n). In fact, a much stronger

result holds.
PROPOSITION 21.1

Let a ∈ Z, n ≥ 2, and (a, n) = 1. A positive integer m satisfies am ≡ 1 (mod n) if and only if ord(a) | m.

Proof: By the Division Algorithm, we have

m = kq + r where 0 ≤ r < k.

Then, since ak ≡ 1 (mod n), we obtain

1 ≡ am ≡ akq+r ≡ (ak)qar ≡ 1qar ≡ ar (mod n).

Since k is the order of a congruence modulo n, it must be the case r = 0. Hence, k | m.
On the other hand, let m = kq for some q. Then,

am ≡ akq ≡ (ak)q ≡ 1q ≡ 1 (mod n).

COROLLARY 21.1

If a ∈ Z, n ≥ 2, and (a, n) = 1, then ord(a) | φ(n).

Proof: By Euler’s Theorem, aφ(n) ≡ 1 (mod n). So by Proposition 1, we have ord(a) | φ(n).

Let D be the set of positive divisors of φ(n). By Corollary 1, to find order of an a ∈ Z modulo n, we just
need to find the smallest element of D such that ad ≡ 1 (mod n). Thus, the result greatly narrows down which
powers we have to check.

EXAMPLE 21.3

Find the order of 3 and 9 modulo 17.

Solution: For n = 17, φ(17) = 16. The complete list of positive divisors of 16 are D = {1, 2, 4, 8, 16}. The
smallest d satisfying 3d ≡ 1 (mod 17) is the order of 3 modulo 17. Thus,

31 ≡ 3 (mod 17)
32 ≡ 9 (mod 17)
34 ≡ 92 ≡ 81 ≡ −4 (mod 17)
38 ≡ (−4)2 ≡ 16 ≡ −1 (mod 17)

316 ≡ (−1)2 ≡ 1 (mod 17).

Thus, ord(3) = 16.
For order of 9,

91 ≡ 9 (mod 17)
92 ≡ 81 ≡ −4 (mod 17)
94 ≡ (−4)2 ≡ 16 ≡ −1 (mod 17)98 ≡ (−1)2 ≡ 1 (mod 17).

Thus, ord(9) = 8.
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EXERCISE 21.1

Can we find the order of 4 in modulo 6? Find the order of 5 in modulo 6.

Proposition 1 allows us to clarify all solutions to the exponential congruence

ax ≡ b (mod n) where (a, n) = 1 = (b, n).

PROPOSITION 21.2

Let a, b ∈ Z, n ∈ Z+, and (a, n) = 1 = (b, n). If x is a solution to the congruence ax ≡ b (mod n), then all
solutions x′ satisfy

x ≡ x′ (mod φ(n)).

Proof: Let x be a solution to ax ≡ b (mod n), and let k = ord(a). By the Division Algorithm, we have

x = kq + r where 0 ≤ r < k.

But then,
ax ≡ akq+r ≡ (ak)qar ≡ 1qar ≡ ar (mod n).

Thus, WLOG we may assume 0 ≤ x < k.
Now, suppose there exists some other x′ such that ax′ ≡ b (mod n). Once again, WLOG, we may assume
that 0 ≤ x ≤ x′ < k. But then,

ax ≡ b ≡ ax′
(mod n) =⇒ ax′−x ≡ 1 (mod n),

since 0 ≤ x′ − x < k and k is the order of a. So, we have x′ − x = 0. Therefore, all solutions x′ to
ax ≡ b (mod n) satisfy x′ ≡ x (mod ord(a)).

EXAMPLE 21.4

(a) Compute all the solutions to the exponential equation 3x ≡ 1 (mod 17).

(b) Compute all the solutions to the exponential equation 9x ≡ 1 (mod 17).

PROPOSITION 21.3

If a ∈ Z, n ∈ Z, and (a, n) = 1, then all the numbers

a, a2, a3, . . . , ak = 1

are distinct modulo n.

Proof: Suppose that we have a repetition aj ≡ ai (mod n), where 1 ≤ i < j ≤ k. Thus, aj−i ≡ 1 (mod n).
Since 1 ≤ j − i ≤ k, we contradict the minimality of k.

To understand further what Proposition 3 is saying, it is worth looking at some examples.
EXAMPLE 21.5

For n = 19, and a = 2, we have ord(2) = 18.

2 22 23 24 25 26 27 28 29 210 211 212 213 214 215 216 217 218

2 4 8 16 13 7 14 9 18 17 15 11 3 6 12 5 10 1

Find the order of 22, 24, 25 (mod 19).
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Lecture 17
10th June

THEOREM 21.1

(
a ∈ Z ∧ n ∈ Z≥1 ∧ (a, n) = 1

)
=⇒

(
ord(am) = ord(a)

(ord(a), m)

)

Proof: Let ord(am) = ℓ. We will show that ℓ = k
(k,m) , where k = ord(a). Note that

aℓm ≡ (am)ℓ ≡ 1 (mod n).

Thus, by Proposition 1 (Lecture 16), k | ℓm. Hence, there exists q ∈ Z such that ℓm = kq, but then

ℓ
m

(k, m) = k

(k, m)q.

Hence, k
(k,m) | ℓ m

(k,m) , which implies that
(

m
(k,m) , k

(k,m)
)

= 1 by Proposition 2 (Lecture 3). It follows from
Proposition 2 (Lecture 4) that

k

(k, m) | ℓ.

On the other hand, we have
(am)

k
(k,m) ≡ (ak)

m
(k,m) ≡ 1 (mod n).

Thus, by Proposition 1 (Lecture 16), ℓ | k
(k,m) . Thus, we conclude that ℓ = k

(k,m) ; that is,

ord(am) = ord(a)
(ord(a), m) .

COROLLARY 21.2(
a ∈ Z ∧ n ∈ Z≥2 ∧ k ∈ Z≥1 ∧ (a, n) = 1

)
=⇒

(
ord(ak) = ord(a) ⇐⇒

(
k, ord(a)

)
= 1

)
.

PROPOSITION 21.4

Define ord(a) = k and ord(b) = ℓ, where a ∈ Z ∧ n ∈ Z≥2 ∧ (a, n) = 1 = (b, n) ∧ k, ℓ ∈ Z+.

(k, ℓ) = 1 =⇒ ord(ab) = kℓ.

EXERCISE 21.2

Prove Proposition 1.

Lambert was the first to look at primitive roots. In 1769, he conjectured that for any prime p, there was a number
g such that p | (gp−1 − 1), but p ∤ (ge − 1) for any 0 < e < p − 1.

Euler was the first to use the term ‘primitive root’ in 1773 when he tried to prove Lambert’s claim. However,
his proof was not correct. Gauss, in 1801, gave two proofs of the existence of a primitive root for any prime p.

DEFINITION 21.2

An element [a] ∈ Z∗
n is called a primitive root if ord(a) = φ(n). In terms of congruences, let a ∈ Z ∧ n ∈

Z≥2 ∧ (a, n) = 1. If ord(a) = φ(n), then a is called a primitive root of modulo n.

Note that a primitive root modulo n is an element of [a] ∈ Z∗
n whose powers generate all Z∗

n; that is, every
element [b] ∈ Z∗

n can be written as ax (mod n) for some positive x ∈ Z.
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EXAMPLE 21.6

If n = 5, then φ(5) = 4. We see that 2 is the primitive root modulo 5 since

21 ≡ 2 (mod 5)
22 ≡ 4 (mod 5)
23 ≡ 3 (mod 5)
24 ≡ 1 (mod 5).

Thus, ord(a) = 4. For every integer relatively prime to 5, there is a power of 2 that is congruent.
We see that 4 is not a primitive root modulo 5 since

41 ≡ 4 (mod 5)
42 ≡ 1 (mod 5).

Thus, ord(4) = 2. Powers of 4 (mod 5) are only congruent to 1 or 4. There is no power of 4 that is
congruent to 2 or 3.

THEOREM 21.2: Primitive Root Theorem

If p is prime, then there exists a root modulo p.

EXERCISE 21.3

Prove Theorem 2.

EXERCISE 21.4

Find a modulo n where no primitive roots exist.

Let us determine how many primitive roots exists.
PROPOSITION 21.5

If there is a primitive root modulo n, then the total number of primitive roots modulo n is φ
(
φ(n)

)
.

Proof: Let a be the primitive root modulo n, so that ord(a) = φ(n). Thus,

a, a2, . . . , aφ(n) = 1

are all distinct. So every other integer relatively prime to n is a power of a (mod n). The other primitive
roots are those powers aj in the list for which

ord(aj) = φ(n) = ord(a).

According to Corollary 1, these powers aj , where j from 1 to φ(n) is coprime to φ(n), and there are
precisely φ

(
φ(n)

)
.

Lecture 18 (Part I)
13th June

22 Costas Array
Here is a challenge. Given an n × n array, put dots into the centre of boxes such that

(1) Every row has exactly one dot.
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(2) Every column has exactly one dot.

(3) If you draw all n(n−1)
2 lines segments, then any two lines that have the same slope, must have different

length.

A grid satisfying all three conditions is called a Costas array.
The third condition is equivalent to: when a Costas array and a replica of itself are overlaid with an offset of

an integer number of row and columns shifts such that 1 overlays another 1, then that will be the only 1s that
overlay. In Costas array, we represent each entry either by the 1 for the dot or by 0 for the absence of dot.

EXAMPLE 22.1

A Costas array for n = 5 is:
1 0 0 0 0
0 0 0 1 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 1

EXERCISE 22.1

Draw a Costas array for n = 3, 4, 6.

John Costas and Edgar Gilbert independently introduced Costas arrays in 1965. To get a Costas array for
n = p − 1, where p is prime, we will use the following algorithm. Gilbert at that time had discovered the Welch
algorithm which was rediscovered by Lloyd Welch in 1982.

Welch Algorithm: Let a be a primitive root of p. Define the array Ai,j by

Ai,j =
{

1 ai ≡ j (mod p)
0 otherwise.

EXAMPLE 22.2

Draw a Costas array for n = 4.

Solution: We have p = 5 and a primitive root of 5 is a = 3. So, we have

31 ≡ 3 (mod 5) =⇒ A1,3 = 1
32 ≡ 4 (mod 5) =⇒ A2,4 = 1
33 ≡ 2 (mod 5) =⇒ A3,2 = 1
34 ≡ 1 (mod 5) =⇒ A4,1 = 1.

Therefore, the Costas array for n = 4 is:
0 0 1 0
0 0 0 1
0 1 0 0
1 0 0 0

EXERCISE 22.2

Draw a Costas array for n = 10.
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23 Indices
The facts that every prime p has a primitive root combined with the fact that for any primitive root a of p, we
have that

a, a2, . . . , ap−1 = 1

gives every number 1, 2, . . . , p − 1 exactly once turns out to be rather useful.
Consider the powers of the primitive root 2 modulo 11:

21 22 23 24 25 26 27 28 29 210

2 4 8 5 10 9 7 3 6 1

Now, rewrite this by ordering the second row as:

210 21 28 22 24 29 27 23 26 25

1 2 3 4 5 6 7 8 9 10

We can rewrite the first rows by just indicating the powers as:

10 1 8 2 4 9 7 3 6 5
1 2 3 4 5 6 7 8 9 10

If we now think about exponent laws, we get that addition of numbers in the first row, say 2 + 4 = 6, corresponds
to multiplication modulo 11 in the bottom row 4 · 5 = 9.

Gauss defined ‘index’ in 1801 to solve polynomial congruences. Jacobi published a table of indices for all
primes powers less than 1000 in 1839.

DEFINITION 23.1

Let a be a primitive root of p, where p is prime. If g ≡ aℓ (mod p), then we say that ℓ is the index of g
modulo p to the base a, and we write it as:

ℓ = Ia(g).

From the above example,

g 1 2 3 4 5 6 7 8 9 10
I2(g) 10 1 8 2 4 9 7 3 6 5

EXERCISE 23.1

Write an index table of g modulo p = 5 to the base a = 3, and an index table of g modulo p to the base
a = 2.

LEMMA 23.1

Let a be a primitive root of p, where p is prime.

ab ≡ ac (mod p) ⇐⇒ b − c ≡ 0 (mod p − 1).
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EXERCISE 23.2

Consider the following table of indices of g modulo 37 to the base 2:

g 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
I2(g) 36 1 26 2 23 27 32 3 16 24 30 28 11 33 13 4 7 17

g 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
I2(g) 35 25 22 31 15 29 10 12 6 34 21 14 9 5 20 8 19 18

Compute I2(8) + I2(9), I2(8 · 9), 2 I2(3), and I2(9).

NOTE: When calculating I2(8) + I2(9), make sure that you are reducing modulo p − 1.
Thus, we can see that indices behave a lot like logarithms (we must be very careful about the modulus

though!). We have the following properties.
PROPOSITION 23.1

If a is a primitive root of p, where p is prime, then we have

(1) x ≡ y (mod p) ⇐⇒ Ia(x) ≡ Ia(y) (mod p − 1).

(2) Ia(ar) ≡ r (mod p − 1).

(3) Ia(a) = 1.

(4) Ia(x · y) ≡ Ia(x) + Ia(y) (mod p − 1).

(5) Ia(xk) ≡ k Ia(x) (mod p − 1).

EXAMPLE 23.1

Use the table of indices of g modulo 37 to the base 2 to solve the following:

(1) x ≡ 3 · 5 (mod 37).

(2) x ≡ 33 · 29 (mod 37).

(3) x ≡ 1712 (mod 37).

(4) 19x ≡ 23 (mod 37).

Solution:
(1) I2(3) = 26 and I2(5) = 23, so we get

I2(3 · 5) ≡ I2(3) + I2(5) ≡ 26 + 23 ≡ 13 (mod 36).

I2(x) = 13 =⇒ x = 15.

(2) I2(1712) ≡ 12 I2(17) ≡ 12(7) ≡ 12 (mod 36). Now, I2(x) = 12 =⇒ x = 26

(3) Note that

19x ≡ 23 (mod 37)
I2(19x) ≡ I2(23) (mod 36)

I2(19) + I2(x) ≡ 15 (mod 36)
35 + I2(x) ≡ 15 (mod 36)

I2(x) ≡ −20 (mod 36)
≡ 16 (mod 36)
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I2(x) = 16 =⇒ x = 9.

Note: The Index is also known as discrete logarithm because the properties of indices and logarithm are
same. Originally tables of indices, just like logarithm tables, were used to make numerical calculations much
faster.

However, in recent years, indices have been revived for use in cryptography. In particular, if we are given a
large prime p and two numbers a and g modulo p, then it is very difficult to find the exponent k such that

ak ≡ g (mod p).

This is called the discrete logarithm problem. One example of such a system is called the EIGamal cryptosystem.

Week 7
15th June

Midterm.

Lecture 18 (Part II)
17th June

24 An Application to Communications Security
Lecture 19

20th June

Lecture 20
22nd June

25 Quadratic Congruences
Let n ≥ 3 be a modulus and a, b, c ∈ Z. We will now turn our attention to the quadratic congruence

ax2 + bx + c ≡ 0 (mod n),

where a, b, c ∈ Z, n ∤ a, and x is unknown modulo n.
In terms of equations in Zn,

[a]x2 + [b]x + [c] = [0],

where [a], [b], [c] ∈ Z, and x is an unknown residue class in Zn.
Note:

(1) For a quadratic congruence ax2 + bx + c ≡ 0 (mod n), we require n ∤ a. Otherwise, the quadratic
congruence collapse to the linear congruence bx + c ≡ 0 (mod n).

(2) For n = 2, the quadratic congruence ax2 + bx + c ≡ 0 (mod n) collapses into a linear congruence. Indeed,
by Fermat’s Invariant (Corollary 1 Lecture 14), x2 ≡ x (mod 2) regardless of x and so

ax2 + bx + c ≡ (a + b)x + c (mod 2).

(3) For simplicity of interpretation, we will assume the n to be prime and denote it by p. If p is an odd prime
(i.e., p ̸= 2), then p−1

2 ∈ Z.

PROPOSITION 25.1

Let p be an odd prime, and a, b, c, ∈ Z with p ∤ a. The quadratic congruence

ax2 + bx + c ≡ 0 (mod p)
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has a solution if and only if the congruence

y2 ≡ b2 − 4ac (mod p)

has a solution. In that case y ≡ 2ax + b (mod p).

Proof:

Proposition 1 tells us that solving the quadratic congruence

ax2 + bx + c ≡ 0 (mod p)

is equivalent to solving a simplifier quadratic congruence

y2 ≡ d (mod p),

where d = b2 − 4ac. The integer d is called the discriminant of the polynomial ax2 + bx + c.
EXAMPLE 25.1

Solve 2x2 + 18x + 3 ≡ 0 (mod 23).

Solution: The discriminant of this quadratic polynomial modulo 23 is

182 − 4(2)(3) ≡ 300 ≡ 1 (mod 23).

According to Proposition 1, we should first solve

y2 ≡ 1 (mod 23).

By inspection, we see that y = 1 and y = 22 are the solutions. According to Proposition 1, we need to
solve

4x + 18 ≡ 1 (mod 23), and 4x + 18 ≡ 22 (mod 23).

Solving them gives
x ≡ 1 (mod 23), and x ≡ 13 (mod 23),

which are the solutions of the given congruence.

In order to find solutions of y2 ≡ d (mod p), we need to understand which residue classes of Zp are squares.
DEFINITION 25.1

Let p be an odd prime. A residue [a] in Zp is called a quadratic residue when

[a] ∈ Z∗
p and [a] = [b]2 for some other residue [b] ∈ Z∗

p.

If no such [b] exists, then [a] is called a quadratic non-residue.
In terms of congruences, an integer a is a quadratic residue modulo p if

(p, a) = 1 ∧ ∃b ∈ Z a ≡ b2 (mod p) ∧ (b, p) = 1.

EXAMPLE 25.2

Find quadratic residues in Z∗
7.
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Solution: Note that

12 ≡ 1 (mod 7)
22 ≡ 4 (mod 7)
32 ≡ 2 (mod 7)
42 ≡ 2 (mod 7)
52 ≡ 4 (mod 7)
62 ≡ 1 (mod 7)

Thus, we can say that integers having quadratic residues modulo 11 are those that are congruent to 1, 2, 4.

EXERCISE 25.1

Determine all quadratic non-residues modulo 17.

PROPOSITION 25.2

Let p be an odd prime. Then, there are exactly p−1
2 quadratic residues modulo p and exactly p−1

2 quadratic
non-residues modulo p.

EXERCISE 25.2

Prove Proposition 1.

Detecting Quadratic Residues with Primitive Roots: Since p is an odd prime, by the Primitive Root Theorem
(Theorem 2 Lecture 17), there exists a primitive root modulo p, say a, and by Proposition 2 (Lecture 17), the
number of such primitive roots is φ(p − 1). Also, the powers

a, a2, . . . , ap−1

are all distinct modulo p and exhausts Z∗
p. By looking at k, we can decide whether ak is a quadratic residue or

not.
PROPOSITION 25.3

If a is a primitive root modulo p with (a, p) = 1 and ai ≡ aj (mod p), then these exponents will be both even
or both odd.

Proof:

Lecture 21
24th June

For a simpler notation, let’s write QR for a quadratic residue modulo p and NR for a quadratic non residue modulo
p: From the Example 1 (Lecture 20), we see that we have

QR · QR = QR
QR · NR = NR
NR · NR = QR.

Note that quadratic residues are the perfect squares of Z∗
p and you can easily get quadratic residues by squaring

all the elements of Z∗
p.
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PROPOSITION 25.4

If p is an odd prime, then

(1) The product of two quadratic residues modulo p is a quadratic residue modulo p.

(2) The product of a quadratic residue modulo p and a quadratic non-residue modulo p is quadratic
non-residue modulo p.

(3) The product of two quadratic non-residues modulo p is a quadratic residue.

Proof:

What does the multiplication rule of quadratic residues and quadratic non residues remind of you?

1 · 1 = 1
1 · (−1) = −1

(−1) · (−1) = 1.

In 1798, the French Mathematician Adrien-Marie Legendre introduced a handy symbol to mark this distinction.

For an odd prime p, and a ∈ Z with p ∤ a, the Legendre symbol,
(

a

p

)
is defined by

(
a

p

)
=

{
+1, a is a QR modulo p,

−1, a is a NR modulo p.

Note:

(1) Keep in mind that the Legendre symbol is not a fraction, even though it sort of look like one.

(2) 1 is a quadratic residue modulo p for any odd prime p; that is,
(

1
p

)
= 1.

(3) −1 might or might not be a quadratic residue, depending on the p. For example,
(

−1
19

)
= −1 and(

−1
5

)
= 1.

(4) We can rewrite Proposition 1 using the Legendre symbol as(
a

p

)(
b

p

)
=

(
ab

p

)
.

(5) If a ≡ b (mod p), then
(

a

p

)
because the quadratic residue is the same for all congruent integers.

EXERCISE 25.3

Calculate
(

3
13

)
,
(

11
13

)
, and

(
6
17

)
.

The Proposition 1 suggest an Algorithm for calculating the Legendre polynomial
(

a

p

)
. First, we need to find the

primitive root b modulo p and then determine the parity of x in bx ≡ a (mod p). Euler came up with a much
simpler procedure.
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PROPOSITION 25.5: Euler’s Test

If p is an odd prime and a ∈ Z with p ∤ a, then

a
p−1

2 =
(

a

p

)
(mod p).

Proof:

EXAMPLE 25.3

Does 79 have a quadratic residue modulo 31?

Solution: Note that 31−1
2 = 15 and by Euler’s Test we reduce 7915 (mod 31) (using the double-and-add

algorithm). Note that 15 = 1 + 2 + 4 + 8, and so 1715 = 171 · 172 · 174 + 178. We have

17 ≡ 17, 172 ≡ 10, 174 ≡ 7, 178 ≡ 18 (mod 31).

Thus,
1715 = 17 · 10 · 7 · 18 ≡ 30 ≡ −1 (mod 31).

According to Euler’s test, 79 does not have a quadratic residue modulo 31. In the Language of the Legendre
symbol we have found that (

79
31

)
= −1.

Lecture 22
27th June

COROLLARY 25.1

If p is an odd prime, then (
−1
p

)
=

{
1, p ≡ 1 (mod 4),
−1, p ≡ 3 (mod 4).

Proof:

PROPOSITION 25.6

There are infinitely many primes congruent to 1 modulo 4.

PROPOSITION 25.7

If p is an odd prime, then (
2
p

)
=

{
1, p ≡ 1, 7 (mod 8),
−1, p ≡ 3, 5 (mod 8).

Proof:

EXERCISE 25.4

Using the technique in the proof of Proposition 2, show that 2 does not have a quadratic residue modulo
19.
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Solution: Note that 19 ≡ 3 (mod 8), so
(

2
19

)
= −1 by Proposition 2.

26 The Law of Quadratic Reciprocity

We have solved the problem of finding
(

a

p

)
for a = −1 and a = 2. Unfortunately, our method does for doing

that does not exist for large values of a. We need a fast algorithm for calculating
(

a

p

)
for any integer a and odd

prime p with p ∤ a.
The Law of Quadratic Reciprocity was conjectured by Euler and Legendre in 1744. Gauss, in 1796, was the

first to prove the Law of Quadratic Reciprocity, at the age of 19 and subsequently found at least five other proofs.
He referred it as “The Golden Theorem.” There are now over 240 published proofs (people are still publishing
new proofs).

THEOREM 26.1: Law of Quadratic Reciprocity

If p and q are distinct odd prime numbers, then

(
p

q

)
=


(

q

p

)
, p ≡ 1 (mod 4) ∨ q ≡ 1 (mod 4),

−
(

q

p

)
, p ≡ 3 (mod 4) ∧ q ≡ 3 (mod 4).

The Law of Quadratic Reciprocity can be stated as:(
p

q

)(
q

p

)
= (−1)

p−1
2

q−1
2 .

The proof is quite non-trivial and due to limitations of time we will not present it in class or in lecture notes as
well. For the proof you can see Section 6.4 of “A taste of Number Theory” by Frank Zorzitto.

EXAMPLE 26.1

Calculate
(

7
109

)
.

Solution: (
7

109

)
=

(
109
7

)
109 ≡ 1 (mod 4)

=
(

4
7

)
109 ≡ 4 (mod 7)

=
(

2
7

)(
2
7

)
Legendre symbol is multiplicative

=
(

2
7

)2

= 1.

Thus, 7 is a quadratic residue modulo 109.
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EXAMPLE 26.2

Calculate
(

191
839

)
.

Solution: (
191
839

)
= −

(
839
191

)
191 ≡ 3 (mod 4) ∧ 839 ≡ 3 (mod 4)

= −
(

75
191

)
839 ≡ 75 (mod 191)

= −
(

5
191

)2(
3

191

)
= −

(
5

191

)2(
3

191

)
= −(1)

(
3

191

)
=

(
191
3

)
191 ≡ 3 (mod 4) ∧ 3 ≡ 3 (mod 4)

=
(

2
3

)
191 ≡ 2 (mod 4)

= −1.

Thus, 191 is quadratic non-residue modulo 839.

EXERCISE 26.1

Calculate
(

37603
48611

)
given that 37603 = 31 · 1213.

Solution:(
37603
48611

)
=

(
31

48611

)(
1213
48611

)
Legendre symbol is ×

= −
(

48611
31

)(
48611
1213

)
31 ≡ 3 (mod 4) ∧ 48611 ≡ 3 (mod 4), 1213 ≡ 1 (mod 4)

= −
(

3
31

)(
91

1213

)
48611 ≡ 3 (mod 31), 48611 ≡ 91 (mod 1213)

=
(

31
3

)(
7

1213

)(
13

1213

)
3 ≡ 3 (mod 4) ∧ 31 ≡ 3 (mod 4)

=
(

1
3

)(
1213

7

)(
1213
13

)
1213 ≡ 1 (mod 4)

=
(

2
7

)(
4
13

)
1213 ≡ 2 (mod 7), 1213 ≡ 4 (mod 13)

=
(

2
13

)2
2

7−1
2 ≡ 8 ≡ 1 (mod 7) using Euler’s Test

= (−1)2 13 ≡ 5 (mod 8) using Proposition 25.15
= 1.
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EXAMPLE 26.3

Let p and q be distinct primes such that p ≡ 3 (mod 4) and q ≡ 3 (mod 4). Prove that the equation
x2 − qy2 = p has no integer solution.

Lecture 23
29th June

27 Sum of Squares
Recall that way back in Exercise 5 (Lecture 8) you were asked to make a conjecture to which primes in Z are
also primes in Z[i]. The conjecture is that a prime p ∈ Z is a prime in Z[i] if and only if p cannot be written as a
sum of two squares. We are now finally in a position to figure out which primes can be written as a sum of two
squares.

Look at a few numbers:

1 = 12 + 02

2 = 12 + 12

4 = 22 + 02

5 = 22 + 12

8 = 22 + 22.

Note that 3, 6, and 7 are not expressible in this way.
PROPOSITION 27.1

If p is a Gaussian prime and p | zw for some z, w ∈ Z[i], then p | z or p | w.

THEOREM 27.1

If n ≡ 3 (mod 4), then n is not a sum of two squares.

Proof:

Albert Girard was the first to make the observation, describing all positive integer numbers (not necessarily
primes) expressible as the sum of two squares of positive integers; this was published in 1625. The statement
that every prime p of the form 4n + 1 is the sum of two squares is sometimes called Girard’s theorem. For his part,
Fermat wrote an elaborate version of the statement (in which he also gave the number of possible expressions
of the powers of p as a sum of two squares) in a letter to Marin Mersenne dated December 25, 1640: for this
reason this version of the theorem is sometimes called Fermat’s Christmas theorem:

THEOREM 27.2: Fermat’s Christmas Theorem

If p is a prime such that p ≡ 1 (mod 4), then there exists a, b ∈ Z such that

p = a2 + b2.

Proof:

Now, we know that when p is an odd prime, the p = x2 + y2 has a solution in the positive integers x and y
if and only if p ≡ 1 (mod 4). Notice this also has a solution when p = 2 since 2 = 12 + 12. We would like to
generalize this result to all n ∈ Z+.
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PROPOSITION 27.2

If m, n ∈ Z are expressible as a sum of two squares, then so is mn.

Proof:

THEOREM 27.3

n ∈ Z+ is expressible as sum of two squares if and only if every prime factor which is congruent to 3 (mod 4)
appears with an even power.

Due to time limitations we will not present the proof in class or in these lectures notes. If you would like to
see the proof, see Section 7 in “A Taste of Number Theory” by Frank Zorzitto.

EXAMPLE 27.1

Can we express 490 as a sum of two squares? If yes, then find x, y ∈ Z such that 490 = x2 + y2.

Solution: Note that 490 = 2 · 5 · 72. Since 5 ≡ 1 (mod 4) and 7 ≡ 3 (mod 4) (appears with an even
power), by Fermat’s Christmas Theorem and Theorem 3, 490 is expressible as a sum of squares. Further,

490 = 72 · 5 · 2
= 72 · (22 + 12) · (12 + 12)
= (72 + 02) · (32 + 12)
= 212 + 72.

EXERCISE 27.1

Can we express 584820 = 22 · 34 · 5 · 192 as sum of two squares?

Solution: Since 22 = 4 = 22 + 02, 3 ≡ 3 (mod 4) (appears with an even power; Fermat’s Christmas
Theorem), 5 ≡ 1 (mod 4) (Theorem 3), and 19 ≡ 3 (mod 4) (appears with an even power; Fermat’s
Christmas Theorem), then 584820 is expressible as a sum of squares. Hence,

584820 = 22 · 34 · 5 · 192

= (22 + 02) · (92 + 02) · (22 + 12) · (192 + 02)
= 22 · 92 · 192 · (22 + 12)
= 22 · 92 · 192 · 22 + 22 · 92 · 192 · 12

= 42 · 92 · 192 + 22 · 92 · 192

= (4 · 9 · 19︸ ︷︷ ︸
684

)2 + (2 · 9 · 19︸ ︷︷ ︸
342

)2.

x2 = 342 ∧ y2 = 684 ⇐⇒ 584820 = x2 + y2 for x, y ∈ Z+.

Week 9 | Friday
1st July

Holiday (Canada Day).

Lecture 24
4th July
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28 Multiplicative Functions
In this section, we will derive some formulas for ϕ(n) and show that ϕ(n) has an important property called
multiplicatively. To put this in the proper context, discussion will be made on arithmetic functions, Dirichlet
products, and the Mobius inversion formula.

DEFINITION 28.1

An arithmetic function is a function defined on the positive integers which takes in the real or complex
numbers, that is, a function f : Z+ → C.

For example, f : Z+ → X defined by f(n) = sin(n).
Some important arithmetic functions are:

(1) The constant function defined by C(n) = 1 for all n ∈ Z+.

(2) The indicator function defined by I(n) =
{

1, n = 1,

0, otherwise
for all n ∈ Z+.

(3) The identity function defined by i(n) = n for all n ∈ Z+.

(4) The number of divisors function τ : Z+ → Z+ defined by

τ(n) = the number of positive divisors of n =
∑
d|n

1.

(5) The sum of divisors function σ : Z+ → Z+ defined by

σ(n) = sum of the positive divisors of n =
∑
d|n

d.

(6) For a fixed odd prime p, the Legendre symbol is arithmetic function denoted by λp.

λp(n) =
(

n

p

)
.

(7) The Euler phi function φ is an arithmetic function defined as

φ(n) = the number of units of Zn.

Also, φ(n) = the number of integers from 1 to n that are coprime to with n.

DEFINITION 28.2

An arithmetic function f is known as a multiplicative function if

f(mn) = f(m)f(n) ∀m, n ∈ Z+ ∧ (m, n) = 1.

The constant function C, indicator function I, and the identity function i are multiplicative.
PROPOSITION 28.1

Let f and g be the multiplicative functions. Then,

i. f(1) = 1.

ii. The function f is fully determined by its values at prime powers.

iii. fg is also multiplicative.
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Proof: Directly follows from Definition 2.

DEFINITION 28.3

If f is an arithmetic function, then the divisor sum of f is defined as

[D(f)](n) =
∑
d|n

f(d),

where
∑

d|n means to sum over all the positive divisors of a positive integer n. The divisor sum of f is
evaluated at a positive integer n takes the positive divisors of n, plugs them into f , and adds the results.
A similar convention will hold for products.

Remark: Notice the divisor sum is a function which takes an arithmetic function as input and produces an
arithmetic function as output.

EXAMPLE 28.1

Suppose f : Z+ → Z+ defined by f(n) = n2. Compute [D(f)](12).

Solution: [D(f)](n) is the sum of divisor of n, so

[D(f)](12) =
∑
d|12

n2 = 12 + 22 + 32 + 42 + 62 + 122 = 210.

PROPOSITION 28.2

If m and n are coprime positive integers, then every positive divisor d of their product mn comes from a unique
pair a and b such that

a | m ∧ b | n ∧ ab = d.

Proof:

THEOREM 28.1

If f is a multiplicative function D(f) defined by

[D(f)](n) =
∑
d|n

f(d)

is also multiplicative.

Proof:

PROPOSITION 28.3

The functions τ and σ are multiplicative functions.

Proof:

Lecture 25
6th July
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THEOREM 28.2

The Euler function φ is multiplicative, that is,

φ(mn) = φ(m)φ(N) ∀m, n ∈ Z+ ∧ (m, n) = 1.

Proof:

Formula for τ(n)
We can get a formula for τ(n) assuming τ is multiplicative and considering the unique factorization of n into
primes. If n = pe, then τ(n) = e + 1. Therefore, if n = pe1

1 · · · pek

k , then

τ(n) = (e1 + 1)(e2 + 1) · · · (ek + 1)

since τ is multiplicative.

Formula for σ(n)
We can get a formula for σ(n) assuming σ is multiplicative and considering the unique factorization of n into
primes. If n = pe, then

σ(n) = 1 + p + p2 + · · · + pe = pe+1 − 1
p − 1 .

If n = pe1
1 · · · pek

k , then

σ(n) =
(

pe1+1
1 − 1
p1 − 1

)
· · ·

(
pek+1

k − 1
pk − 1

)
since σ is multiplicative.

Formula for φ(n)
We can get a formula for τ(n) assuming φ is multiplicative and considering the unique factorization of n into
primes. If n = pe, then the only numbers not coprime to pe are the multiples of p, and there are pe

p = pe−1 of
these. Thus,

φ(pe) = pe − pe−1 = pe

(
1 − 1

p

)
.

If n = pe1
1 · · · pek

k , then

φ(n) = n

(
1 − 1

p1

)
· · ·

(
1 − 1

pk

)
= n

k∏
i=1

(
1 − 1

pk

)
.

EXAMPLE 28.2

Find φ(20).

Solution: Since 20 = 22 · 5, we have

φ(20) = 20
(

1 − 1
2

)(
1 − 1

5

)
= 8.

Theorem 1 (Lecture 24) applied to Euler’s function gives us a nice non-obvious fact.
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PROPOSITION 28.4

For every positive integer n, ∑
d|n

φ(d) = n.

Proof:

DEFINITION 28.4

If f and g are arithmetic functions, their Dirichlet product is

(f ∗ g)(n) =
∑
d|n

f(d)g
(

n

d

)
.

PROPOSITION 28.5

Let f , g, and h be arithmetic functions. Then,

(a) f ∗ g = g ∗ f .

(b) (f ∗ g) ∗ h = f ∗ (g ∗ h).

(c) f ∗ I = I ∗ f = f .

(d) f ∗ C = D(f) = C ∗ f .

Proof:

PROPOSITION 28.6

The Dirichlet product of two multiplicative functions is again multiplicative.

DEFINITION 28.5

The Mobius function µ is the arithmetic function defined by

µ(n) =


1, n = 1,

(−1)k, n = p1p2 · · · pk (i.e., n is a product of distinct primes),
0, otherwise (i.e., a prime repeats itself in the factorization of n).

For example,

• 28 = 22 · 7, so µ(28) = 0.

• 46 = 2 · 23, so µ(46) = (−1)2 = 1.

• 30 = 2 · 3 · 5, so µ(30) = (−1)3 = −1.

EXERCISE 28.1

Construct a table of values of µ(n) for n = 1, 2, . . . , 12. Further, calculate
∑

d|n µ(d) for n = 1, 2, . . . , 12.

EXERCISE 28.2

Prove that the Mobius function is multiplicative.
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