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LEcCTURE 1
9th January

1 Lecture 1: Review of Linear Algebra

DEFINITION 1.1: Vectors in R™

For any positive integer n, we define n-dimensional Euclidean space R™ by

A
R™ = T1,...,Tn €ER
Tn
If ¥ € R”, then there exists x1, ..., x, € R such that
Ha
N
Tr =
T

DEFINITION 1.2: Matrix

An n x m matrix A is a rectangular array with n rows and m columns. We denote the entry in the i
row and j™ column by a;; or (A);;. That is,

aix aiz -+ Qi ot QAim

Qg1 Q22 - G5 - G2m
A =

ail aiQ .« e a’ij .« e a/im

Gp1 QAp2 -+ Qpj - Gpm

The set of all n x m matrices with real entries is denoted by R™*™.,

DEFINITION 1.3: Transpose

Let A € R™"*™, We define the transpose of A, denoted A’, to be the m x n matrix whose ij® entry is
the ji™ entry of A. That is,

(AD)ij = (A)ji-
DEFINITION 1.4: Square Matrix

An n x n matrix is called a square matrix.

DEFINITION 1.5: Symmetric Matrix

A matrix is called symmetric if A’ = A.

DEFINITION 1.6: Diagonal Matrix
An n x n matrix D is said to be a diagonal matrix if d;; = 0 for all  # j. We denote a diagonal matrix by

D= diag(dhdg, oo ,dn)



DEFINITION 1.7: Identity Matrix

The n x n matrix I (or I,,) such that (I);; for 1 <+ < n, and (I);; = 0 whenever i # j is called the identity
matrix.

DEFINITION 1.8: Upper Triangular, Lower Triangular

An n x m matrix U is said to be upper triangular if u;; = 0 whenever ¢ > j. An n x m matrix L is said
to be lower triangular if /;; = 0 whenever i < j.

* Upper triangular:

Urr U112 - Uim
U= 0 w2
B U(n—1)m
0 0 Unm,
* Lower triangular:
liu O 0
L — by Lo
: e 5 0
Enl te En(m—l) Enm

DEFINITION 1.9: Vector/Matrix of 1’s and 0’s

Vector of 1’s:

1
i=1|:]erm
1
Matrix of 1’s:
|
J=|: .. | eR™™
|
Zero vector:
0
0=|:]|erm
0
Zero Matrix:
0 --- 0
O=|: . |eR™"
0 --- 0

DEFINITION 1.10: Matrix Mapping

If A is an n X m matrix, then we can define a function 7: R™ — R" by T(7) = A7 called a matrix
mapping. For this mapping, we define:

¢ Kernel R
Ker(T)={Z e R" |AZ = 0}.



¢ Image
Image(T) = {AZ e R" | 7 e R™}.

* Rank
rank(7") = dim(Image(T)).

* Nullity
nullity (T') = dim(Ker(7T)).

REMARK — Rank-Nullity Theorem

rank (7)) + nullity (T') = m.

REMARK
Note that .
ail -0 Qim ai
ap1 < Qpm a)n
Clearly, the image of T is the space generated by @', ..., @™. Therefore,
rank(7") = column rank of A.
THEOREM 1.1

A and A’ have the same column rank.

Proof: Let A — T, A’A - T,and A’ — 1.
(1) Let @ € Ker(T), so we have AZ = 0 = A’AZ = 0. Hence, ¥ € Ker(T). So, Ker(T) C

Ker(T).
(2) AAT =0 = Z'A/AT =0 — (AZ)ATZ =0 = AT = 0. So, Ker(T) C Ker(T).

Therefore, rank(7T') = rank (7). By Rank-Nullity theorem, A and A’ have the same column rank, noting

= A

that Image(7") C Image(7'). Hence, the column rank of A is less than or equal to the column rank of A’.
By symmetry, the column rank of A’ is less than or equal to the column rank of (A’)" = A. Therefore, A
and A’ have the same column rank.

REMARK
The column rank of A’ is the row rank of A. Hence,
rank(A) = maximum number of linearly independent rows of A

= maximum number of linearly independent columns of A.

DEFINITION 1.11: Full Rank
Let A € R"*™. We say A has full rank if rank(A) = min{n, m}



THEOREM 1.2
Let A € R"*™ and B € R™*P.
(1) (AB) = B'A’ € RP*™.
2 7' =nand j ;' =J.
(3) JJ =nd.
THEOREM 1.3
(1) rank(A) = rank(A’).
(2) rank(A’A) = rank(AA’) = rank(A) = rank(A’).
(3) rank(AB) < min{rank(A),rank(B)}.

Proof: We have already shown (1) and (2). For (3), we have

rank(AB) < rank(A).

On the other hand,
rank(AB) = rank(B’A’) < rank(B’) = rank(B).

REMARK — Invertible Matrix Theorem

A € R™™ is invertible (non-singular) if and only if rank(A) = n, and we denote the inverse of A by
AL

REMARK — Properties of Invertible Matrices
(1) A 'A=AA'=1.
(2) (Al)—l — (A—l)/.
3 (ATH) ™ =A
4) (AB)"!=B AL
DEFINITION 1.12: Positive Definite, Positive Semidefinite
* A is positive definite when /AT >0 < 7 # 0.
* A is positive semidefinite when Z’AZ > 0 for all 7 and there exists @ # 0 such that Z/AZ = 0.

DEFINITION 1.13: Orthogonal

A € R™*" is orthogonal if A’ = A~

DEFINITION 1.14: Eigenvalue, Eigenvector, Spectrum

Let A € R"*". If there exists a vector @ # 0 such that AZ = A7, then \ is called an eigenvalue of

A and 7 is called an eigenvector of A corresponding to \. The set of all eigenvalues of A is called the
spectrum for A.



EXAMPLE 1.1

12\ (1) _ , (1
2 1 1) <~\1)"
T\_{/ A\_{"

THEOREM 1.4: Spectral Decomposition

Let A € R™"*™ with eigenvalues A1, ..., A,. A is symmetric if and only if
A = Q'diag(A1,...,\)Q,

where Q is an orthogonal matrix, that is, QQ’' = L

THEOREM 1.5
Let A € R"*™ be a symmetric matrix.
(1) A is positive definite (semidefinite) if and only if all eigenvalues are positive (non-negative).
(i) A is positive definite if and only if there exists a unique lower triangular matrix L with positive diagonal

elements such that A = LL’ (Cholesky decomposition).

DEFINITION 1.15: Idempotent, Trace

* A € R™ " is idempotent if A = A2,

e Let tr: R"*"™ — R be defined by

i=1
(called the trace of a matrix).
THEOREM 1.6
Let A € R"*™, B € R™*P, C € RP*", and a,b € R.
(1) tris linear: tr(aA + bB) = atr(A) + btr(B).
(2) Cyclic property: tr(ABC) = tr(CAB) = tr(BCA).

Proof:

(1) By definition.



(2) Note that
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REMARK — Properties of Idempotent Matrices

(1) Eigenvalues of idempotent matrices are 1 or 0 since

A7 =)\7
A

=
= AT =\%
= A=\

= A=0orl.

(2) Idempotent matrices are diagonalizable, that is, there exists an invertible matrix P such that
A =P~ 'DP, where
D = diag(\1,...,\n), VA; =0o0r 1.

(3) If A is idempotent, then tr(A) = rank(A).

tr(A) = tr(P~'DP)
= tr(DPP )
= tr(D)
=X+ A,
= # of non-zero \;’s
= rank(A).

LECTURE 2
12th January

2 Lecture 2: Quadratic Forms and Distributions

DEFINITION 2.1: Quadratic Form

The quadratic form associated A € R™*" is defined as

n n
E’NA?: E E TiQi5X 5.

i=1 j=1



A+ A

, then note that A is symmetric and

n n
~ i + aj;
AT = E E xjgzj
2

i=1 j=1

n n
= E E xiaijxj
=1 j=1

=T7'A7

Therefore, there is a one-to-one correspondence between quadratic forms and symmetric matrices.

EXAMPLE 2.1
Let 52 denote the sample variance of a random sample X7, ..., X,,. Set
X1 241
X=|:| z=EX]=|:
X, Hn

Write (n — 1)S? as a quadratic form and identify the matrix A.

Solution:
(n—1)8% =) (X; - X)°
i=1
=Y xz-2(3 X)X +aX
i=1 i=1
n 1 2
-2 ()
=1 g=l1l
= X'X - 1('X)
¥R _ITTTR
= X'(1- 177X
=X'1- 15X
Hence, A = I — 1J is symmetric.
THEOREM 2.1

= . . . . . .
If X is a random vector with mean i, covariance matrix X, and A is a symmetric matrix of constants, then

E[X'AX] = tr(AS) + B'AR.



Proof:

E[X'AX] = E[tr(X'AX)]
= E[tr(AXX")]
= tr(E[AXX'])
= tr(ARE[X X))
—uw(AE[X -7+ D)X - 7'+ 7))
=tr(A[S+ ZZ"])
=tr(AX) +tr(Ap i’
= tr(AS) + tr(Z'AT
= tr(AX) + AT
EXAMPLE 2.2
Assume that ji; = - -+ = u,, = p and ¥ = 1. Find E[S?].
Solution:
E[S?] = L E[(n —1)5?]
- L E[X@- 10X
=_LE[tr(I-20)%)+ ' I-13)7]
= L E[r((X - 19)0T) + 427/ (1 - 13)7]
= L E[o?n - 1)+ p2(F"T - 17137)
=L E[o2(n — 1) + 0] since 7’J7 = n7'7
2
=0 .

REMARK — Multivariate Normal Distribution

Let X — (X1,X2,...,X,) be al x n random vector with E[X;] = y; and Cov(X;, X;) = oy, for
i,5=1,2,...,n. Let @ = (1, K2, - - -, fbn) be the mean vector and X be the n x n symmetric covariance
matrix whose (i, ) entry is 0;;. Suppose that also the inverse matrix of 3, £~ exists. If the joint
probability density function of (X3, ..., X,,) is given by

s 1 1 = 2>\ —1/—> — => n
f(T/)_WWeXP{—Q(Cﬂ—/J)E (x—u)} for 7 e R
where ¥ = (x1,72,...,2,), then X is said to have a multivariate normal distribution. We write

X ~MN(Z, %).

REMARK — Aitken’s Integral

For any positive definite matrix A € R™"*", we have

o (@] 1
/ / exp{—QY'AE’} dz = (2m)V?|A|7Y/2,

10



THEOREM 2.2

If X ~MN (12, X), its moment generating function is given by
— e —>, 5 ?’E?
Mz(t')=Ele’ X]:exp{t’u+ 5 }

Proof:

Mz (T") = (2m) ="/~ / / exp{w_;
= Gnym e [ e Ooexp{—;[gg_ 2YSUF - 7) _277]}@

:(271-)—"/2|2|—1/2/ /

1 — — = = —1/—> — - = 1> —
exp{_Q[(xf_uf_ r AL 500 R YE S, G ST +2t)—2t’x}}dx

:(Qﬂ)fn/2|g|fl/2/ /

1—» — — =
exp{—2(x’—,u [ >0 >0) >t —M—Et)}

&l
3
4
)

I
S/
—
o

8}

—

1_,—» ) _,
exp{—[' BT -+ - -+ YT 2t’x}
1)

X
/ / (2m)~"/2|3|~ 1/2exp{ (Z-F-20)S(Z-7-3%

=

{_>,_, t

expy t u +
—>,_, t'3t

=expy t U+ 5

REMARK — Gamma Distribution

Y is said to have a Gamma distribution with shape « and scale 5 when
ya lo—y/B
L(a)p>
and 0 otherwise. We write Y ~ GAM(«, ).

(1) E[Y] = aB, Var(Y) = a2,
(2) My(t)=(1—pt) >fort < 1/p.

fr(y) = F=———, fory >0, a>0,5>0,

REMARK — Chi-Squared Distribution

Q@ is said to have a Chi-squared distribution with n € Z* degrees of freedom when @ ~ GAM(n/2,2).
We write Q ~ x?(n).

(1) E[Q] =k, Var(Q) = 2k.
(2) Mg(t) = (1—2t)""/2fort < 1/2.

11



THEOREM 2.3

Let X ~ MN(0,%). Then X'S~1X ~ y%(n).

Proof: Let Y = X'~ X. Then,

My (t) = E[e"]
_ E[e)‘f’(tE’l))‘(’]

oo o0 1
:(zﬂ)fn/zmp/z/ / exp{?'(t21)3—2?’21?} a7

oo o0 1
= (277)—”/2|z|—1/2/ exp{—2§:"(1—2t)2_1§‘)} dz
2

= =772 ((1 - 2= )
= (1—2t)™"/2

REMARK — Non-Central Chi-Squared Distribution

Let Xi,..., X, be independent and X; ~ N(p;,1). Set A = 1@/ = 15" p2and W = > | X2
Then, W has a non-central chi-squared distribution with degrees of freedom n and non-centrality
parameter \. We write W ~ x?(n, \). The usual chi-square corresponds to \ = 0.

Note: The factor % is used for this course.

Not covered in notes:

A2t
_ . —n/2
My (t) = (1 — 2t) exp{ — }

REMARK — F'-Distribution

If X ~ x%(n) independently of Y ~ x?(m) for n,m > 0, then we say U = }),(T/:L has a (central) F'-

distribution. We write U ~ F(n,m).

If X ~ x%(n,\) independently of Y ~ x?(m) for n,m, A > 0, then we say U = % has a non-central

F-distribution. We write U ~ F(n,m,\). If A =0, then U ~ F(n,m).

Transformation of Multivariate Normal

If ¥ is symmetric, then by the spectral theorem, there exists an orthogonal matrix I" such that
3 =T'diag(\1,. .., \n)T,
where Aq,..., )\, are the eigenvalues of ¥. Note that \; > 0 for all ¢ € [1,n] since X is positive definite.

Furthermore, if we set
=12 =1 diag(v/ A1, ..., VAT,

we see that
S251/2 — 1 diag(yV/ AL, - .., V) ITY diag(v/Ar, - .., /AT
I

=TI"diag(\1,..., \)T
=X.

12



Therefore, '/2 is well-defined and is called the square root of X.

REMARK
If X ~ MN(Z, %), and Z = £-Y2(X — 1), where X~1/2 = (X1/2)~1, then

7 ~MN(0,1).

Proof:
) =E[e? ']
= Elexp{T'SV2(X - ﬁ)}}
=exp{— L'2"2 1) E[exp{?’Eil/z)*(’}]

?/2—1/222—1/2?}
2

=exp{— L'®"2 7} exp{?’E_l/Qﬁ =

{ ?/2—1/221/221/22—1/2?}
= exp

LECTURE 3
16th January

3 Lecture 3: Some Basic Lemmas
LEMMA 3.1

—>
Let b be a vector and W be a positive definite symmetric matrix. Then,

>0 >0 1 - LW
/ / exp{—2i"W_1§’—|— b'?c’} d?v’:(27r)"/2|W|1/2exp{ 7

LEMMA 3.2
Let A be a symmetric matrix and X ~ MN(iZ,X). Then,

1
Mz az(t) = |1 — 2tAX|~1/2 exp{2ﬁ/ I-1- 2tA2)1]21ﬁ}

for small enough t.

13



Proof: By definition,

Mz az (1)
= E[exp{tZ'AT}]

o ° 1 —> — 1 — —> —1/—> —> —
:/ / Wwexp{tx/Ar}exp{(x — )47 u)}d;z:

o0 o0 1
— (zﬂ)fn/zmrl/z/ / exp{i”tAI”’ i(z’zflff 2F'ETIE + @'E )

(\o}

—
ol
&)

oo o0
1
= (2n) /2| 3| 1/2 exp{— ﬁ’z—lﬁ} / exp —53’ I-22gAAYE ' T+ 'S 2 5 d?

— 00

—)/ _1—>
= (27T)—n/2|2|—1/2 exp{_ bWTb

ﬁ’E_lﬁ}(%)”/Q]W_l{l/Q exp{ }by Lemma 3.1

_ I o= _11/2 bWLD
= |X] 1/2exp{—2u’§] 1,u}|W Y / exp{Q}.
Note that L
W= [I-2tAZ)=7'] =2(I-2tA%),
and
PWL = 'S TIN(I - 2tAR) IR
=2'1-2tAR)'=" 17,

and

—11/2 _1q-1| M2 —1/21%71/2

W/ :‘[(I—2tA2)E ] ’ — [I- 2%tAZ|"V23|V/2.
Continuing,
_ I o= _11/2 DWLY
Mz ax(t) = |X| 1/2exp{—2p’2 1,u}|W Y / exp{Q}
1 1
:exp{—Qﬁ'Z_lﬁ}eXp Qﬁ/(I—QtAZ)E_lﬁ}H—QtAE_1/2
1 1
= exp{—Qﬁ'E_lﬁ - 5ﬁ’(I - 2tAE)E_1,TI}|I —2tAXD| /2
- ! ~ 1m1(12tAz)1}21ﬁ}.
T—2(AY 2

LEMMA 3.3

Let A1, ..., A\, be the eigenvalues of A3.. Then,

II—2tAS| = (1—2tA;)--- (1 — 2tA,).

Proof: By the spectral theorem,
AY = Q' diag(\1, ..., \)Q.

14



Then,

I—2AS = T —2Q diag(\1,. .., \)Q
—T— Q diag(2t\s, ..., 200,)Q
= Q' diag(1 — 2tAy,..., 1 —2t\,)Q.

Therefore,
I-2tAY| = |Q’||diag(1 — 2tAq,...,1 —2t\,)[|Q]
= (1—=2tA1) - (1= 2t\,).
LEMMA 3.4
For t small enough, we have
I-(I-2tAZ) ' = — i(%)’"(Az)’“.
r=1

Proof: If ¢ is small enough, then I — 2¢A X is invertible. Thus,
(I-2tAY) [I —I- QtAZ)*l] =1-2tAY — 1= —-2tAX.
On the other hand,

(I-2tAY) <_ Z(Zt)T(AE)T) == @)(AD)"+ > (2t)"(AZ)

r=1 =2

Do @)rti(AZ)rtt

=1l

= —(2t)AX.
Therefore,

(I-2tAD)[I- (I-2tAR)" '] = (I-2tAX) (— i(Qt)T(AE)T)

r=1
For small enough ¢, the inverse of I — 2tA Y exists, so

I-(I-2tAZ) ' = — i(2t)T(AE)T.

=l

DEFINITION 3.1: Cumulant Generating Function

Let Mx(t) be the moment generating function of X. Then,
Kx(t) = log(Mx (1))

is called the cumulant generating function. By Taylor’s expansion,

o0 tn
Kx(t) = Zﬁna.

n=1

ki = K(™(0) is the n-th cumulant.

15



EXAMPLE 3.1
Let X ~ N (u,0?). Then,

2 2
MX(t):eXp{ut—F(;tz} — KX(t)zut—F%tQ = K1=p, Ky=02, K;=0,i>3.

LEMMA 3.5
For any X with Kx (t) well-defined,

k1 =E[X], k= Var(X).

Proof:

dKx ()
dt

dlog(Mx(t))
dt
_ Mx(@®)
Mx(t)
= Mx(0)
— E[X]

= K.

t=0 t=0

t=0

dEy ()| _ d Mx(t)
At |,_, At Mx(t)|,_,
_ MEO)Mx(t) — (M (#))?
MZ(#)
= E[X?] - E[X]?
= Var(X)

= R2.

t=0

THEOREM 3.1

Let X ~ MN(7i, X). For any symmetric matrix A and A1, ..., \, are eigenvalues of AX

1 1, = r I
Kxgaz(t) =—5 > log(1—2tA) + 7' Y (2t)"(AZ)' 7.
i=1 r=1
ke =27 (r — DItr((AZ)") + r ' A(ZA) 1 7]
In particular,

k1 = E[X'AX] = tr(AX) + AL
Ky = Var(X'AX)
=2[tr((AX)%) + 21’ ASAT]

=2tr((A%)%) + 47'ASATL.

Proof:

16



Step 1: SlnceX ~ MN(7Z,X), by Lemma 3.2,
Mz a3 (t) = [T - 2tAZ| "1/ exp{ S [I(IQtAz)l}zlﬁ}.

Therefore,
K3 a3(t) =log(Mz, o3(1))

=10g(|1—2tA2|‘1/QeXp{—2u [1-(1-2A%)7 ]S 13})

= —— log(|I —2tAX|) — lu I-(1-2tAZ) |21

1 1 =
= log((1 —2tA1) -~ (1 —2t\,)) — Qﬁ”(— Z(Zt)T(AE)T>E_1ﬁ Lemma 3.3, 3.4

=1l
:—lilog(l—%)\ —t—1 /i '
2 g=I 2 = '
Step 2: The Taylor expansion for log(1 — z) is
2 3 —
e . S
2 3 =

=1 r=1
ERRSNCHDYEPY
=32
r=1
L (r= D2t tr((AZ)T) _(r=1! 1
Step 3: Rewrite the second term of K3, , 3 (%) as
L N 0 (AS) S 1 ¢ 7 17y = L — 127t 7 ( AE) =7
o > (@2t (AD)'S 52 2t (F'(AZ) =~ 5; :

r=1

Step 4: Combining steps 1 to 3, we get

1o (r=D!I2)" tr((AZ)")  rl2" @/ (AZ)'S~17
Kz az(®) ) Zl r! + r!
-/ ryY—1724r
_ ZQM(T_ 1) [tr((AX)") +rp’(AX)" S F]t
7l
= S0 — 1)) [((AZ)) + r T (AZ) 1] %

=i

K

noting that (AX)"2~! = (X A)"~! to get the desired result.

17



LECTURE 4
19th January

4 Lecture 4: Quadratic Forms with Idempotency

LEMMA 4.1

Let A € R™"*"™ be symmetric and B € R™*"™ be positive definite. If the eigenvalues of AB are 0’s or 1’s, then
AB is idempotent.

Proof: By Cholesky decomposition, there exists an invertible lower triangular matrix L such that
B=LL".
If the eigenvalues of AB are 0’s or 1’s, then the equation |AB — AI| = 0 has roots 0 or 1.

|AB — M| = |[L/(AB — AI)(L') |
= |[L’AB(L)~" — A1
= |[L’ALL/(L))~! — I
= |L'AL — Al
=0

has roots 0 or 1. Since L’ AL is symmetric, and thus diagonalizable, it follows that
L’AL
is idempotent since
(L’AL)(L’AL) = Q' diag(\1, ..., A\n) QQ’ diag(\1, ..., \,)Q

I
— Q' diag(\2,...,)2)Q
= Ql dia’g(Ah KRR )\n)Q

=L'AL.
Therefore,
L'AL = L'ALL'AL
= AL = ALL'AL
— ALL'= AB = ALL'ALL' = ABAB
—> AB is idempotent.
THEOREM 4.1

Let X ~ MN(1Z,X) and A be a symmetric matrix with rank r. Then,
X'AX ~ 2 (r,N), VE

with A = 27 A T if and only if AX is idempotent.

Proof:
( <) Assume that AX is idempotent, then all eigenvalues of AX are 1 or 0 (which we denote as \;).

18



Since X has full rank,
rank(AX) = rank(A) = r.

Therefore, r eigenvalues are 1 and n — r are 0. By Theorem 3.1, we have

Mz ax(t) = [J(1—2tA) 7 2expq S 7D (2t) (ADY S

i=1 j=1

Do =

=(1—2t)""2expd =" (20)AZT IR

M

N | =

1

J

N —

=(1—2t)"2expl =I'AR Z(Qt)j
j=1

AT ot
— (1 —92¢)"7/2 HAR
(1-20) eXp{ 2 1-9t

2t
= (1—2t)""/? :
( t) exp{Ath}

Let n ~ x?(r, \). By definition,
n=Xi+ -+ X7,

where X; ~ M(u;,1) and X, ..., X, are independent.

M, (t) = E[e™]
= B!+ +X7)]

=[] Ele**].
i=1
Now,
00 — )2
E[etxf] = / (2m)~4/2 exp{th}exp{—(xQM)} dz

& 1
= / (2m) /2 exp{—2(x2 — 2tz — 2ux + u?)} dz

_ 2 ) 2
_ (1 . 2t)71/2 expq — 1 2t 1 . Hi
2 1-—2¢ 1—2t

/OO 1 (x B 1/i§2t)2 d
S Sy SN e 2
e V(=212 TPy o — 2T [

2
N(%,(pzt)fl)

t
= (1-—2t)"1/2 z
(-2 el s

2 2t
= (1—2t) V2 expd B2 .
(1-2¢) EXP{ 2 1-2t
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Hence,

which is the mgf of x?(r, \). By uniqueness of moment generating functions,
X'AX ~ x%(r, \).

(=) Assume X'AX ~ x2 (r,\) for all 77. Choose 7 = 0, then A = 0.

Mg ax(t) =[]0 —2t)712

i=1
=(1-2t)""/2
Therefore,
= H(l —2t\;) = (1 —2t)" cancel exponents
i=1
=5 Z log(1 — 2t\;) = rlog(1 — 2t) take logarithm
i=1
" [ (2tA;)* = (2t)°
= Z [Z ( 7 ) } = rz (T) Taylor expansion
i=1 “4=1 (=1
o0
A=) (2t)*
= Z (i 1( @) _ 0 re-order summation
=1
Therefore,

ixf:r, Ve 1.

i=1

Case 1: If |\;| > 1 for some i, then choose ¢ = 2k and let 2k — oo, then
)\%k+...+)\?k+...+)\i]f:r7

but the left-hand side is co # r, contradiction. Thus, |\;| < 1 for all i.
Case 2: If |\;| < 1 for some i, then choose ¢ = 2k and let k — oo, |\;|?* — 0. Hence, the total terms with
|A:| < 1 will be n — r. The equality

M+ A =7

implies that all the terms with |\;| = 1 are actually A;. Why? Let d be the number of ¢ such that |\;| < 1,
there will be n — d of |\;| = 1 (fill in details).

Hence, the eigenvalues of A are 1 or 0. Since X is positive definite, it follows from Lemma 4.1 that AY
is idempotent.
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EXAMPLE 4.1

Let X1,..., X, ifislj\/(u, o2). Then,

n—1)8?
% ~x%(n—1).
(o
Solution: Let
X1
X=|:
Xn
Then, . N
X ~MN(pj,0%T).
(n—1)5? 1 < 9
——= ﬁi;(x, - X)
- lx¥a-1px
- SX- 1)
—Y/AY,
where Y = %)?andA =I-1J,50
Y MN(U],I).
AE:(IflJ)I*If%J:A
Also,
AP=1-2J+ LJJ=1-1J=A.
Therefore, AX is idempotent. By Theorem 5.1,
T (n—1)52 9
Y'AY = —s X (r,A),
with
r =rank(A) = rank(I— 2J) =n — 1
and
1
)\: §—>IA/—I
1p— >
= 5;]’(1—%”;]
2
Y2 -, —> -, _—>
=557 —%3'37)
2
W
= 7"~ am)
= 0.

Therefore, Y'AY ~ X2 (r,0) = x*(r).

LECTURE 5
23rd January

21



5 Lecture 5: Criteria for Independence

LEMMA 5.1

Let A be a symmetric positive semidefinite n X n matrix with rank r. Then, there exists an n X r matrix D
with rank r such that
A =DD’

Proof: If A is symmetric, then by the spectral theorem

A = Q' diag(\1, ..., \)Q,

where Q is orthogonal where 7 of \; are non-zero since rank(A) = r. Without loss of generality, we can
assume that A\;,..., A, >0, A; =0 for j > r. Define

A1/2
D= Q/ |: :| ’
o nxr

where
AY? = diag(\/A1, ..., V).
Hence,
A2 A O
'— O 1/2 — 0O =
DD Q[O][A 0]Q Q[O O]Q A
THEOREM 5.1

Let X ~ MN(7Z,%), A € R"*" be symmetric and B € RF*™, X'AX and BX are independent if and only
if BXA = 0.

Proof: We assume that A is positive semidefinite.
Step 1: Let 7 = rank(A), A = DD’ from Lemma 5.1. We know that D is n x 7 with rank(D) = r, and

since rank(DD’) = rank(D) = r, then D’D is invertible. We will show that

BXA =0 < BX¥D =0.
(=) Note that

BXA =BXDD' =0
= BEXDD'D=0
— BEXDD'D(D'D) ' =BXED = 0.

On the other hand, if BXD = O, then
BXDD’' = BXZA = O.
Step 2 (Sufficiency): Assume that BYA = O, then BYD = O. By direct calculation,
Cov(BX,X'D) = BCov(X,X)D = BED = O.
Since BX and X'D are multivariate normal, it follows that BX and X'D are independent. Noting that

X'AX = X'DD'X Lemma 5.1
= (X'D)(X'D),
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which is a function of X'D. We know that if X and Y are independent, then for any measurable function
f(X) and g(Y') are independent. Hence, BX and X'AX are independent.
Step 3 (Necessity): Assume that BX and X'AX are independent. By direct calculation,

Cov(BX,X'AX) = B Cov(X, X'AX)
- BE[(X - )(X'AX —E[X'AX))]
—BE[(X - 1)(X'AX — T'AT — tr(AX))]
—BE[(X - 1)(X'AX — 7'AR)] + BE[(X — )] tr(A®)
0
= BE[(X - 1)(X'AX - 7AT)]
=BE[(X - 7)[(X - 7Y AR - i) +2(X - B AR
=BE|(X - ))(X - B)A(X - 71)] + 2BE|(X - 7Y AT]
=BE[(X - 7)(X - 7YAX - )| + 2BSAT

— —
To show that the first term is zero, using the spectral theorem re-write A, define Y = X — 17, and use the
fact that the third moments of multivariate normal are 0 (exercise). Hence,

BXA7 = O.

Since 7 is arbitrary, it follows that
BXA = 0.

THEOREM 5.2

Let X ~ MN(iZ,X), A, B € R"X" be symmetric matrices. X'AX and X'BX are independent if and only
if AXB = O.

Proof: Let rank(A) = r, rank(B) = s. By the spectral theorem, there are orthogonal matrices Q; and
Q; such that

A = Q) diag(Mi, ..., \)Qu,
B = Q) diag(\1, - .-, M) Qo
Without loss of generality, we assume that
* A,..., A #0,X;=0forj>r,
e M,..., s #£0,\; =0fori>s.

Set ~ _ 5
D, = diag(A1, ..., \), D, = diag(A1, ..., As).

Hence, Q) = (Q}; Qi) with Qf, being n x r and rank(Q};) = . Then,

/ 'y (Dr O
a=@in e (3 o) (a)
:QIHDTQH-

Define Q) = (Q}; Q) to similarly get
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( < ) “Sufficiency:” Assume that AXB = O, so

AYB = Q};,D,Q::2Q|;D,Q;; =0
= QuQ};Q};D,Q112Q}|;D,Q;; =0
— D,Qi12Q),D, =0

= QllZQIu =0

Noting that o :
Cov(Qui X, X'Q1;) = QuXEQy, = 0.

Therefore, Q1; X and X’ Q) are independent. Hence,

X'AX = X'QuD, Q) X

= (QuX)'D, QX

is a function of Q’H)? , and similarly X'BX is a function of X Q. Therefore, X'AX is independent of
X'BX.
(= ) “Necessity:” Assume that X'AX and X'BX are independent. By Theorem 3.1, we have
r((AX)?) +410ASAT.
r((BX)?) + 47'BEXBL.
Since (A + B) is symmetric,

Var(X'(A + B)X) = Var(

Hence,
2tr(((A +B)X)?) +47' (A + B)EZ(A + B)Z = 2tr((AX)? + (BX)?) + 477/ (AXA + BEB) .
Therefore,
2tr((AXBY) + tr(BXAYX)) + 417" (AXB + BXA) 7 = 0.
By cyclic property of trace, we obtain
tr(AYXBY) = tr(XBXA) = tr(BXAY).

On the other hand,
HAYB + 470 AXB = 0.

Choose 77 = 0, we get
tr(ASBY) = 0.

Thus, 7’ AXBi = 0 for all 7, which implies that

A¥B = 0.
EXAMPLE 5.1
Let X’ = (X1, X5) ~ MN(Z, I,). Show

(X, — X,)? is independent of (X; + X3)?.
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Solution:
1 -1 X
(X1 = Xp)* = X - 20105 + X3 = X} - XX 2= X5X1 + X5 = (0 Xo) (—1 1 > <X;> '
1 1 X
(X1 4+ X2)? =XT + X1 X0 + Xo Xy + X5 = (Xl XQ) (1 1) (X;) '
1 -1 1 1

as required. Therefore, (X; — X3)? is independent of (X; + X5)? by Theorem 5.2.

Now,

EXAMPLE 5.2

Let X' = (X1, X32) ~MN(#Z,X). Define

Find

such that X’AX is independent of X'BX , Where
(1 —1/2
¥ = (—1 /2 1 > '
X'BX = X2 44X, X5 + X2 = (X1 + X2)? + 2X1 Xo.

v (i 9 (s 1))
- (Z i) <1(.)5 165>
— (12 1%)

b a
S )

=0

Solution:

S

implies that a = b = ¢ = 0, so A = O. Therefore, there is no quadratic form.

6 Lecture 6: Cochran’s Theorem

LECTURE 6
26th January
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LEMMA 6.1

Let C = A + B. Assume that A, B are both n x n symmetric. If C2 = C, A? = A, B positive semidefinite,
rank(A) + rank(B) = rank(C),

then
AB = 0.

Proof: Let rank(A) = r, rank(B) = s, rank(C) =t = r + s. If C? = C, then there exists an orthogonal

matrix I' such that
i~ (It O
ror- (% 9).

FAF+FTH%=(L 0).

Since C = A + B,

O O

A and B are positive semidefinite implies that I AT and ITVBT are positive semidefinite. If the element
on the diagonal is zero, then the corresponding row and columns are zeros. Hence,

/_Gto ,_HtO
FAF_<O o>’ FBF_(O 0)

Since A2 = A, we have

/ / _ T _ G; O
I‘AITAI‘—I"AI‘—<O O)

I,
(0}

:>Gt0 I,
O O0/)\O

— T'AT (

. G, H,
(0}

(0}
(0}

2)-(5 9)-(5 2% 9
(6 o)+ (%" o)

) =T'ATT'BT

) =T'AT +TATT'BI

(0}
O

=T'ABT = O.

Therefore, AB = O since T is orthogonal and invertible.

THEOREM 6.1: Cochran

Let X ~ MN(H, L), Ay, ..., A,, be symmetric n x n matrices with rank(A;) = r;, and >_." | A; = L.
X'A; X ~ x*(r;) are independent if and only if > ;- r; = n.

Proof: ( <) “Sufficiency” Assume ) ;" r; = n. Foreachi =1,...,m, set

B, =1-A,,
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with rank(B;) = s;. We claim that s; = n — ;.

s; = rank(I — A;)

= rank Z A;

J#i
< Z rank(A ;)
j#i
=n-—r;.
By definition, I = A; + B; = rank(I) = n. So,
rank(I) = n
= rank(A; + B;)
< rank(A;) + rank(B;).
Therefore, rank(B;) > n —r; = s; = n — r; for all 7. Hence,
[\ I-B;| =0
have r; roots being 0. Noting that
IAL=Bi| =[(A = 1I— A
= [AL - A4
have r; roots being 1. Since rank(A,;) = r;, it follows that all other roots of A; are 0. Hence,
A =AZ=A1
is idempotent by Lemma 4.1. Write
I=A;+(As+---+A,).
Since I? =1, A? = A;, Ay +--- + A,, is positive semidefinite, it follows from Lemma 6.1 that
Aj(Ay+---+A,)=0.

This implies that
P=A+(Ay+--A),

which implies that A5 + --- + A, is idempotent. Applying Lemma 6.1 to
A2+...+Am:A2+(A3+...+Am)

it follows that
As(As+---+A,,)=0.

By induction, we get
A, 1A, =0.
By re-labeling, we get
Since
it follows from Theorem 5.2 that

are independent. The fact that

follows from Theorem 4.1.



LECTURE 7
30th January

7 Lecture 7: Full Rank Regression

Model:
Y = Bo + prw1 + - + Brag +e,
where z; are predictors, Y is the response, and ¢ is noise. If we have ¢ = 1,..., n observations, then the model
becomes: N
Yi=Bo+ brwa + -+ Braip +ei=XF + E,
where
1z - oz
Y; €
N ! 1 @or -+ T - Po N !
Y = . ) X = 9 6 = E ) £ = .
Yn 1 Tni o Tk ﬁk en
Assumptions:
(1) E[g;] =0.

(2) Var(g;) = o>.

(3) Cov(es,e5) =0 fori # j.
Full rank assumption:

1) k< n

(2) rank(X) =k + 1.

Method 1: Least Squares Method

n

=1

If we minimize with respect to 3, we get

oL
9Bo
L — — > —
L _ D = 2XY 42X'XfF =0 = §=(X'X)"IX'Y.
9 oL
9Bk

THEOREM 7.1

A . . . -
B is an unbiased estimator of 3.

Proof:
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THEOREM 7.2

- — S5 S
If Cov(Y,Y) = 0?1, then Cov(f, f) = o?(X'X) "L

Proof:
2. 2 2 EGN 2
Cov(8, ) = E[ (5 — E[5]) (5 — E[8])']
- E[((X’X) IXY — (X'X)
= E[ )"IX/(Y - E[Y) (¥ - EY]yX(X'X) }
— (X'X)"'X'E [(Y BV - IE[}_’)])’} X(X'X) L
= (X'X)IX/X(X'X) L
— O'Q(X/X)_l
Estimation of o2
* Residual:
Y-V)=2
= (Y -X7)
Y - X(X'X)"'X'Y)
=(I-XX'X)"'X"Y
e Let H = X(X'X)~ !X’ be the hat matrix.
e Since H is idempotent, we may write
SSE=2'2
=Y -Y|?
— Y-V -V
=Y'I-H)Y.
THEOREM 7.3
,  SSE
5= n—(k+1)

is an unbiased estimator of .
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Proof:

—

Note tha’cﬁ:XB> = ' = pB'X’, so

X'(I-H)X = X'X - X'HX
=X'X - X'X(X'X)"'X'X
=0.

Maximum Likelihood Estimators for B) and o2

THEOREM 7.4

If Y~ MN(X?, 0°1,,), where X is n x (k + 1) of rank k + 1 < n, then the maximum likelihood estimators
of B and o? are

F=(XX)IXY, §2=22-=

Proof: The likelihood function is given by the multivariate normal density
L(B,0%) = }(Y: B.0%)
— _ 2 o1\ 1 — _ —
L exp{_w XB) (oD~ (Y xm}

(2m)"/2|021|1/2

_ (20?2 exp { (¥ -XB)(¥ - X5) }
The log-likelihood function is

—

U(B,0% = m(L(8,0%)

_.n n 2 i R U S
— —2In(2m) - 2 In(0?) - 55 (¥ - XBY(Y - XB)
n n 2 1 .>/.> .>/ = —)l ’ =
=——In27) — —In(0°) - = Y'Y —2Y'Xj + 'X'X[)
2 2 202
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Taking the derivative with respect to ,73” yields

—> Z Kl 2 ]. -2 =
72 (3[%0 ) _ —55(-2X'Y +2X'XB)
0 =2X'Y - 2X'X3

X'X3 =X'Y

7= (xX'X)"'X'Y.

Taking the derivative with respect to o2 yields

0="—55— =55 +53( ~XB)(¥ - Xp)
4 - — - —

o) _ @ - xBY( - xB)
2 _ (T -XBY({ - x5)

. L) A 2
Properties of 5 and &

THEOREM 7.5

If)_; ~ MN(X,B’)7 0’1,), where X is n x (k + 1) of rank k + 1 < n, and E = (Bo, B1,---,Bk)’, then the
maximum likelihood estimators of 8 and &2 given in Theorem 7.1 have the following distributional properties:
> —
(D) B ~MN(f,0*(X'X)1).

né2

@ —5 ~X*(n—(k+1)).
2
(3) /5 and 62 are independent.

Proof:

(1) Note that Y ~ MN(Z,%) = AY ~ MN(AZ,ASA’). Let A = (X'X)"'X/, # = XJ, and
¥ = ¢2L,,. Now,

AV = F ~ MN((X'X) "1 X'X B, (X'X) 7 X0 L X (X'X) )
~MN(F,o%(X'X) ™).

(2) Note that

né?  SSE

-7 T o7
Y/(I-H)Y
%

(o

= W/(I-H)W,

where W = g ~ MN(%, I). It follows from Theorem 4.1 that
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with r =rank(I—-H) =tr(I—H)=n— (k+ 1) and

1
= AT
S H'ATE
N/
_L(XBY (g XE
2\ o o
- LAXa-nX]F
202
where 77 = E[IW] and A =1 — H.
(3) Note that E = (X'X)~ X/ Y and
SSE 1> = =, (I-H\=>
&2——Y’(I—H)Y—Y’( )Y.
n n n
LetY = X, B = (X'X)~'X, and A = =H_ Relabelling,
> —
p =BX,
52 =X'AX.
Now,
I-H 1
(X’X)—1X<> S [(X'X)—lx' -~ (X’X)‘lx’}
n n
=0.

The result follows from Theorem 5.1.

LECTURE 8
31st January

8 Lecture 8: Test of Overall Regression

DEFINITION 8.1: Sum of Squares Total, Residual, Error

= 1
Y=->Y,

SST=> (V;-Y)?
=1

SSR=) (Y -Y)?
=il

n

SSE=) (¥; - ¥i)*.

i=1

SST is the sum of squares total, SSR is the sum of squares residual, and SSE is the sum of squares

error.
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THEOREM 8.1

—

(@) SST=Y'(I-L1)Y.
@) SSR=Y'(H - L3)Y.
(i) SSE=Y'(I—-H)Y.

Hence, SST = SSR + SSE.

Proof:

(i) Sum of Squares Total:

SST = i(}g -Y)?
=1

=Y -Y)¥-Y7)
Y'Y -YY' +Y ;7
— Y'Y —onYy” + nY’
Y'Y —nY
=YY -5y
—Y'a-L1nY

(ii) Sum of Squares Regression:
SSR=> (Vi —Y)?
i=1
> >\ S ——
=Y -Y)(Y-Yy)
= @Y -Y])®Y -Y7)

—Y'HHY - 2YY'H; +Y ;7
—Y'H?Y - 2Y'H; J'Y + LV'3Y
— Y'HY - 2Y/HIY + Y37
—Y'HY - 2YV'3Y + LV'3Y
—Y'HY - LYV3Y
—Y'H-13)Y

¥

since M2 =H,HX = X,and Hj = ] =— HJ =1J.

<
Il

(iii) Sum of Squares Error:
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since (I-H)?=1-H.

Therefore,
I-H+H-1J=I-1J — SST =SSR+ SSE.

THEOREM 8.2

(1) SSR/c? ~ x?(k, \) with

1 —
= T‘Q(XB)/(H - 10)Xp
1 —
= ﬁ(xlﬂl)/(H - 19X, 81,
where
b1 X1 X1k
/B)l = ) X—l =
ﬂk an Xnk:
(2) SSR and SSE are independent.
Proof:
(1) First result: N
SSR Y’ Y
— = H-3)—
with N N
Y MN(Xﬂ, I),
o o
Since
H-1J)?=H?-21HJ+ = J?
=H-213+1J
—H-— 1 J

it follows from Theorem 4.1 that SSR/o? ~ x2(r, \) with
r=rank H- 1)) =trH-1J)=k+1-1=k

A= 1<X5)/(H %J)M.

and

n\ o o
Write
> 50) -
= g 5 X = X .
F-(2 G x)
Then, Xﬁ = 607 + X1 ﬁl implies

1/Boj +X161Y T+X,8
)\:(BO]+ 1ﬁ1>(H_1J)50J+ 151
2 o " o

= g [ B~ 20X F) + B37/(H ~ 10)T + 260(H - 23)7]
= T;(Xlﬁﬁl(ﬂ - %J)X1E1
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since

H-1Y)y=Hj-Jj=7—1nj=0
(2) Note that
SSR=Y'(H-13)Y = V'AY
SSE=Y/(I-H)Y = Y'BY.

Note that ¥ ~ MN(XB), o?I). Note that H — 1J and I — H are symmetric matrices of the same
dimension.
Ac’IB = 0>AB

= o*(H - 13)(1- H)

=o’H-1J-H*+1JH)

=0’ H-1J-H~+1J)

=520

=0.

Therefore, SSR and SSE are independent by Theorem 5.2.

REMARK
By Theorem 7.4, we have SSE/0? ~ x?(n — (k + 1)), and SST/o? ~ x%(n — 1, \).

REMARK

E[SSR] = 0*E [SSR}

o2

k
=0 E[X]] where X; ~ N (i, 1)
=1

= o? (3o (var(x) +4))

i=1
=o?(k+2))
= ko? + 202\
= kO’Q =F (Xlﬁl)/(H — %J)Xlﬁl

ANOVA Table for Hypothesis Test of H: El — 0 versus Hp: El #+ 0

Source of Variation Degrees of Freedom Sum of Squares Mean Square Expected Mean Square

Due to (3, k SSR MSR ol + 1(Xy61)(H- 10X, 58,
Error n—(k+1) SSE MSE o?
Total n—1 SST
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(n—(k+1))o?
n—(k+1)
= g2,

Test Statistic:

B SSR/k

~ SSE/(n — (k+1))
Reject Hy if F > F,(k,n — (k + 1)). If Hy holds, then X\ = 0 implies SSR ~ x?(k) and SSE ~ x?(n — (k + 1)).
Furthermore, note that if X and Y are independent, then f(X) and g(Y") are independent, so

F

~ Fk,n— (k+1)).

B =B s G )
S i (Z ) E[SSR] E {S;E}
E{S‘ZR} =0? <= E[SSR] = ko?.

Hold tight for the hard part (you can skip this part if you know the mean of the inverse-chi-squared distribution),

EVT _ /OO 1 1 /2102 g
SSE 0o Y Q(nfkfl)/21“(7”—’2f—1)
n—k—
_ 27(n7k71)/2]‘1( 2 - 1) «
P(*=5=)
1 oo
(n—k—1)/2—1 ((n—k—1)/2—1)—1_—y/2
2 F(n—]g—l _ 1)2(n7k71)/271 /0 Yy ¢ dy
=1 by Gamma distribution
1
S 2(n—-k-1)/2-1
B 1
n—k—3
Hence,
1 1
El—0|=——"7—.
[SSE} o?(n—k—3)
Therefore,
n—k—1 1 n—k—1 1 n—k—1
E|F| = ——E|[SSR|E| — | = ko? — )
L] k [SSR] {SSE} k0 o2n—k—3) n—k—3

LECTURE 9
6th February
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9 Lecture 9: Lack of Fit

Consider the case of studying blood pressure and its relationship to height and weight. Clearly, people of the
same height and weight can have different blood pressures. In other words, the same predictor values may
correspond to different response values. This type of variation is called pure error. To detect poor model fit, we
would need to distinguish between variation caused by the model and pure error.

General Framework
Letm >1and ni,...,n, > 1suchthat >." , n; =n.Fori=1,...,n, we have

Yir = Bo+ Bix1i + -+ Brxir €, T =1, 1.

o
. . . - - .
In matrix notation, we write Y = X 3, where 8 = | : [ in the usual way, and
Br
¥4}
y:(yu o Yipy oo Yoo e Ymnm),
1 2z - 2k
ni
1z - Tk
X = ,
1 Tm1 *° Tmk
Nm
1 Tmi1 *° Tmk
-/
g = (Ell ce 6177,1 P Eml P Emnm) .
We write Y;; fori = 1,...,m (m groups) and j = 1,...,n,; (number of observations in group 7). The sample

average of group 1 is defined by

ng

— 1
Vi=—S Y, i=1,...m.
ni]z j 1 m

)

2 EN . A N
The fitted values are Y = X 3, so Y}, is the same for all j = 1, ..., n;, hence we may write Y;; as ;.
SSE— 3030V, — T3y
i=1j=1
= ZZ(K] *?z +?1 - }'};])2
i=1j=1
:ZZ(YH ?1)24‘2 (Azj _?i)Q_QZZ(Yw YZ)(?Z_YU)
=1 j=1 i=1 j=1 =1 j=1
m ng m ng
DB UTELATS W
i=1j=1 i=1j=1
S 9 LTS AL SIS o
=1 j5=1 =1
= SSPE + SSLF

since V;; is independent of j. Therefore,

SST = SSR + SSE = SSR + SSPE + SSLF.
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* Degrees of freedom of SSLF: m — (k + 1).
* Degrees of freedom of SSPE: (ny — 1)+ -+ (ny, — 1) =n —m.

The first test is a test of linear relationship, but if we wanted to determine how good that relationship is, we will
need the following hypothesis test. If the linear model fits well, then SSLF should be small.

* Hy: The model is adequate.
* Ha: The model is not adequate.
Test statistic:
SSLE/(m —k — 1)
SSPE/(n —m)

If we reject Hy, that means there’s too much variation within the group. Reject Hy when F' > F,,(m—k—1,n—m).

F = ~Fm—k—1,n—m).

Source of Variation Degrees of Freedom Sum of Squares Mean Square F

Due to El k SSR MSR MSR/MSE
Error n—(k+1) SSE MSE
Lack of Fit m—k—1 SSLF MSLF MSLF/MSPE
Pure Error n—m SSPE MSPE
Total n—1 SST

Selection of Predictors

We observe that the number of predictors always improves the estimates, but becomes less efficient. To find a
reasonable number of predictors, one needs to compare models by adding or dropping predictors.

Bo . Bo Bet1
* Partition $ as 8 = | : :<§I>,where61: : | and By = : forl < /(< k.
II
Br Be Br

* Partition X as X = (X; X;), where X; € R™*+D and X;; € R0 for 1 < ¢ < k.

The full model is

—

Y=XF+2=(X; Xp) (B@I) =X 81+ X B
I

The reduced model is

—

Y=X;8+7"
Let

« H=X(X'X)"'X".

« H, = X;(X,X;)" X
Define

« SS(f) = SSR(full) = Y'(H — LJ)Y.

« SS(B) = SSR(reduced) = Y’ (H; — %J)?.

* SS(A11 | B1)=SS(F)—SS(F;) =Y'(H-HY.

Comparing the full model and the reduced model, we test Hy: Ez ;= 0 versus Ha: ﬁn + 0. Under Ho,
Zg41,- .., do not add predictive value to the model that includes z1, . . ., z; already.

38



THEOREM 9.1

H — H; is idempotent.
Proof: Assignment 2.

Model misspecification:
e Leaving out Bl 1 when it should be included, results in underfitting.

* Including 31 1 when it should be dropped, results in overfitting.

LEcCTURE 10
9th February

10 Lecture 10: Determination of Predictors and Generalized Inverse
THEOREM 10.1
Let Y ~ MN(XJ,0%T), H = X(X'X)" !X/, H; = X;(X,X;)"1X}. Then,
(1) Y'A-H)Y /o = SSE/0? ~ \2(n — k — 1).
(2 Y'(H -H,)Y /o> = SEulBD 25— ¢, }), where
X=X (1 - H)X g1 B11/20%
(3 )_;’(I - H)}_; and ?’(H - Hl)? are independent.

Proof:
(1) Earlier proof.
(2)
full | reduced)

o2
_ 8B | B

o2

Y/(H-H,)Y/o? = S8(

By Theorem 9.1, H — H; is idempotent, so

YV/(H - H)Y ~3(r,\)

r =rank(H — H; ), and
1

A= 5 5(XBY(H - H)XB.
(o

By direct calculation, we have

r =rank(H — H;)

=tr(H—H;) since H — H; is idempotent
=tr(H) — tr(H;)
= tr(X(X'X)"1X) — tr(X (X)X ;)71 X))

= tr(Tpt1) — tr(Tet) cyclic property
=k—L
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Noting that HX = X, H; X; = X, and
XB =X;B1+X1Bu
it follows that

20°X = (XB)(H - H,)X 3

X ) HX B - (XF)H: X8

XB) (XB) — (XB) (M X781 +HiXrr B 1)
)’[Xﬁ H,X;6;-H XHBU]

)'[Xfﬁl + X B — X181 - H1XIIBII}

) (X118 1 — HiX11Brr)

XA) (- H)XB1r

XrBr+ X[Iﬂu) (I—- Hl)XIIEII
XH/_éII)/(I = H1))_(>IIB)II F (XIﬁl)(I = Hl)XIIﬁll-

ol

NN

8
B
B
B
1
B
8

= (
=
= (
(
= (
(
= (
(
= (

It remains to show that (XIEI)(I — Hl)XHEH = 0.

(XIB)I)I(I — Hl)XHﬁu = (XIEI)/XIIBII = (XIEI)IHl XIIﬁII
see below
= (XIEI)/XIIBII = (XIEI)/XIIBII
=0
since {[(XIB)I)/Hl]/}, = {H\X; 31} = (XiB1).
(3) A205.

ANOVA for Model Selection
Hg: EU = 0 versus Ha: BH #* 0.

Source df SS MS Statistics
Dueto 3 k SSR(full) SSR(full) /k

Due to 57 14 SSR(reduced) SSR(reduced) /¢ F

Due to f1; | Br k—¢ SSR(full | reduced) SSR(full | reduced)/(k — ¢)

Error n—(k+1) SSE MSE

Total n—1 SST

where
_ SSR(full | reduced)/(k — )

SSE/(n—k—1)
If we reject Hy, then the full model is better than the reduced model. Reject Hy when F' > F,(k — {,n — k — 1).
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Regression for Models without Full Rank

DEFINITION 10.1: Generalized Inverse

Let A € R™*¥, The generalized inverse (g-inverse) of A is any G € RF*" satisfying

AGA = A.
We say G is a g-inverse of A.
EXAMPLE 10.1
1
Let A = ; . Find a g-inverse of A.
4
Solution:
1 1 1
2 2 2
3 (a b ¢ d) 3| = |3
4 4 4

Ifwepicka=1,b=c=d=0,thenG= (1 0 0 0)isag-inverseof A.Also,G = (1/2 1/4 0 0)
is another g-inverse of A. Hence, we can see that g-inverses are not unique.

REMARK — Basic Facts
(1) If A is invertible, then the g-inverse of A is unique and given by A~!.
* Proof: Let G be any g-inverse of A, then AGA = A.
ATTAGAA ' =AAA! — G=A"1
Clearly, AA~'A = A.
(2) If G is a g-inverse of A, then for any C € R**", G; = G + C — GACAG is also a g-inverse of A.

¢ Proof: Note that

AGiA = AGA + ACA - AGACAGA
= AGA + ACA - ACA
=AGA
=A.

LEMMA 10.1

Every matrix A has at least one g-inverse.

Proof: Let A € R"** with rank(A) = r < min{n, k}. Then,
All A12
A =
(A21 Azz) ’

where Aj; € R™*" with rank(A;) = r.
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Claim:

_ (A7 O
a=("8" 3),
Xn

A A (AN O\ (A A
AGA = i
<A21 A22> ( o O) <A21 A22>

_ I O\ (A1 A
B A21A11 O A21 A22
_ (An A )

Ay Ay AMAL )

Since rank(A) = r = rank(A;), it follows that As; and Ay, are linear combinations of A;; and As.
Thus, one can find a B € R(®=7)*" guch that

is a g-inverse of A.

(A21 Ag) =B (A Ajp).

Hence,
Ay AT'A L =BA AT A, =BAp = Ay,

Therefore, AGA = A.

LECTURE 11
13th February

11 Lecture 11: g-inverse

Algorithm for Finding a g-inverse
Let A € R™** with rank(A) = r < min{n, k}.
* Step 1: Find an invertible sub-matrix M € R"*".
* Step 2: Compute (M 1),
* Step 3: Replace M with (M 1)’ in A.
* Step 4: Set all other elements in A to be 0.

* Step 5: Transpose the resulting matrix to G € R*¥*",

EXAMPLE 11.1
4 1 2 0
Compute a g-inverseof A= |1 1 5 15
3 1 3 5

Solution: Note that n = 3 and k& = 4. Let

Ti=(4 1 2 0),
va=(1 1 5 15),
T3=(3 1 3 5).

71 and U5 are linearly independent since

aT1 +bTy=0 — 15b=0and4a=0 — a=b=0.
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Also, 373 = 27 + Us. Therefore, rank(A) = 2. Now,

e Step 1:
4 0
M= (5 ¢)-
* Step 2:
_ 1 /5 =3 5/20 —3/20
1y .~ _
(M )2()(0 4> (0 4/20)'
* Step 3:
5/20 1 2 —-3/20
1 1 5 15
1 3 4/20
e Step 4:
5/20 0 0 —3/20
0 0 0 0
0 0 0 4/20
e Step 5:
5/20 0 O
0 0 0
0 0 0
-3/20 0 4/20

Verify that AGA = A.

THEOREM 11.1

Let A € R™* with rank(A) = 7 < min{n, k} and G be a g-inverse of A. Let F be a g-inverse of A’A.
Then,

(1) G'isa g-inverse of A'.
(2) rank(GA) = rank(AG) = rank(A) = r.
(3) A =AFA’A and A’ = A’AFA’. This means that FA' is a g-inverse of A.

Proof:
(1) Since AGA = A, we have that (AGA)' = A'G’A’ = A’. Therefore, G’ is a g-inverse of A’.

(2) Since AGA = A, rank(A) < rank(GA) < rank(A). Similarly, rank(A) < rank(AG) < rank(A).
Therefore,
rank(AG) = rank(GA) = rank(A).

(3) Since F is a g-inverse of A’A, we have A’AFA’A = A’A. Rearranging,

A/AFA'A —A’A =0
(A’/AFA’ — AY)A =0
A/(AFA’A — A) = O.
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Note that (AFA’A)’ = A’AF’A and

A’AF'A'/(AFA’A — A) = A’/AF A’AFA’A —A’AF'A’A
—_—

A’A
= A’AF'A’A — A'AF'A’A
=0.

Therefore,

(AFA'A — A)'(AFA’'A — A)=0.

Hence,

AFA'A —A =0 = AFA'A=A.
Similarly, A’/AFA’A = A’A, which implies
(A'AFA’ — A"A = O.
By direct calculation,
(A'AFA’ — A'")AF'A’A = A’AF'A’A — A’AF'A’A = O.

Therefore,
(A'AFA’ — A")(A’AFA’ — A') = 0.

Hence,
A’AFA’' = A’.

AF is a g-inverse of A’ and FA' is a g-inverse of A.
THEOREM 11.2
Let F be a g-inverse of A’A.
(1) ¥’ is a g-inverse of A’A.
(2) rank(AFA’) = rank(A).
(3) Let F be any g-inverse of A’A, then A’FA = A’FA.
(4) AFA’is symmetric.
Proof:
(1) Using Theorem 11.1, A’/AFA’A = A’A, so
A'A = (A’A) = A’AF'A’A.
(2) By Theorem 11.1, we have A = AFA’A. It follows that
rank(A) < rank(AFA’) < rank(A).
Therefore, rank(AFA’) = rank(A).
(3) Let F be any g-inverse of A’A. Then, A = AFA’A = AFA’A by Theorem 11.1, so

(AFA’ — AFA)A = O.
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Therefore,
(AFA’ — AFA')(AFA’ — AFA') = (AFA' — AFA/)(AF'A’ — AF'A’)
= (AFA' — AFA)A(F'A’ —F'A’)
= (AFA'A — AFA’A)(F'A’ —F'A)
—_—— S———
A A

= 0.

Hence, AFA’ = AFA’.

(4) By (1), F'isa g-inverse of A’A. Hence, AFA’ = AF'A’ = (AFA’)’. Therefore, AFA’ is symmetric.

THEOREM 11.3

Let A € R"**, Consider the system of equations
ATZ =7.

(1) If ¢ is a solution of the system of equations, then GA T is also a solution of the system of equations
for any g-inverse G of A.

(2) Let G be a g-inverse of A, then for any 7 € RF,
Gy +(GA-1I)Z
is a solution of the system of equations.

(3) Every solution can be written in the form of (2).

Proof:
(1) @y is a solution implies that A7y = ¥ . However,

A(GAT)) = (AGA)Z) = AT = 7.

(2) Note that
{GY+(GA-D)7 |7 € Rk}.

So,

A(GT +(GA-1)2) = AG7 + (AGAZ — A7)
= AG7
= AG(A?)
= AGAT
=A7

—

= y.
(3) Let 7 be any solution, so ATy = 3. Choose 7 = (GA —1I)7.
G7 +(GA-1)Z = GJ + (GAGA — 2GA + 1)@,
=Gy +(-GA+I)Z
= G:l_/) = GAE)O =F 53)0
= GA?O = GA?O == fg

-2
= Zg.
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LECTURE 12
16th February

12 Lecture 12: Regression Without Full Rank

DEFINITION 12.1: Estimable

Let A € R"*F with rank(A) = r < min{n, k}, @ € R*. Givena b € RF¥!, the quantity b7 is called

estimable if its value is the same for every solution of A7 = 7.
THEOREM 12.1
Let A € R"** b ¢ R¥, and G be a g-inverse of A.

b/ is estimable <> b'GA = b'.

Proof: Let 77 and 7', be any two solutions of AZ = 7. By Theorem 11.3, there exists 21, 2> € R* such
that

Now,
BT = b T = b(T— T)
= ' [(GA-I)(Z1 - 22)]
= b(GA —I)(Z, — 22)
=0

is estimable.
T is estimable. Let 2 be a solution of AZ = 7. Choose 7 such that

&)

— — —
Hence, b'2Z; = b'2Zy = b’

( =) Necessity: Assume that b’

<

To=GY + (GA -1)Z,.

Let z € R”. By definition,
T = GT + (GA—T)(Zo - 7).

Hence, 7 is a solution of A7 = ¥/, and so

b'Z=0'[GT + (GA-1)Z(+ (GA —D)Z]
=0'Fo+ b1(GA-T)Z.

So, b/(GA —1)Z = 0 for all 7, therefore b'(GA —1) = 0’ = b/'GA = b
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Non-Full Rank Regression

In regression, Y = Xﬁ + 2 and our normal equation is X’ XB) = X'Y. We consider the case where XX is not
invertible. Let F be a g-inverse of X'X, so R R
Bo=FX'Y.

Claim: Eo is a solution of R R
X'X8 =X'Y.

By Theorem 11.1, N - N
X'Xf[g=X'XFX'Y =X'Y.

However, f)’)o may not be a good estimator.
REMARK — Properties of Eo
(1) Expectation: ]E[ﬁo] = ]E[FX’E_/)] =FX’ ]E[}_;] —FX'XJ # B in general.
(2) Variance:

Var(Bo) = Cov(FXY,FXY)
= FX' Cov(Y,Y)XF'
= o’FX'XF'.

(3) Fitted values:

—

= (XFX)Y.

N
Note that by Theorem 11.2 (3), Y does not depend on which g-inverse (F') we use.

(4) SSE:
SSE = (Y - V)Y - ¥)
= (Y - XFX'Y) (Y - XFX'Y)
=Y'(I- XFX')(I- XFX)Y
=Y'(I- XFX')(I - XFX)Y Theorem 11.2 (4)
=Y'(I- XFX)Y,
where

(I - XFX')(I - XFX') = I - 2XFX' + XFX'X FX
X
=1-2XFX' + XFX’ Theorem 11.1 (3)

=1-XFX'.
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EXAMPLE 12.1

Weights of Six Plants

Types of Plants

Normal Off-type Aberrant

101 84 32
105 88

94
300 172 32

Relation between weight and types. Let Y = weight, 1 = normal, x5 = off-type, x3 = aberrant, where
all the covariates are binary. Y;; = observation of 4™ plant of type i fori = 1,2,3; ny = 3, ny = 2, nz = 1,
and n = nqy + ny + n3 = 6.

Y'=(Yii Y2 Yis Yar Ya Ys3)= (101 105 94 84 88 32).

Regression model:
Yi; = Bo + Bi +¢€45.

* 3y = population mean;
* [3; = effect of type i on the weight;
* ¢;; = random error of observation Y;;.

Explicitly, we have

Y11 = Bo + B1 + 082 + 083 + €11
Y12 = Bo + B1 + 062 + 083 + €12
Y13 = B0+ B1 + 082 + 083 + €13
Yo1 = Bo + 081 + B2 + 083 + €21
Yoo = Bo + 081 + B2 + 083 + €22
Y33 = o + 081 + 082 + B3 + €33.

Therefore, Y = XB) with

11 0 0
1 1 0 0
1 1 0 0
X_1010
1 010
1 0 0 1

Note that rank(X) = 3 < min{6,4} so X is not full rank.

6 3 2 1
~ |33 00

XX=15 020
100 1

Y. 504

2 | v | _ [ 300

XY =1y, | = |12
Ys 32
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Normal equation X’ Xﬁ =X'Y. g-inverse of X'X

300 D 0 G
M=[0 2 0] = F=
00 1 0 0 1/2 0
0 O 0 1
Note that
0
2 = | 100
Bo=FX'Y = 36
32

— —
is one solution. However, we cannot claim that 3 is an estimate of (. By direct calculation,

0 0 0 6 3 2 1 0 0 0 O

~ |0 1/3 0 0 3 30 0] |1 100
FXX = 0 0 1/2 0 2 02 0] |1 010
0 0 0 1 10 0 1 1 0 0 1

Choose b’ = (1 1 0 0)and compute

—

PFX'X=(1 1 0 0)=7,
0 b/ B) = By + B1 is estimable. Therefore, 3y + (1 is an estimator of 8y + 3.

LECTURE 13
27th February

13 Lecture 13: Regression Without Full Rank (Continued)

THEOREM 13.1

If rank(X) = r, then
, SSE

n—r

52

Il
S
Il

is an unbiased estimator of 2.

Proof:
E[SSE] = E [17”(1 _ XFX')?}
— tr((I— XFX')0?T) + (X73)/(I - XFX')X 3
o (tr(I) — tr(XFX')
o*(n—7)+ (XB)XB - (XB)(XB)
*(n—1),

where we used the fact that rank(XFX') = rank(X) = r by Theorem 11.2 (2). Therefore,

Il
:
®
=l
)
[
|
"
><
E>|
~
"
=

E[SSE] = o*(n —r) = E[6?] = 0.
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THEOREM 13.2
Ifrank(X) = r and Y ~ MN(X 3, o), then
(1) Bo=FX'Y ~MN(FX'X3,0?FX'XF’).
2) Eo and 62 are independent.
(3) SSE/o? ~ x2*(n — 7).
(4) SSR/o? ~ x*(r — 1, \), where
1

A= T‘Q(Xﬁ)’(XFX’ — 13)X3.
(5) SSE and SSR are independent.
Proof:
(1) Trivial.
2 Eo — FX'Y and
52— 3E _ 1 9rq_xEx)Y.

n—r n—r
By direct calculation,

FX'o?I(I — XFX')
2

= 7 _FX/(I- XFX)
n—r
0_2
- [FX' — FX'XFX/|
n—r
0_2
= ——[FX' — FX/|] Theorem 11.1
n—r
~ 0.

Therefore, ﬁo and 62 are independent by Theorem 5.1.

(3) Note that

E Y Y
SE _ Y 1oxFx) L
g g g
and N =
Y X
— ~MN<ﬁ,I>.
g g

Note that I — XFX' is idempotent (see properties of Eo)- Now,

1(XBY X5
2() (I- XFX') ==

>
Il

a

1 > —
= 53 /XX - X'XFX'X]§
1 > —
= ﬁ /[X,X - X./X.] ﬁ
=0.

The result follows from Theorem 4.1.
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(4) Note that N
R Y’
SSR _ —(XFX' - 17)

o2 o

We need to show that XFX' — %J is idempotent.

o =4

(XFX' — 1J)? = (XFX' — LJ)(XFX' - 1J)
= XFX'XFX' - LJXFX' - 1XFX'J + LJJ
=XFX' - 1XFX'J - LJXFX' + 1J.

We know that XFX'X = X, so partitioning we see
XFX' (7 X)) =X,
which implies that XFX’ 7 = 7 Therefore, XFX'J = J. Continuing,
XFX' — LXFX'J - LJXFX' + 1J=XFX' - 1J-1J+ 1J
=XFX' - 17,
so XFX' is idempotent. The result follows from Theorem 4.1.
(5) SSE = Y'(I - XFX')Y and SSR = Y/(XFX' — LJ)Y.

(I- XFX')(XFX' - 1J) = XFX' - 1J — XFX'XFX + 1XFX'J
=XFX' - 1J - XFX'+1J

=0.
The result follows from Theorem 5.2.
ANOVA Table
Source of Variation Degrees of Freedom Sum of Squares Mean Square F
Due to r SSR MSR = SSR/(r — 1) MSR/MSE
Error n—r SSE MSE = SSE/(n — )
Total n—1 SST

Rejection region: F' > F,,(r — 1,n — r), and we are testing Hy: Xﬁ = 0 versus Hy: XE # 0, which is not the
same as the hypothesis test of Hy: 8 = 0 versus Ha: 3 # 0 as before.

THEOREM 13.3

Bo
Let § = o | e R b € R¥1 and F be a g-inverse of X'X.

Br
b B is estimable if and only if one of the following hold:

(1) D'FX'X =1
(2) There exists @ € R™ such that b =a'X.

(3) There exists ¢ € RFtL such that N
b’ = 7' X'X.
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Proof:

(1) Theorem 12.1.

(2) To show (1) — (2), choose &’ = b’FX’ which implies that @’X = b’. To show 2 = (1),
note that b/ = @’X, and multiply to get b'FX'X = @'XFX'X = 7'X.

(3) To show (1) = (3), choose ¢ = b'F. To show 3 = @),

b = 2X'X
DFX'X = 2'X'XFX'X
- 2'X'X
—_

REMARK

=, . . — = T s . >3
Assume that b’ is estimable. Let So = FX'Y. b’ is an estimator of b'/.

- —>
The expectation of b’ 3 is

E[5"Bo] = b"E[Bo]
— V'FX'X[ Theorem 13.2 (1)
= T;'ﬁ Theorem 13.3 (1).

—

N
Hence, b ﬁo is an unblased estimator of b’ 3.
The variance of b’ 6 0 is

Var(i;’go) S Var(ﬁo)g)
— D'o?’FX'XF' D Theorem 13.2 (1)

— 2PFX'X'F Y

—2b'F' b Theorem 13.3 (1)
— 20'Fb Theorem 11.2 (3)

by Theorem 11.2 (3).

THEOREM 13.4

IfY ~ MN(XJ,01), then

Claim:
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2 b'Fb
Z
_ ~t _
— (n—r),
since
5% _ SSE
ag - n — T"
SSE ~ x%(n —71), Z ~ N(0,1),and V ~ x?(n — r). By Theorem 13.2 (2) Z and V are independent.

A (1 — @)100% confidence interval for b’ B is given by
B/ Bo+tn pa26VEFD.

EXAMPLE 13.1
Refer to Example 12.1. Note that

DEX'X =8 = bo+bs+bi=b, by=—bs=1,5'=(0 1 —1 0).

We can estimate

Bo
TE=(0 1 -1 0P| =5 -5,
B ( ) 52 ﬂl ﬂ2
B3
n==6,r=3,a=>5%,t,_rap2=3182.
SSE
62 = _ 0 23.33
n—r
b'Fb 5
o2 6

The confidence interval is

-, — )
b/ fg % 3.182v 23.33\/; = 14 4+ 14.0303 = (—0.0303, 28.0303).

LECTURE 14
2nd March

14 Lecture 14: General Linear Hypothesis Testing

Let B € R*+1*s with rank(B) = s and 7} € R®. We want to test Hy: B’ = i} versus Ha: B/ # i}. Write

bll bls
= T @ T
be+1)r " barsn)s
Hence,
BF= (018 - 5.8).
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In order for B’ 3 to be estimable, we need Y;QE to be estimable for ¢ = 1, ..., s. This requires
b'FX'X =1, < BFX'X=PB.
THEOREM 14.1
Let BO be a solution to the normal equation
X'XE =X'Y.

Since XFX'X =X, it follows that Xﬁ is estimable and Xﬁo is an estimator of XB).
Assume that B’ 3 is estimable.

(1) E[B'F,] = BP.

(2) Var(B'fB,) = 0*B'FB.

Proof: Since B’ ﬁ is estimable, B'FX’X = B’. Furthermore,
B'5, = BFX'Xf,.
(1) For the expectation,

E[B'Fo] = E[B'FX'X /]
— BFE[X'X 5]
— B'FEX'Y]
— B'FX'E[Y]
— BFX'X3
—B'j.

(2) For the variance,

Var(B'Bo) = Var(B'FX'X )

= Var(B'FX'Y)

= (B'FX)o’I(B'FX’)

= o’B'FX'XF'B

= o°B'FB.
THEOREM 14.2
If B'S is estimable, then rank(B'FB) = s.
Proof: B’ 3 is estimable implies that there exists C € R(**+1)** matrix such that B’ = C’X'X (extension
of Theorem 13.3). We know that rank(B’) = s = rank(C’X’X) < rank(C’) < s. Therefore, rank(C) =
rank(C’) = s. Also, rank(B’) < rank(C'X) < rank(C’) = s, which implies that rank(C'X’) =
rank(XC) = s. Now,

B'FB = C'X'XFX'XC
= C'’X'XC
= (XC)(XC),

54



and by Theorem 1.3, we have that

rank(B’FB) = rank ((XC)'(XC))
= rank(XC)

=s.
THEOREM 14.3
Set Q = (B’BD — Fn’)’(B’FB)_l(B’BO — m). Then, the following hold:

(1) Q/a* ~ x>(s,\), where

1

= 5.3(B' —m)(B'FB)~!(B'S — ).

(2) Q and SSE are independent.

Proof:
(1) The main idea is to use Theorem 4.1. Note that Y ~ N (Xﬁ, o?I).
BBy — it = BFX'X3, —
—BFXY -
~ MN (B’FX’XE _m, 2)
=MN(B'F — i, %),
N

s
where
S = o’B'FXX/'(B'FX’)
= ¢’B'FX'XB'F'B
= ¢’B'FB.
Therefore,

AY = (B'FB) '0*(B'FB) =1,
which is idempotent. It follows from Theorem 4.1 that Q ~ x?(s, \), where ) is defined above.

2 Q= (B’Eo - n_z’)’(B’FB)*l(B’B)O — m). Idea: rewrite @ into a quadratic form and use Theorem
o Q = (B'FX'Y — M) (B'FB) Y (BFX'Y — i)
Recall that SSE = Y'(I — XFX')Y, and
BB, = BFX'Xf,
=BFXY
= (B'FX)Y.
Hence,
(B'FX')o’I(I - XFX') = 0?[B' FX' — BFX'XFX/]
= o?[B'FX' - B'FX/|
=0.
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Therefore, by Theorem 5.1, we obtain the result.

Alternative Proof Idea: Prove that B'FX'Y is independent of SSE.

B'FX'(I - XFX') = BFX' — BFX'XFX’
= B'FX.

General One-Way Classification Model
Yij = p+ oy + &4,

where ¢ = 1,...,a are the factors, j = 1,...,n; are the levels, and n = ny + - - - + n, are the total number of
observations.

e u is the global average;
* «; is additional impact of group ¢ (a; > 0 higher than global average);
* &,; is the error of group ¢ on level j.

In matrix-vector form, we may write the model as follows.

Y1,

}/177,1 Cljl
=X 0| +7F,

Y(Ll Qg

Yana

where

ni

[
—_
o

N2

100 --- 1

Ng

—
—
o
cee e O ‘e
—— —_—— ——
—_ =
— =
O =
O =
O =
S =

100 --- 1
and rank(X) = a. Note that

nony N2 - N
ny N 0 c. 0
X'X=|n2 0 n2 -+ 0| cplatDx(at+l)
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A g-inverse of X'X is

o0

Z?:1RZ?;1 Y Y

X'i_; _ Ejil Ylj _ Yi

Z;Lil Yo, Yo

where Y. =" | Z;’Zl Y;;and Y; = 2;21 =Y;;. Also,
0o --- 0 0 r .- 11 --- 1
) ‘ _ 1 ... 1.0 --- 0
rx - | 1/ny - : 0O --- 0 1 --- 1
0 . T 0 .l
0 0 1/na/ \o 0 0 0
0 0 0 0 0
1/nq 1/ny 0 0 0
— 0 0 1/77/2 1/’[12 0
0 0 0 0 1/na

X'X3 =X'Y
is
0 0
— — iyl ?1
’ n1 :
Bo=FXY = =| .1
1v.) \v.
where YV; = 1Y;.
* Sum of Squares Total:
SST= 3D (%, - V.
i=1 j=1
a n; Y2
_ 2
DGR
i=1 j=1
> — —
¢ Sum of Squares Regression: Define Y = X 3y = XFX'Y. Hence,
s> 3 (7, -7
i=1j=1

O =

(=



Furthermore,

a mn;
N RN
>3- 77
i=1 j=1
= 7'XpBo
=(n n - nq) Bo
=Y +naYa +-+n,Ya
=Y.
=nY .
ENUEN )
Furthermore, SSR=Y Y —nY , and
Y.
n1 .
0 _
2/ — ?1. Yl'
Y =Xgo=X]| . | = :
v, Ya.
Ng
Y.

Therefore,

SSR = n17?_ 4+ naYZ — n?_Z_
QLIRS

n; n
i=1 't

* Sum of Squares Error:

SSE = SST — SSR

a 2

-
=ZZY£—;;

i=1 j=1
By Theorem 13.1 and Theorem 13.2, we have the following distributions.
* SSE/0? ~ x%(n — a).

* SSR/0? ~ x%(a — 1, \), where
1

= (XB)(XFX' - 13)X 7.

LECTURE 15
6th March

15 Lecture 15: ANOVA Table For One-Way Classification

For Hy: XE = 0 versus Hy: Xﬁ #+ 0.

Source of Variation Degrees of Freedom Sum of Squares Mean Square F

Due to Regression a —1 SSR MSR MSR/MSE
Error n—a SSE MSE
Total n—1 SST

if F = MSR/MSE > F,(a — 1,n — a), then we conclude that the model Y;; + p + «; + ¢;; accounts for
significantly more variation in the Y variable than the model Y;; + 1 + €.
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Estimable Linear Combinations
D'FX'X = b/, where b € R+,

0 0 0 0 0 0
1/ng - 1/m 0 0 0 0
FX'X — 0 0 1/ng -+ 1/ng 0 0
0 0 0o - 0 1/ng -+ 1/n,
1 1 1 1 1 1
1 1 0 0 0 0
« 10 0 1 1 0 0|x
0O --- 00 -+ 0 - 1 - 1
= exercise
0 0 O 0
1 1 0 0
_ |1 0 1 0

100 0-- 1
DEX'X = (bi+--+by b by - by)=(bp b1 - ba),
where bg = b; + - - - + b,. Now,

FE=(0 o n)
Qq
=bofl +bias + -+ bag
:(bl+"'+ba)ﬁ+b1al+"'+baaa
:bl(ﬂ+0‘1)+"'+ba(ﬂ+0‘a)-

Questions:
(1) Is p estimable? No.
(2) Are ;s estimable? No. b; = 1, b; = 0 for ¢ # j, so we will get u + «; # ;.
(3) Is  + «; estimable? Yes. Choose b; = 1 and b; = 0 for i # j.

(4) Is a; — «; estimable (for i # j)? Yes. b; =1,b; = —1, and by, = 0 for k # 4, j.

Confidence Interval

If b’ B) is estimable, then a 100(1 — «)% confidence interval for b E is

b Bo+ty a6V bFD.

To get a CI for 5; — (3;, we need to consider

59



we have 3’3 = EZ - »j Hence,
B'FL = (0 0 1/m ~1/n; 0 0) b
1 1
= — 4+ —
ng N,

Therefore, 7, /n% + n—lj is the standard error for the CI of 3; — 3;, and a 100(1 — a))% confidence interval for
Bi — B is

1 1

[))LO - Bj) + tnfa,a/2a- —+ —.
mn; n;

Two-way Nested Classification Part I
Yijk = 1+ o + Bij + €ijis
wherei =1,...,a (category i), j = 1,...,b; (subclass j), k =1,...,n;; (observation k).
* /i is the overall mean;
* q; is the effect due to category 7;
* [3; is the effect due to subclass j;

* &) is the error.

In matrix-vector form, we may write the model as follows (why would anyone write this).

Yiu
Y11n11
Yip,1
Ylblnlbl 1
: o
You :
: a
Yatn,, P11
: =X : | +7,
Yap,1 Prv,
Y2b2n2b2 Bal
Ya11 Pab,
: El
Yvalna1
Yabal
Yabanaba
Y
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where I personally can’t be bothered to write out X.
Notes:

* Total number of observations: n = > ¢, E;’.’;l Nij = D iy Ni.-
* Total number of parameters: m =1+4+a+ Y 7, b;.

* rank(X'X) =b.

EXAMPLE 15.1

Suppose we want to know the students opinion of the instructor’s classroom use of computer facility
(0 +» 10). For example, if we have two courses English (two sections) and Geology (three sections):

* English Section 1: 5.
* English Section 2: 8, 10, 9.
* Geology Section 1: 8, 10.
* Geology Section 2: 6, 2, 1, 3.
* Geology Section 3: 3, 7.
We calculate the following.
* a=2,b =2,by =3.
* nip=1,n19 =3, noy = 2, Nog = 4, nog = 2.
* n=n11 +ni2+ N2 +ng+noz=1+3+2+4+4+2=12.

*m=14+a+b +bo=1+2+2+43=28.

1%
aq
a2
1 B11
F=1 B
Ba1
622
Bas
n. mni. N2, Ni1 Ni2 N21 N22 N23
ni. na. 0 ni1 nNi2 0 0 0
na, 0 mp 0 0 mn21 noa nos
/ ni1 N1 0 ni11 0 0 0 0
2ol = N2 N2 0 0 n12 0 0 0
Nno1 0 no1 0 0 Nno1 0 0
292 0 29 0 0 0 o2 0
Nnas 0 Nna3 0 0 0 0 Nna3

XY = (Y. Yi. Yo Y. Yio Yo Yo Yaz).
rank(X’'X) = by + b = 5, and a g-inverse of X'X is

F= (8 diag(l/mg“v/”??'))
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Il
e e e e
— R = == O O OO
OO R PR EFEFOOOOOO
_—_ 00O OO 0o o oo

S OO OO OO H =
OO OO OO ODOOC OO
OO OODODOO O
DO O OO0 R HLHOOOO

Therefore, N N B
Bo=FXY=(0 0 0 Yy

=l

Yo. Yo ?23.)1 .

LECTURE 16
9th March

16 Lecture 16: Two-Way Nested Classification Part II

* Model 1: Y, = 1 + €.
* Model 2: Y, = pt+ a; + €.
* Model 3: Y, = pp + a; + Bij + €4

ANOVA

a b; Mij

SST= "> (Vi -V )

i=1 j=1k=1
=22 —2
=Y'Y —nY .

a b; Mij

SSR=) > > (Vip =Y .)?

i=1 j=1 k=1

= B%X’? - n?2

= $S(a, B | p).
SSE = SST — SSR

a b Nij
S (k- rz)

i=1j=1 “k=1

ANOVA Table I

Testing the overall effectiveness of Model 3.

Source of Variation Degrees of Freedom Sum of Squares Mean Square F

Fitting o, 5 : a afterpy b—1 SSR MSR MSR/MSE
Error n—>a SSE MSE

Total n—1 SST

Tests on the significant impact on the variation in Y.
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ANOVA Table II

Source of Variation Degrees of Freedom Sum of Squares Mean Square F

Fitting « after u a—1 SS(a | ) MSR(« | ) Fla|p)
Fitting 3 : o after y,a b —a SS(B:a|pa) MSR(B:a|pa) FB:alp )
Error n—>ob SSE MSE

Total n—1 SST

* SS(a | 1) = SSR of Model 2; that is, we are checking the impact of « on the variance.

* SS(B:a|pa)=SS(a,f:al|p) —SS(a| pn); that is, we are checking the impact of 3 after o on the

model.
MSR(« | 1)
F = T Pla—1,n—b).
(o) =BXO) 1m0
MSR(S :
F(ﬂ:a|u,a):$wF(b—a,n—b).
EXAMPLE 16.1

Refer to the English and Geology data from Example 15.1.

e SST =110
e SSR = 84.
e SSE = 26.
. y?2  y?
* SS = b e =94
(| ) ; n

* SS(f:a|p,a) =84 —24 =60.
ANOVA Table I:

Source of Variation Degrees of Freedom Sum of Squares Mean Square F

Fitting o, 8 : v after p 4 84 21 21(7)/26 = 5.66
Error 7 26 26/7

Total 11 110

ANOVA Table II:

Source of Variation Degrees of Freedom Sum of Squares Mean Square F
Fitting « after u 1 24 24 6.5
Fitting 3 : v after p, ¢ 3 60 20 5.4
Error 7 26 26/7

Total 11 110

* Testing «, 8 : «v after u: 5.66 > Fy o5(4,7) = 4.12, reject the fact that we do not need « and £, so
Model 3 is adequate. Model 3 accounts for significantly more variation than Model 1.

*» Testing « after p: 6.5 > Fpo5(1,7) = 5.59, we need . Model 2 accounts for significantly more
variation than Model 1.

» Testing 3 : « after u,a: 5.4 > Fp05(3,7) = 4.35, we need 5. Model 3 accounts for significantly
more variation than Model 2.
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Estimable Combinations
DFX'X = b'. Write b'FX’ = 2. Also, b'5 = E”XE. Idea:

2 = (6111 S Cllmy Gl Cigny ) .
E)/X — (wll PR wlbl w21 PN w2b2 “ e wal “ e waba) .
—, —> —>
blB:(wll cee Wi, )5
a b1
=2 wig(p+ai+ By).
i=1 j=1

Conclusion:
(1) w, 4+ «;, o are not estimable.
(2) 1+ o + B;; is estimable.
(3) Bij — Pie is estimable.

(4) 1% + o + Z?lzl wi]ﬂij is estimable if Z;h:l Wij = 1.

by b . . "y b
5) aj —ay+ ZFI w;jBij — >t Wiefie is estimable if Zj:1 Wij =y o, wig = 1.

(6) «; — ay is not estimable.

Hypothesis Testing
* Hi:Biu==8um,t=1,...,a;
* Hpu: at least one equality fails.
Define (by — 1) + (by — 1) 4 --- 4 (s — 1) = #’ and m = 1 4 a + Y°_, b;. Hence, B’ € R"*™, where

rank(B) = b — a. Therefore,
B/ = (Onlx(a+1) diag(Zbl, ey Zba)) ,

b;—1

1, - diag(—1,...,—-1

Q = (B'B0)(B'FB)(B'Fo) = SS(B: a |, ).

_ Q/(n—a)
= SSE/(n 1) ~ F(b—a,n—0).

REMARK

If n;; = r for all ¢, j, and b; = c for all 4, then the model is called a balanced model.

From Example 15.1, we have

851
Q2
A
P12
B
522
623

=)
|
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b'= (a1 az az by bz by by bag).

Therefore, DEX'X = b , where
a1 = b1y + bia + ba1 + baa + bas,
az = by1 + b2,
ag = ba1 + bag + bas.

Therefore,

b' B = aip+ asaq + azas + bi1B11 + biaBia + bai1Bar + baaBas + Ba3fos
=bi(p+ o1 + B11) + bia(p + a1 + i) + bor (e + g + B21) + bz (i + ao + Ba2) + baz (i + g + Fa3).

LECTURE 17
13th March

17 Lecture 17: Two-way Crossed Classification (No Interaction) Part I

Basic Data Structure:

* Two factors A and B, where factor A has a levels, and factor B has b levels.

AB| 1 2 - b
1 niy N2 v N
2 Ng1 Nz -+ Mgy
a Mgl Ma2 -+ MNab

Let n;; be the number of observations at cell (¢, j). The model with no interaction is defined as
Yij =p+a;+ 5 +ei.
Write

—

G=W a1~ aa B - B).

For this model, n;; = 0 or 1. If n;; = 1 for all cells, the model is said to be balanced. In this case, we have

(iaj) ooy az e oag B Baoo By
(1,1) /1 1 o --- 0 1 o --- 0
(L)1 1 0 0 0 0 1
2,11 1 0 1 0
. (ab)x +a+
X=@nl1 o 1 0 0 0 1| €R :
(e, 1)1 0 1 1 1 0 0
(a,b) \1 0 1 1 0 0 1
n. Ny N2 -+ MNg N1 -+ Ny
ng, ng 0O - 0 1 - 1
N9, 0 no. 0 1 1
Ng. 0O 0 - ng 1 - 1
n1 1 1 .- 1 nqy - 0
ny 1 1 1 0 ny




For a general model n;; = 0 or 1, we have

n” nl, n2' e na' n,l “ .. n,b
nl, nl, O “ e O nll “ e nlb
na, 0 ma v 0 mop cer g
X'X =
Na. 0 0 e Ng. Na1 o Nab
ni N1z N21 -+ MNg1 N1 - 0
ngy N N2y 0 Ngy 0 0y
Y.
Y.
/—>
XY =1Y,.
Y,
Yy

The normal equation is X’XB> = X'Y. We note that rank(X) = a + b — 1 since the sum of rows 2 to a equals
the first row, and the sum of rows a + 2 to a + b + 1 also equals to the first row. Since the number of parameters
is a + b+ 1, it follows that we have the freedom of removing two equations.

General Rules:

(1) Remove the first equation by setting p = 0.
(2) Ifa<b,seta; =0.Ifa > b, set B, =0.If a = b, set either a; =0 or B, = 0.

Let
a - dla‘g(nl ) 7”&.)3
D, =diag(ni,...,ny),
D 41y = diag(n.1, ..., n.0-1)),
nll PN nlb
Nab -
Nal Nab
Therefore,
n., mni o Mg, N1 -+ MNp
ni.
: Da Nab
X'X = | na.
na
: N, D,
np
Furthermore,
Ya. = (Yl e Ya.) R Y.(b—l) = (Yl e Y(b—l)) .

Removing p and B, (first row and last row are linear combination of other rows), we obtain

(o, B0 ()= ()
N.4-1y Do Bo-1 Y -1/’
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o B1

where @ = | : |, and Bb_l = : . Set N = N (;_1). Therefore,

Qg Bb—l

From the first equation, we obtain N R
a=D,' (Y, —Nf,_1).

a.

Substituting @ into the second equation, we get
N'D,' (Yo = NBp1) + D 1) Bo-1 =Y (-1
N'D;'Yo = N'D'NFyp1 +D 1) o1 =Y (b1
~N'D;'NBy_1+D 1) Bo-1 =Y -1y — N'D; 'Y,
(D. -1y —N'D;'N)By_1 =Y (1) - N'D; 'Y,

Define
C=D ) - N'D,'N,
7= ?A(b—l) - M/}_;a.v
M =D,'N,

so solving for ﬁb,l (assuming that C~! exists) above yields

Br1=C'7.
Furthermore, R
a=D;'Y, —-MC'7?
Hence, one solution is
0 I
B = Y, -MC'7|a
’ Cil? ﬂb—l’
0 ﬁb
where D;l?a, =Y,.
A g-inverse of X'X is
0 (0) (0] 0
F— O D;!+MC'M -MC! O
I ) -C M’ c! (0]
0 (0) 0) 0
To verify this, we must check the following (exercise).
D;!+MC'M' -MC !\ /(D,, N
—-C—'M Cc! N’ D.(b—l)
(I, +MC'M'D, - MC™'N’' (D;!+MC~'M')N - MC'D,
- -C~'M'D, + C~'N’ ~C'M'N + C'D ).
(I, O
- \O I,
= Ia+b—1-

LECTURE 18
16th March
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18 Lecture 18: Two-way Crossed Classification (No Interaction) Part II

We know that Y7 | a; = 0 and Z?:l Bj = 0.

e SST = ZZYQ—;

=1 j=1

Y2
SS(ev, B | 1) = B ’Y—ﬁ
Y.
2 ?a Y2
.(b—1) n
Y,
Y.
- Y Y2
— _ —1-=2\/ —12\/ —> a. e
(0 (Fu-MC7y (C7) 0) Faul™ 7
Y,
- - Y2
=D,'Y, —-MC'?)Y, +(C'P)Y (_1) — =
- - Y2
=Y, D,'Y, - (MC'?)Y, +(C'P)Y (4_1) — —=
Y2 - 2
=) 4 (C Y ooy —M'Y, ) — ==
2, +(CT ) (Y b1 ) .
a v2 - N Y2
= 77 + /Bgfl r——,

i=1

where C~17 = ﬁb,l, and ¥ = }_}_(b_l) —-MY,.

ANOVA Table I

Source of Variation Degrees of Freedom Sum of Squares Mean Square F

Fitting o, 8 after py  a+b—2 SS(a, B | ) MS(a, B | )  Fla, S| 1)
Error n—(a+b—1) SSE MSE
Total n—1 SST
a 2 = Y2
. SS =N Ly g ol
(o, B | ) ) + BT "

ANOVA Table II

Source of Variation Degrees of Freedom Sum of Squares Mean Square F

Fitting « after p a—1 SS(a | ) MS(a | ) Fla—1,n+1—a—0)
Fitting 5 after y, o« b —1 SS(B | p, @) MS(8 | u,a) F(b—1,n+1—a—0>)
Error n+l—a-0> SSE MSE
Total n—1 SST
a Y? Y2
e ss(alp =Y oL
— ;. n

* SS(B | pya) = SS(a, B | 1) — SS(a | p) = By, 7
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ANOVA Table III

Source of Variation Degrees of Freedom Sum of Squares Mean Square F

Fitting (3 after p b—1 SS(B | w) MS(8 | u) Fb-—1,n+1—a-0)
Fitting « after u, 5 a—1 SS(a | w, B) MS(a | pu,8) Fla—1l,n+1—a—0>)
Error n+l—-—a—-"> SSE MSE
Total n—1 SST
b 2 2
Y
* SS( i
Blw=> P
7j=1

* SS(a| p, B) =SS(e, B | ) — SS(B | ).

Estimable Functions

E[Yi] = p4ai+ 85 = > wij(p+ o + B;).
,J
(1) p+ a4 + B; is estimable for all 7, j. Choose w;; = 1 and wye = 0 for k # i or £ # j.
(2) a; — «y is estimable for all ¢ # k. Choose w;; = —wy; = 1, other wy, = 0.
(3) By — By is estimable for all k # ¢. Choose w;;, = —w;¢ = 1 and other coefficients 0.
EXAMPLE 18.1

Number of seconds beyond 3 minutes taken to boil 8 cups of water.

Make of Pan (53)
Brand of Stove () A B C

X 18 12 24
Y = = 9
VA 3 - 15
w 6 3 18

The model will be Yij=p+o; + ﬁj + €5

?:(Yn Yio Yiz Yoz Ya1 Yiz3 Yy Yao Y43),

wo oo ay a3 ou i P2 B3
1 1 0 0 0 1 0 0
1 1. 0 0 0 0 1 0
1 1. 0 0 0 0 0 1
1 0 1 0 0 0 0 1
X=|1 0 0 1 0 1 0 0]|ecros
1 0 0 1 0 0 0 1
1 0 0 0 1 1 0 1
1 0 0 0 1 0 1 0
1 0 0 0 1 0 0 1

e n=0.
e m=1+4+3=28.
e n =9.

® ny. :3) ng. = 1: ng. = 2: Ny = 3.
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*ni1=3,ns=2n3=4.

* a=4,b=3,s0a > b (choose u =0, a; =0)

93 1 23 3 2 4
33000111
10100001
w |2 0020101
XX=130003 111
31011300
21001020
4111100 4
* D, =diag(3,1,2,3)
11
0 0
N=11 ¢
11
1/3 1/3
0 0
. =3 -1 =
M=DZ'N=| . g
1/3 1/3
3 0
e D (b=1) = (0 2)
1/3 1/3
_ 30 101 1\[o0o o 11/6  —4/6
. _ N/ 1 — _ =
C=D 1)~ ND;'N (o 2) (1 00 1> /2 0 (—4/6 8/6 )'
1/3 1/3
8 4
3 -1 _ L
C =5 (4 11)'
« Y. =(18,9,9,9).
e V. =(54,9,18,27)".
« Y o1 = (27,15)".
54
L o > 27 1/3 0 1/2 1/3\ [ 9 -9
L] f— p— / — —_— g
T=Y -1 - MY, (15> <1/3 0 0 1/3) |18 —12)°
927

Therefore, a solution is 5o = (0 26 9 14 17 —-10 —14 O)/. A g-inverse of X’X is

0 0 0 0 0 0 0] 0

0 7 0 2 3 -4 -5| [o

0 0 12 0 0 0 0 0

p_ L]0 2 0 8 2 -4 =2| |0
12| |0 3.0 27 -4 —5| |0

o] [-4 0 -4 —4 8 4 0

0 [-5 0 -2 —5} {4 1J 0

0 0 0 0 0 0 0 0 0
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LECTURE 19
20th March

19 Lecture 19: Two-way Crossed Classification (No Interaction) Part III

b.
CnL =30 D N
° 7l)a. = (n1.7 DR na.)/-
i ﬁ)_b = (n,l, . ,n.b)'.

D, =diag(ni,...,nq.)-

D_}, = diag(n.l, e ,TL_(,).

nir o MNik-1)
. N —
Na1 "+ MNa(b-1)
- /
®* Ny = (nlb,...,nab) .

Using these definitions, we may write

n. g, ﬁf(bq) R
7w D N 7w
X/X _ v}”a. a. b
n.p-1y N Doy O
ny ﬁ/b O ny
A g-inverse of X'X is
0 (@) (0] 0
F_ O D;!+MC'M -MC! O
e -C M/ c-! o’
0 (0) (0] 0

where the dimensions of O need to be filled in for ASQ2 (trivial). Recall that M = D, !N and C = D 1) —
N'D;'N =D ;,_;) — M'N. We will compute the following quantity.

0O 0 0O

==\ B 3 1)
E
0 0 0 O

Block 1

=D, ' +MC M7, - MC™'7 ,_)
= D;lﬁa' + MC‘l[M’ﬁa, — 7_{.(17—1)]
7.+ MC O

S|

a-
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M=D,'N — M7, =ND_,'7,.
=N'7,

nir - Nib-1) 1

Na1 "+ MNa(b-1) 1

n.i1

n.(b-1)
Block 2

=-C'M'7, +C 'R -1
=-C ' Mo — 7 1))
= 0.

Block 5

= (D;'+MC'M')D,, — MC™'N’
=D,'D, + MC'M'D, - MC™ !N’
=1, +MC ! M'D,, — N']
=1,.

M/ _ N/Dg_l — M/Da — N/D(:_lDa_ — N/.
Block 6
[6]=(D;! + MC'M')N - MC™'D , 1
=D,'N+MC 'M'N-MC'D
=M+MC '(M'N-D (1))

=M-MC~!'C
=0.

C=D-1)-ND,;'N=D ¢, — M'N.
Block 7
=-C'M'D, +C'N
=-C'N'D,'D, + C™'N’
=0.

Block 8

=-C 'M'N+C'D
=-C'(D -1 - M'N)
=C!c
=TIy 1.
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Block 3

= (D}, + MC™'M')7,
= (D' +MC M) (R0 — N7 4_1)
=D 'R + MC'M'%, — (D;' + MC'M')N7,_;
= Ju+MCIN'D; %, — (D;' + MC'M')NJ,_,
= Ja+MC '], —MC'D 1) j b
= Ja+MC N7, — D.(b—l)?bfl]

n.1 nai
= J.+MC! : -
. (b—1) . (b—1)

=7

ni, nip + -+ Nyp-1) + N

n.g= =
Ng, N1 + -+ + Ngb—1) + Nab
= N?b—1 + M.

(D' +MC'M')N-MC ™ 'D _1) =D;'N+ MC'M'N - MC™'D (,_
=M-MC (D ;) — M'N)

=M-M
=0.
Block 4
= —C_lM/ﬁb
= -C'M'[7, — N?b—l]
= —C'M'H, + C'M'NJ,_,
=-C'M'7, +(C'D 1) — 1) b1
= C MR, +C D 1) 41— J b1
=-C'[M'R, — D.(bfl)yb—l} ~ b
=-C'0- 7
=—Jb1.
Therefore,
0O O O 0
] I (0] J
FX'X= |70 @ "
O O Iy —jJp
0 O 0
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Estimable Combinations
WFX'X =W, where ¥ = (wg w1+ Wq Wag1 “** Watd)-
W B =wop + wiar + -+ Watg + Wat181 + -+ + WatsBp
— (wl +...+wa)lu+w1a1+...+waaa
+ Wat1 01 + -+ Warb—18p—-1
+ [(w1 4+ wa) = (War1 + o+ Warp—1)] By

a b—1
=Y wip+ i + Bays) + Y wiral(B; — By)-

i=1 Jj=1
0 0 O 0 wy+ -t w '
—>, _?a I, (0) _>a ' ‘
T jO o _l, - Wi+ We + War1 + 0 F Aagpo1
>0 161 305*1 (w1 + -+ Wa) = (Wag1 + -+ Waypy—1)

Therefore,
wWo =Wy + -+ + Wq.
Watp = w1+ -+ + Wa — (Wat1 + -+ + Watp-1)-
(1) p+ ax + B¢ is estimable. wy, = wyi, = 1 for £ < b, and wy = 1 otherwise.
(2) ap — oy is estimable.
(3) Br — By is estimable.
4 Fix1<k<b-1,letw; =n;, werp = n, others 0.
a
W B = ni(i 4 ) + nBats + ik (Br — Bats) = npp+ (n.kﬁk + Znikai)-
=1
For k = a + b, choose w; = n;1, we+; = 0 for all j. Hence,
W' =ngp+ (n.kﬁk + anaz)
i=1

Deadly Exercise: Verify that X’ XFX'X = X'X.

LEcTURE 20
23rd March

20 Lecture 20: Two-way Crossed Classification (No Interaction) Part IV

Yij:M“rOzi-‘rﬁj-i-Eij.

Hy: B’B) — 0 versus Hy: B’B) #0

@r

, Where
MSE

The test statistic in general will be ' =

* Q= (B'Bo)(B'FB) " (B'fo);
. Eo is one solution to the normal equation X’ Xﬁ =X’ l_/);
e Fis a g-inverse of X'X;

o r = rank(B).
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Hy: 51 = --- = [, versus Ha: —Hj

ooy coag B B B By

o 0o --- 0 1 o --- 0 -1

o o --- 0 0 1 . 0 -1 —
*B=\" . .| = Ow-vx@ry Tt —J5-1)-

o 0o --- 0 o --- 0 1 -1

* A5Q2: Show that Q = SS(8 | p, ), and r = b — 1.

Hy: oy = - = o, versus Hpy: —Hj
* B = (O I,1 —7(1_1 O(a—l)xb)-
* Q=SS(a|p,pB)andr =a—1.
Hy: §; + = Y0, ny;q; are equal for j = 1,...,b versus Ha: —H,
-J

Idea: The first equation will be

1 - 1 - - i1 Tip
fr+— ) naai =P+ — ) nao; = P1— P+ < —>Oé‘=0-

% a e Qg Br B2 o Bt By
o M1 ™Mb Tal Tab 4 g 4
n.1 np n.1 ny
e B = | ™M2_"™b = T2 Tab o 4 . g 4

n.2 b n.2 np

* Q=SS(B|p)andr=0—1.

Notes:
ni1 Na1
- I —T
n.1 n.i
ni1 Na1 Nip Nab
Pr+——art- ot ——ag=Ft+ —ot+ o+
ni ni1 oy U

Ifn;j=1foralli=1,...,aand j =1,...,b, then we will be testing 5, = S.

. 1 b o .
Hy: o; + o >j—1 ni;f; are equal for i = 1,. .., a versus Hp: —Hy
* B’ = exercise.

* Q=SS(a|p)andr =a— 1.

Existence of Interaction
EXAMPLE 20.1

No interaction:

Age\Type | A B C
<30 32 1.8 6.5
30-60 2.8 1.6 5.3
>60 1.5 1.0 34
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Interaction:
Age\Type | A B C
<30 3.2 14 6.5
30-60 6.2 12 2.5
>60 58 13 21

Look at the plots.

Two-Way Crossed Classification (Interaction) Part I

Yijk = p+ a; + B + vij + €ijiks

wherei=1,...,a;j=1,...,b; k=1,...,n;; where n;; > 1.
|1 2 - b
1 jni1 ni2 - nwp
2 | n21 naz o Mgy
a Mgl MNa2 - Nab

i

— 1
Y = Zyéjk = Y = —Y;.

k=1 Ttij
b Nij

j=1k=1

a MNij

i=1 k=1

b
n;. = E Mg,
Jj=1
a
n; = E Mg,
i=1
a b
n. = E E Nij,

i=1 j=1
s = total number of non-empty cells.

The design matrix X is n.. x m, where m = 1+ a + b+ s and rank(X'X) = s.

1 1 1 1
= ) 6]Rsxs7

1
D:dlag<,...,,,..., ey
nii N1y N21 Na1 Nab

where n;; > 1. A g-inverse of X'X is
(O O mxm
F= <o D) € R™.

A solution to the normal equation is

Bo=FX'Y = (O1x(i4ats) Y11 - Ya),

where we only keep the non-empty cells (i.e., n;; > 1). We can test Hy: B’ Zi’) = m versus B’ B) £ m.
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Nij

SST=Y Y3 VA -

i=1 j=1 k=1
Nij a
CssE- YTy Y v Y0y
i=1 j=1 k=1 11]1

ANOVA Table I

SV df SS MS F
a,fByyp s—1 SS(a,B,v|p) MS(e,B,v|p) Flo,B,y|p)
Error n—s SSE MSE
Total n—1 SST
a b YQ 2
* SS(a,B,7 | p) = Zzn] _L.
=1 j5=1 *

ANOVA Table II

Fitting «, then 3, followed by ~. In compact notation, o« — 5 — +.

SV df SS MS F

alp a—1 SS(a | ) (a| p) Fla | p)
ﬁ|/,L,O[ b_l SS(BL”)O‘) S(ﬂ|ILL7O‘) F(ﬁ|U7a)
Yl B s—a—b+1 SS(y|pa,8) MS(y|pa,B) F(y|uapB)
Error n—s SSE MSE

Total n—1 SST

* SS(B | pa) = (Fo_,)7.

* SS(y | pB) = ZZ i - Z l - (32,1)’?, where

=3 /
Fo= (0 of o ol B B ()"

—> !
ﬂg—l = (ﬁ? 51?—1) :
To obtain Eg_l and 7, we replace Y; and Y; by Y, and Y, , respectively.

LECTURE 21
27th March

21 Lecture 21: Two-way Crossed Classification (Interaction) Part II

Estimable Combinations

5’5 is estimable if and only if b’ = W'X. Therefore, @'X f is always estimable.

B/ = (/'lwalv‘"7aaaﬁl7"'7ﬂb7{’y’ij})l7
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where we only include the non-empty (4, 7) in {~;;}.

(XB) =(p+ar+ b1+t ptar+ B +711s s o+ @+ B+ Yaby - b+ Qa + Bo + Yab)'

ni1 Nab

a b
WXE = Z Z CijHigs

i=1 j=1

where p;; = p+ o + S5 + 745
(D Wij = b+ o + 6]' + Yij is estimable.
(2) For any k, ¢, define

Ake =g + onkJ (B + Vi) — [az +— Zn@ (B +7e])}

j=1 T j=1
Claim: Ay, is estimable.
First term,
b L& 12
g+ ang (Bj + ki) = - > nkjak + -~ > i (B + g)
k. . It Nt
= 72”]6] o + B+ kj 1 — 1)
Jj=1
=—p+ an] (1 + ok + Bj + Yij)-
T =1
Similarly,
b b
ae+fznzj (Bj +7e) = —u+fznek (14 ae+ Bj + ;).
Jj=1 Jj=1

Taking the difference of the first term and second term yields the result.
(3)

%:( Z “_)6] Zzn”v”ﬁ -I—Z(n”— )% ZZ%W

0£j i=1 0£j i=1 M.

Claim: 1); is estimable.

b= 3 (= Y S 4 5 g T -

i=1 0#£5 i=1 045 i=1 b
Ui nzé
_z(nw ) By )= 03 5, 4
L#£5 i=1 M.
a b a i
ij il
=> ni(Bi+vi) = > ;T(ﬁz + 7ie)
i=1 =1 1i=1 b
a b a i
ij1ie
= Z”ij(/t+ai + B+ i) — ZZ %(N‘i‘ai + Be + vie)
i=1 =1 i=1 b
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since

a a
Z nij(p+a;) = njp+ Z n.jQi,
=1 i=1

b a a b
T Mie - , TN
DY T mra) = (nta)y S
(=1 i=1 =1 =1
a
= Z(M + ai)nij.
i=1

(4) For any (i,7) and (k, ¢) let
Oi,5),(k,0) = Vij — Vit — Vkj + Vhe-

Claim: ©; jy,(x,¢) is estimable. Proof by picture: a square. By definition,
pij = p+ i + B + g
Mie = ph+ o + Be + Y-
Pk = o+ g + B+ Yij
Pre = p+ g + Be + Yre-
Hence,
pij — tie = B — Be + vij — Vie-
Pij — Hke = B — Be + Ykj — Vke

Taking the difference of the first term and second term yields the result.

Hypothesis Testing
(1) Ho: ;& °0_ nyjpui; are the same for all i.

N1

Tib
/m + s+ — b
T,

Intuitively, we are testing the weighted means are all the same in each row. Q = SS(« | p).

Ho: -2 3% | nijpq; are the same for all j. Q = SS(B | p).

n.j

(2) Ho: ¢pj =0forall j <b—1.Q =SS(5 | i, ).

o= (3 o (3 2 Yo 35 o - (3

j=1""7 k#e Nj= .j k#i Nj=1

Ho: ¢, =0foralli=1,...,a — 1. @ = SS(« | , B). The reason we are not testing all 4, j since

b a
Z P = Z w; = 0.
j=1 i=1
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We will show Y% | ¢; = 0, the other is an exercise.

> =Y m- )IPI ICLINED 35 SIS 3) 3 oo

zlkl]l -J 1,1]1 =1 k=1 j=1

= Zm ai - Z%ZZ L S T ZZ%JZM
n.;j

j=11i=1 m.j i=1 j=1 k=1j=1 i=1
—E n;. g — § Ny, Oék+§ § Nii%Yij — § § N Viej
i=1 j=1 k=1j=1
=0.

(3) Letgy,...,gs—a—bt1 be linearly independent functions of {O©; ;) (k) : (4, ), (k,0)}.
Hop:go=0forall{=1,...,s —a—b+1. Q =SS(v | u, o, B).

LECTURE 22
30th March

22 Lecture 22: Factorial Design

¢ Level of Factor I: a;

¢ Level of Factor II: b;

* Replications: n (i.e., balanced);

* Total number of observations: nab.
EXAMPLE 22.1: 22

Consider the effect on the conversion in a chemical process of the concentration of the reactor and the
amount of catalyst. Each factor has two levels: low (—) and high (+).

catalyst\concentration | —  +
- -— —F
+ - 4+
Replication:
1 2 3 | Total
—— |28 25 27| 80
—+ (36 32 32| 100
+— 118 19 23| 60
+4+ |31 30 29 90
Let (1) = —— =80, a = ++ = 60, b = +— = 100, and ab = ++ = 90.
b—b —(1
A= %a() — main effect of the catalyst.
n
B = W — main effect of the concentration.
n
AB = ab=b—(a=(1)) = ab—a—(b-(1) — interaction.
2n 2n

Contrasts4 = (ab+a) — (b+ (
Contrastsg = (ab+ b) — ((1) + a).
Contrastsap = (ab—a) — (b — (
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Yije, wherei=1,...,a;j=1,...,b;k=1,...,n. WecandefineY ,Y; ,and Y as before.
Yig =Y = i - Y )+ ,; =Y )+ X4y —Y: =Y, +Y )+ (Yijr — Yij.)-

Squaring and summing yields SST, where we note that the cross-terms will be zero. Hence,

a b n Y2
- SST=Y Y > vh - =

i=1 j=1 k=1

1l = Y2
©SSa=g-) VP -

=1

b
1 Y2
SSp=— ) Y2 _ Z--,
B anz J-

nab

Jj=1
1 a b Y2
e SSap = — =
AB n;; Y nab

Source of Variation Degrees of Freedom Sum of Squares Mean Square

Factor A a—>b SSy MS 4
Factor B b—1 SSp MSg
Factor AB (a—1)(b-1) SSan MSag
Error ab(n — 1) SSE MSE
Total n—1 SST

In our case, a = b = 2.

1 - 2 2 1 2
SS4 = y [Z;YZ; - Y} = @(YL -Y )"

We can also write Y = By + S121 + Boxs + B3x122 + €, where 21 = +1, x5 = £1, and 125 = +1.

Generalized Linear Models

In our usual case, ¥ = X3 and we assume E[i_}] — X /3. However, suppose we have I = E[}_;] =H (XB),
where g = H~! and ¢g(77) = X 3. g must be monotone and differentiable.

Exponential Family

Let Y be a random variable with pmf or pdf f(y, ). Y is in the exponential family if

f(y,0) = exp{a(y)b(0) + c(0) + d(y)}.

The distribution of Y is in canonical form if a(y) = y. Define £(y,0) = log(f(y,0)).
the score function. Var(U) is called Fisher information.

REMARK — (Proposition 22.1)
Assume that b( - ) and ¢( - ) are second order differentiable. We have

Ela(Y)] = — Var(a(Y)) = b”(e)d([gb)/(;)?g(g)b,(e)
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Proof: Assume that Y is continuous. We know that
d
Jtwow=1— [ rwod-

/ﬂu@h@WW%+ﬂ@My=0=:HW%Hﬂﬁ/awﬁwﬁﬁw=0

So,

Ela(Y)]
Rearranging yields the expectation. For the variance
d / /
—/M0<wwwwnc@0@
/f (y,0 dy+/f y,0)[a(y)b"(0) + ¢"(0)] dy
Ol E[GQ(Y)] (2b’(9) ¢'(0) +b"(9)) E[a(Y)] + [¢'(6)]* + ¢ (6).

Use the formula E[a?(Y)] = Var(a(Y)) + E[a(Y)]?, rearrange and do a bunch of algebra (the usual) to
get the variance.

REMARK — (Proposition 22.2)

s E[U] =0;
. Var(U) = E (jﬁﬂ Z_E[dde] ]
Proof . % 7, /f'fdy_/fdy_o
de
Var(U) = E[U?]
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REMARK

For exponential family,

Var(U) = —E[a(Y)b"(6) + ¢ (6)]
= —E[a(Y)]"(6) - '(0)

_ %:b” _
_ V'(0)c(6) — c"(9)v'(6)
b'(6)

Therefore, Var(U) = [b/(0)]? Var(a(X)).

DEFINITION 22.1: Generalized Linear Model
Let Y1,..., Yy be independent with the same type of distribution.
(1) The distribution of each Y; is in the exponential family with canonical form.

(2) ¢ is a monotone differentiable function such that

g(pi) = Z Xit Bk,
=1

and p; = E[Y;] fori =1,...,r, where g is called a link function. We must have r < n.
Goal: Estimation of r, f1, ..., 3. We define the explanatory matrix as
X1 - Xy
Xo1 -0 Xop
an e an
EXAMPLE 22.2

Suppose Y ~ POI(\). Y = E[Y] + noise, hence E[Y] = A, where noise € N, but this does not make sense.
The reason is because we cannot write A\ = 121 + fBoxs + - -+ + [z, since A > 0. Hence, we instead
consider

log()‘) = lel FFocegF ﬂr-rr = A= eXP{ﬁlxl JFocegF /67‘377‘}-

EXTRA
3rd to 10th April

These three days were used for review and office hours.
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