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Cameron Roopnarine∗

11th February 2023

Lecture 1
7th September

• Textbook: Statistical Inference by George Casella + Roger L. Berger

• Office hours: Monday 1:30–2:30 in HH210.

Set Theory

DEFINITION 1: Containment

A ⊂ B ⇐⇒ x ∈ A =⇒ x ∈ B.

DEFINITION 2: Equality

A = B ⇐⇒ A ⊂ B and B ⊂ A.

DEFINITION 3: Union

The union of A and B, written A ∪ B, is the set of elements that belong to either A or B or both:

A ∪ B = {x : x ∈ A or x ∈ B}.

For example, if A = {0, 2, 4, 6, 8} and B = {0, 3, 6, 9}, then

A ∪ B = {0, 2, 3, 4, 6, 8, 9}.

DEFINITION 4: Intersection

The intersection of A and B, written A ∩ B, is the set of elements that belong to both A and B:

A ∩ B = {x : x ∈ A and x ∈ B}.

DEFINITION 5: Complementation

The complement of A, written Ac, is the set of all elements that are not in A:

Ac = {x : x /∈ A}.
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DEFINITION 6: Relative Complement

The relative complement of A in B, written B \ A, is the set of all elements that are in B and not in A:

B \ A = {x : x ∈ B and x /∈ A} = B ∩ Ac.

THEOREM 1: De Morgan’s Laws

For any events A and B defined on a sample space S,

(i) (A ∪ B)c = Ac ∩ Bc.

(ii) (A ∩ B)c = Ac ∪ Bc.

Proof:

(i) Let x ∈ (A ∪ B)c. We know that x /∈ (A ∪ B), so x /∈ A and x /∈ B. Hence, x ∈ Ac and x ∈ Bc,
which means x ∈ (Ac ∩ Bc). Therefore, (A ∪ B)c ⊂ (Ac ∩ Bc).
Let y ∈ (Ac ∩ Bc). We know that y ∈ Ac and y ∈ Bc, so y /∈ A and y /∈ B. Hence, y /∈ (A ∪ B),
which means y ∈ (A ∪ B)c. Therefore, (Ac ∩ Bc) ⊂ (A ∩ B)c.

(ii) Let x ∈ (A ∩ B)c. We know that x /∈ (A ∩ B), so x /∈ A or x /∈ B. Hence, x ∈ Ac or x ∈ Bc, which
means x ∈ (Ac ∪ Bc). Therefore, (A ∩ B)c ⊂ (Ac ∪ Bc).
Let y ∈ (Ac ∪ Bc). We know that y ∈ Ac or y ∈ Bc, so y /∈ A or y /∈ B. Hence, y /∈ (A ∩ B), which
means y ∈ (A ∩ B)c. Therefore, (Ac ∪ Bc) ⊂ (A ∩ B)c.

THEOREM 2: Distributive Laws

(i) A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C).

(ii) A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C).

DEFINITION 7: Injective and Surjective

Let A and B be sets and let f : A → B.

• We say f is injective (or one-to-one, written as 1: 1) when for all x, y ∈ A, if f(x) = f(y), then
x = y.

• We say f is surjective (or onto) when for every y ∈ B, there exists at least one x ∈ A such that
f(x) = y.

DEFINITION 8: Countability

A set S is countable if there exists an injective function f : S → N.

EXAMPLE 1

The set Z of all integers is countable. First, match 0 with 1. Then, for n > 0, match n with 2n and match
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−n with 2n + 1.
1 0
2 1
3 −1
4 2
5 −2
6 3
7 −3

THEOREM 3

The unit interval [0, 1] is not countable.

Proof (Cantor’s diagonalization argument): Assume for a contradiction that there is some bijection
f : N → [0, 1].

1 f(1) = 0.5000 · · ·
2 f(2) = 0.14152 · · ·
3 f(3) = 0.33333 · · ·
4 f(4) = 0.110100100010000 · · ·
5 f(5) = 0.12345 · · ·

Denote

f(1) = 0.a11a12a13a14 · · ·
f(2) = 0.a21a22a23a24 · · ·

...
f(n) = 0.an1an2an3an4 · · ·

For example, a24 = 5. Let

b1 = 9 − a11 · · ·
b2 = 9 − a22 · · ·
b3 = 9 − a33 · · ·

...
bn = 9 − ann · · ·

Then, 0.b1b2b3 · · · does not appear anywhere in my list, since for every n ≥ 1, the nth digit of this number
is different from the nth digit of the nth number on my list. This contradicts my assumption that f is a
bijection.

DEFINITION 9

A probability space is an ordered triple (Ω, F ,P) where

• Ω is a non-empty set, called the sample space (where elements ω ∈ Ω are called “events”),

• F is a collection of subsets of Ω, called the σ-algebra (where elements A ∈ F are called “events”)
with the following properties:

S1 Ω ∈ F ,
S2 ∀A ∈ F , (Ω \ A) = Ac ∈ F (closed under complements),
S3 For any sequence A1, A2, A3, . . . ∈ F , we get

⋃
i Ai ∈ F (closed under countable unions),
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• P : F → [0, 1] with

P1 P(Ω) = 1,
P2 P(A) ≥ 0 for all A, and
P3 if A1, A2, . . . , are disjoint elements of F , then

P

(⋃
i

Ai

)
=
∑

i

P(Ai) (countable additivity).

Lecture 2
9th September

EXAMPLE 2

Flip a fair coin.

• Sample space: Ω = {H,T}; that is, |Ω| = 2.

• F = {∅, {H}, {T}, {H,T}}; that is, |F| = 2|Ω| = 4.

Whenever Ω is countable, we define F to be the set of all subsets of Ω, F = 2Ω (we can always choose the
power set of Ω as our discrete σ-algebra).

• H is an outcome, H ∈ Ω.

• ∅ is an event, ∅ ∈ F .

• {H} is an event, but H is not an event, and {H} is not an outcome.

• P(∅) = 0.

• P({H}) = 1/2.

• P({T}) = 1/2.

• P({H,T}) = 1.

• P(H) = undefined.

EXAMPLE 3

Let Ω = {(x, y) ∈ R2 : x2 + y2 ≤ 25} (disc of radius 5). Suppose that we have a bullseye of radius 1, the
probability of hitting the bullseye is 1/25.

Bullseye = {(x, y) ∈ Ω : x2 + y2 ≤ 1}.

P(Bullseye) = Area(Bullseye)
Area(Ω)

= π · 12

π · 52

= 1
25 .

My σ-algebra F for dart-throwing will be the smallest σ-algebra that includes all sets of the form(
(a, b] × (c, d]

)
∩ Ω, a < b, c < d, a, b, c, d ∈ R.

• |N| = |Z| = |Q| = ℵ0.

• |R| =
∣∣[0, 1]

∣∣ = |Rn| = 2N = 2ℵ0 .
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• |2R2 | = 22ℵ0 ≫ 2ℵ0 .

PROPOSITION 1

Given a probability space (Ω, F ,P),

(i) For all A ∈ F , P(Ac) = 1 − P(A).

(ii) P(∅) = 0.

(iii) ∀A ∈ F , P(A) ≤ 1.

(iv) ∀A, B ∈ F , P(B ∩ Ac) = P(B) − P(A ∩ B).

Proof:

(i) By (S2), Ac ∈ F . Since Ac ∩ A = ∅,

P(Ac) + P(A) = P(Ac ∪ A) by (P3)
= P(Ω)
= 1 by (P1).

(ii) P(∅) = P(Ωc) = 1 − P(Ω) = 0 by (i).

(iii) P(A) = 1 − P(Ac) ≤ 1 since P(Ac) ≥ 0.

(iv) (A ∩ B) ⊆ A, and (Ac ∩ B) ⊆ Ac, so
(
(A ∩ B) ∩ (Ac ∩ B)

)
⊆ (A ∩ Ac) = ∅. Thus,

P(A ∩ B) + P(Ac ∩ B) = P
(
(A ∩ B) ∪ (Ac ∩ B)

)
= P

(
B ∩ (A ∪ Ac)

)
= P(B ∩ Ω)
= P(B).

THEOREM 4: Inclusion-exclusion for two events

P(A ∪ B) = P(A) + P(B) − P(A ∩ B).

Proof:

A ∪ B = A ∪ (B ∩ Ω)
= A ∪ (B ∩ (A ∪ Ac))
= (A ∪ (B ∩ A)) ∪ (B ∩ Ac)
= A ∪ (B ∩ Ac).

Therefore, A is disjoint from B ∩ Ac. Thus,

P(A ∪ B) = P(A) + P(B ∩ Ac)
= P(A) + (P(B) − P(A ∩ B)).
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THEOREM 5: Inclusion-exclusion principle for probabilities

For any A1, A2, . . . , An ∈ F ,

P

(
n⋃

i=1
Ai

)
= P(A1) + P(A2) + · · · + P(An)︸ ︷︷ ︸

n terms

−P(A1 ∩ A2) − · · · − P(An−1 ∩ An)︸ ︷︷ ︸
(n

2) terms

+P(A1 ∩ A2 ∩ A3) + · · ·︸ ︷︷ ︸
(n

3) terms

− P(A1 ∩ A2 ∩ A3 ∩ A4) − · · ·
...

=
∑

J⊆{1,2,...,n},J ̸=∅

(−1)|J|+1 P

(⋂
i∈J

Ai

)
.

PROPOSITION 2: Bonferroni’s Inequality

P(A ∩ B) ≥ P(A) + P(B) − 1.

Proof: Using the inclusion-exclusion theorem, we have

P(A ∩ B) = P(A) + P(B) − P(A ∪ B)
≥ P(A) + P(B) − 1 since P(A ∪ B) ≤ 1.

Lecture 3
14th September

EXAMPLE 4

Suppose we have 4 shirts, 3 pairs of blue jeans, 2 pairs of shorts, and 2 pairs of shoes. How many outfits
can we make?

Solution: 4 × (3 + 2) × 2.

EXAMPLE 5

Suppose we have a bag of 7 marbles numbered 1, 2, . . . , 7. We pick one marble uniformly (equal probability)
at random, then put it back in the bag. Repeat this process three more times. We care about the order.

i. How many outcomes are in this experiment?

ii. What is P
(
(2, 4, 2, 7)

)
?

iii. What is P
(
{all 4 picks are even numbers}

)
.

Solution:

i. This is known as sampling with replacement. In our example, |Ω| = 74. We can represent our
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sample space as the set of ordered quadruples.

Ω =
{

(a, b, c, d) : a, b, c, d ∈ {1, 2, 3, 4, 5, 6, 7}
}

= {1, 2, 3, 4, 5, 6, 7}4.

The set of ordered quadruples (or 4-tuples) of numbers 1 to 7.

ii. 1/74.

iii. (3/7)4 = 34/74.

DEFINITION 10

The Cartesian product of two sets A and B is

A × B =
{

(a, b) : a ∈ A, b ∈ B
}

.

For example, {x, y} × {1, 2, 3} =
{

(x, 1), (x, 2), (x, 3), (y, 1), (y, 2), (y, 3)
}
. That is,

An = A × · · · × A︸ ︷︷ ︸
n times

.

PROPOSITION 3

If Ω is countable and F = 2Ω, then

∀A ⊆ Ω, P(A) =
∑
i∈A

P({i}).

Proof: Follows from countable additivity.

PROPOSITION 4

If Ω is finite and all outcomes are equally likely (i.e., ∀x, y ∈ Ω, P({x}) = P({y})), then

∀A ⊆ Ω, P(A) = |A|
|Ω|

.

Sampling without Replacement (Ordered)

EXAMPLE 6

Suppose we do the same experiment as Example 5, but we don’t pick marbles back after picking them.
Then, |Ω| = 7 × 6 × 5 × 4 = 7!

3! , and

Ω =
{

(a, b, c, d) ∈ {1, 2, . . . , 7}4 : a ̸= b ̸= c ̸= d ̸= a ̸= c, b ̸= d
}

.

These 4-tuples without repeats are called 4-arrangements.
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Sampling without Replacement (Unordered)

EXAMPLE 7

We reach in and grab 4 marbles all at once.

Ω =
{

A ⊆ {1, 2, . . . , 7} : |A| = 4
}

.

Hence,

|Ω| = 7 × 6 × 5 × 4
4! =

(
7
4

)
.

These are called 4-combinations. Every 4-combination can be matched up with 4! 4-arrangements. So,∣∣{4-arrangements}
∣∣ = 4! ×

∣∣{4-combinations}
∣∣,

and we can re-arrange the equation above to get the number of 4-combinations.

EXAMPLE 8

Suppose we have a standard deck of cards (52 cards where there are 13 ranks and 4 suits).

i. Number of events that we get a full house (3 cards of one rank, and 2 cards of another rank)?

ii. Number of events that we get two pairs (2 cards of one rank, 2 cards of another rank, and one last
card of a different rank).

Solution:

i. Number of events: (
13
1

)(
4
3

)(
12
1

)(
4
2

)
= 13 × 4 × 12 × 6.

ii. Number of events: (
13
2

)(
4
2

)(
4
2

)
× 44.

Conditional Probability
Idea: Revising your estimate based on partial information.

EXAMPLE 9

• 38.0M Canadians.

• 4.23M positive COVID-19 tests in Canada (pretend all distinct people).

P({positive}) = 4.23 × 106

3.8 × 106 ≈ 11.1%

Now, suppose we have further data for Quebec.

• 8.49M people in Quebec.

• 1.19M positive tests in Quebec.

P({positive} | {QC}) = 1.19
8.49 ≈ 14.0%.
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DEFINITION 11

If A and B are events, and P(B) > 0, then the conditional probability of A given B is

P(A | B) = P(A ∩ B)
P(B) .

DEFINITION 12

Events A and B are independent if

P(A ∩ B) = P(A)P(B).

Equivalently, A and B are independent if either P(B) = 0 or P(A | B) = P(A).

EXAMPLE 10

Roll a fair 6-sided die. Let A = {1, 2}, B = {1, 3, 5}, C = {2, 4, 6}.

P(A) = 2
6 = 1

3 .

P(B) = 3
6 = 1

2 .

P(A ∩ B) = P({1})

= 1
6

= P(A)P(B)

= 1
3 × 1

2 .

P(C) = 3
6 = 1

2 .

P(B ∩ C) = P(∅) = 0 ̸= 1
2 × 1

2 .

Therefore, B and C are not independent, but they are disjoint events. In probability theory, disjoint events
are also called mutually exclusive events.

DEFINITION 13

If A and B are disjoint, then

• P(A ∪ B) = P(A) + P(B);

• P(A ∩ B) = 0.

If A and B are independent, then

• P(A ∩ B) = P(A)P(B);

•

P(A ∪ B) = P(A) + P(B) − P(A)P(B)
= (P(A) − 1)(1 − P(B)) + 1
= 1 − (1 − P(A))(1 − P(B))
= 1 − P(Ac)P(Bc)
= 1 − P((A ∪ B)c)
= 1 − P(Ac ∩ Bc).
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This proves that Ac is independent of Bc.

EXAMPLE 11

Suppose we have a standard deck of cards. What is the probability that we have four aces if we select four
cards?

4
52 × 3

1 × 2
50 × 1

49 = 1(52
4
) .

Hence,

P(A1 ∩ A2 ∩ A3 ∩ A4) = P(A1)P(A2 | A1)P(A3 | A1 ∩ A2)P(A4 | A1 ∩ A2 ∩ A3).

Lecture 4
16th September

DEFINITION 14

A partition of a set S is a collection of subsets of A1, . . . , An ⊆ S with the properties

(i) A1 ∪ A2 ∪ · · · ∪ An = S

(ii) ∀1 ≤ i < j ≤ n, Ai ∩ Aj = ∅.

THEOREM 6: Law of Total Probability

If A1, . . . , An is a partition of Ω into events and B ∈ F , then

P(B) = P(A1)P(B | A1) + P(A2)P(B | A2) + · · · + P(An)P(B | An) =
n∑

i=1
P(Ai)P(B | Ai).

EXAMPLE 12

• 20% of students in STATS 2D are first years, 45% are second years, and 35% are third years.

• 25% of first years are getting an A, along with 35% of second years, and 50% of third years.

What’s the overall percentage who are getting an A?

An = {nth year students}.

{A1, A2, A3} is a partition of any class Ω.

B = {students getting an A}.

P(B) = 20% · 25% + 45% · 35% + 35% · 50%.

Bayes Rule allows us to flip the direction of conditioning.

P(B | A) = P(B ∩ A)
P(A) =⇒ P(B ∩ A) = P(B | A)P(A).

P({third year} | {getting an A}) = P(A3 | B)

= P(A3)P(B | A3)∑3
i=1 P(Ai)P(B | Ai)

=
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EXAMPLE 13: Monty Hall Problem

• Let Aj = {car behind door j} for j = 1, 2, 3.

• Let G2 = {Monty reveals goat behind door 2}.

• For simplicity, assume we choose door 1 first.

P(A1 | G2) = P(A1)P(G2 | A1)∑3
i=1 P(Aj)P(G2 | Aj).

=
1
3 · 1

2
1
3 · 1

2 + 1
3 · 0 + 1

3 · 1

= 1/6
1/6 + 1/3

= 1
1 + 2

= 1
3 .

DEFINITION 15

A random variable is a (measurable) function on a probability space. A real-valued radom variable is a
function X : Ω → R.

EXAMPLE 14

Suppose we flip a fair coin three times. (We care about the order because we want each event to be
equally likely to occur.) There are 8 possible outcomes:

Ω = {H,T}3

= {HHH,HHT,HTH, · · · ,TTT}.

If X is the number of heads tossed, then it is the function

• HHH → 3;

• HHT,HTH,THH → 2;

• HTT,THT,TTH → 1;

• TTT → 0.

Therefore, X(HTT) = 1.

DEFINITION 16

A random variable is discrete if it only has countably many possible values, meaning range(X) is countable.

DEFINITION 17

If X is discrete, then it has a probability function (PMF)

PX : codomain(X) → [0, 1].

PX(k) = P(X = k).
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EXAMPLE 15

In our coin tossing example,

PX(0) = 1
8 .

PX(1) = P(X = 1)
= P({TTH,THT,HTT})

= 3
8 .

PX(2) = 3
8 .

PX(3) = 1
8 .

PX(k) = 0 for k /∈ {0, 1, 2, 3}.

DEFINITION 18

Given a real-valued random variable X : Ω → R, the probability distribution of X is the probability
measure

LX(A) = P({X ∈ A}) = P({x ∈ Ω : X(w) ∈ A})

for any reasonably nice (Borel) subset A ⊆ R.

EXAMPLE 16

In our coin tossing example,

LX(A) = 1
8 I{0 ∈ A} + 3

8 I{1 ∈ A} + 3
8 I{2 ∈ A} + 1

8 I{3 ∈ A}.

LX([1/2, 2 · 1/2]) = 3
8 + 3

8 = 3
4 .

DEFINITION 19

For any real-valued random variable X : Ω → R, the cumulative distribution function (CDF) of X is the
function

FX(t) = P({X ≤ t}) = P({w ∈ Ω : X(w) ≤ t}).

EXAMPLE 17

In our coin tossing example,

• FX(−1) = 0.

• FX(1) = 1
8 + 3

8 = 1
2 .

• FX(1.5) = 1
2 .

FX(t) =



0 t < 0
1/8 0 ≤ t < 1
1/2 1 ≤ t < 2
7/8 2 ≤ t < 3
1 t ≥ 3

.
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THEOREM 7

Two real-valued random variables have the same distribution if and only if their CDFs are equal.

DEFINITION 20

A random variable has a Uniform distribution on [0, 1] if it has CDF

FX(t) =


t 0 ≤ t ≤ 1
0 t < 0
1 t > 1

THEOREM 8

F : R → [0, 1] is a CDF for some random variable if and only if

(i) lim
t→∞

F (t) = 1;

(ii) lim
t→−∞

F (t) = 0;

(iii) F is non-decreasing; that is, F (s) ≤ F (t) for all −∞ < s ≤ t < ∞.

EXAMPLE 18

Suppose we have a dart board with radius 1 ft.

Ω =
{

(x, y) ∈ R2 : x2 + y2 ≤ 1
}

.

FR(t) = P({R ≤ t})
= P({(x, y) ∈ Ω : x2 + y2 ≤ t2})

= Area(radius t circle)
Area(unit circle)

= πt2

π · 12

= t2.

FR(t) =


0 t < 0
t2 0 ≤ t ≤ 1
1 t > 1

DEFINITION 21

A random variable X is continuous if its CDF FX is continuous. In that case, it has a probability density
function (PDF)

fX = dFX

dt
.

Lecture 5
21st September
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DEFINITION 22

Fix some event B ∈ F with P(B) > 0. Define µ : F → R by

µ(A) = P(A | B).

THEOREM 9

µ is a probability measure on (Ω, F). Conditional probabilities are a probability measure.

Proof: We need to check properties (i)–(iii) for µ.

(i)

P(Ω) = P(Ω | B)

= P(Ω ∩ B)
P(B)

= P(B)
P(B)

= 1.

(ii) ∀A ∈ F , µ(A) = P(A ∩ B)
P(B) ≥ 0.

(iii) Suppose A1, A2, . . . are disjoint events. Then,

µ(A1 ∪ A2 ∪ · · · ) = P(A1 ∪ A2 · · · | B)

= P((A1 ∪ A2 ∪ · · · ) ∩ B)
P(B)

= P((A1 ∩ B) ∪ (A2 ∩ B) ∪ · · ·)
P(B) .

Note that for all 1 ≤ i < j, (Ai ∩ B) ∩ (Aj ∩ B) = Ai ∩ Aj ∩ B = ∅ ∩ B = ∅, so the events
(A1 ∩ B), (A2 ∩ B), . . . are pairwise disjoint. Thus, by the countable additivity of P,

µ(A1 ∪ A2 ∪ · · · ) = P(A1 ∩ B) + P(A2 ∩ B) + · · ·
P(B)

= µ(A1) + µ(A2) + · · · ,

as desired.
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REMARK 1: Expected value of Geometric Series

E[X] − (1 − p)E[X]
p

=
∞∑

k=1
k(1 − p)k−1 −

∞∑
j=1

j(1 − p)j

=
∞∑

j=0
(j + 1)(1 − p)j −

∞∑
j=1

j(1 − p)j sum index j = k + 1

= 1 · (1 − p)0 +
∞∑

j=1
(1 − p)j [(j + 1) − j]

= 1 + (1 − p)1

1 − (1 − p)

= 1 + 1 − p

p

= 1 + 1
p

− p

p

= 1
p

.

Therefore, we have

E[X] 1 − (1 − p)
p

= 1
p

E[X]p
p

= p

p

E[X] = 1
p

.

EXAMPLE 19

Roll a 6-sided die until we get a 6. Let X = the number of rolls. Let B = {all rolls are even numbers}.
What is E[X | B]?

Solution:

P(B | X = k) =
(

2
5

)k−1
.
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Hence,

P(B) =
∞∑

k=1
P({X = k})P(B | X = k)

=
∞∑

k=1

(
5
6

)k−1 1
6

(
2
5

)k−1

= 1
6

∞∑
k=1

(
2
6

)k−1

= 1
6 · 1

1 − 1/3

= 1
6 · 3

2
= 1

4 .

Hence,

E[X | B] =
∞∑

k=1
k P(X = k | B)

=
∞∑

k=1
k
P({X = k} ∩ B)

P(B)

= 1
P(B)

∞∑
k=1

k P({X = k})P(B | X = k)

= 1
1/4

∞∑
k=1

k
1
6

(
1
3

)k−1

= 4 · 1
6 · 3

2

∞∑
k=1

k

(
1
3

)k−1 2
3︸ ︷︷ ︸

EV of GEO
(

2
3

)
= 4 · 1

6 · 3
2 · 3

2
= 3

2 .

THEOREM 10

p : S → R is a PMF for some RV if and only if

(i) p(v) ≥ 0 for all v ∈ S, and

(ii)
∑

v∈S p(v) = 1.

Remark: This implies that {v ∈ S : p(s) > 0 is countable}.

EXERCISE 1

The sum of uncountably infinitely many positive numbers always diverges to infinity.

16



THEOREM 11

f : R → R is a PDF for some RV if and only if

(i) f(x) ≥ 0 for all x ∈ R, and

(ii)
∫∞

−∞ f(x) dx = 1.

EXAMPLE 20

Let U ∼ Uniform[0, 1]. The PDF is

fU (t) =
{

1, 0 ≤ t ≤ 1,

0, otherwise.
.

Technically, the derivative doesn’t exist at 0 since there’s a change of direction, but it doesn’t matter since
we only integrate PDFs.

EXAMPLE 21

Let U ∼ Uniform[0, 1/2]. The PDF is

fU (t) =
{

2, 0 ≤ t ≤ 1/2,

0, otherwise.

DEFINITION 23

A standard logistic distribution is defined by the CDF

F (t) = 1
1 + e−t

.

The PDF is
fX(t) = dF

dx
= (−1) 1

(1 + e−t)2 (−e−t) = e−t

(1 + e−t)2 .

The PDF looks like a bell curve, but with heavier tails.

EXAMPLE 22

Calculate P({−1 ≤ X ≤ 1}) for the standard logistic distribution.

Solution:

• Method 1:
P({−1 ≤ X ≤ 1}) = F (1) − F (−1).

• Method 2:

P({−1 ≤ X ≤ 1}) =
∫ 1

−1
f(t) dt.

EXAMPLE 23

Calculate E[X] for the standard logistic distribution.

17



Solution:

E[X] =
∫ ∞

−∞
tf(t) dt

=
∫ ∞

−∞

te−t

(1 + e−t)2 dt

= IBP.

Lecture 6
23rd September

DEFINITION 24

If f is a function f : A → B, then the pre-image of a set C ⊆ B under f is

f−1(C) = {x ∈ A : f(x) ∈ C}.

The image of a set D ⊆ A under f is

f(D) = {f(x) : x ∈ D}.

EXAMPLE 24

If f : R → R is the function f(x) = x2, then the pre-image

f−1([0, 4]
)

= [−2, 2].
f−1([1, 9]

)
= [−3, −1] ∪ [1, 3].

f−1([−5, −2]
)

= ∅.

REMARK 2

∀C, D ⊆ A,
f(C ∪ D) = f(C) ∪ f(D).

It is not always the case (for non-injective functions) that

f(C ∩ D) = f(C) ∩ f(D).

In 24, if we consider C = [−2, −1] and D = [1, 2], then C ∩ D = ∅, f(C ∩ D) = ∅, and f(C) ∩ f(D) =
[1, 4] ∩ [1, 4] = [1, 4].

PROPOSITION 5

f−1(C ∪ D) = f−1(C) ∪ f−1(D).
f−1(C ∩ D) = f−1(C) ∩ f−1(D).

Proof: Exercise.
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Suppose X : Ω → R is a discrete random variable and Y = g(X) for some g : R → R. How would we find the
PMF of Y using the PMF pX of X?

pY (9) = P({Y = 9})
= P({X ∈ g−1({9})})

=
∑

j∈g−1({9})

pX(j).

In general,
pY (k) =

∑
j∈g−1({k})

pX(j).

THEOREM 12

If Y = g(X) for some random variable X and some (measurable) function g : R → R, then for any set of
A ⊆ R,

P({Y ∈ A}) = P({X ∈ g−1(A)}).

EXAMPLE 25

Suppose g(x) =
√

x, X is a non-negative random variable, and Y =
√

X. Find the CDF of Y .

Solution:

FY (v) = P({Y ≤ v}) v ≥ 0

= P({
√

X ≤ v})
= P({X ≤ v2})
= FX(v2).

√
x was a monotone increasing function, so it preserved the inequality.

THEOREM 13

Let Y = g(X).

• If g(X) is a strictly increasing function, then

FY (v) = FX(g−1(v)).

• If g(X) is a strictly decreasing function, then

FY (v) = 1 − FX(g−1(v)).

EXAMPLE 26

Let X ∼ Uniform[0, 1].

fX(t) =
{

1, t ∈ [0, 1],
0, t /∈ [0, 1],

FX(t) =


0, t < 0,

t, t ∈ [0, 1],
1, t > 1.

If Y = − log(X). Note that log(1) = 0 and lim
t→0

log(t) = −∞. Also,

g(x) = − log(x) ⇐⇒ −g(x) = log(x) ⇐⇒ x = e−g(x),
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so g−1(v) = e−v. For v ≥ 0,

FY (v) = 1 − FX(g−1(v))
= 1 − FX(e−v)
= 1 − e−v.

Hence, Y is a continuous RV with PDF

fY (v) = d
dv

{
0, v < 0,

1 − e−v, v ≥ 0
=
{

0, v < 0,

e−v, v ≥ 0.

Thus, Y ∼ EXP(1).

DEFINITION 25

The quantile function of a random variable X is the right-continuous (almost) left-inverse of the CDF of
X,

QX(v) = inf{t ∈ R : FX(t) > v}.

Hence, if FX is strictly increasing at t, then

QX(FX(t)) = t.

QX(90%) is the 90th percentile of the value of X — the value that X is less than 90% of the time.

THEOREM 14

If U ∼ Uniform[0, 1] and F is a continuous CDF that is strictly increasing, then F −1(U) is a random variable
whose CDF is F .

REMARK 3

Suppose X is a continuous random variable, g is a differentiable and strictly increasing. Before, we had
Y = g(X), FY (v) = FX ◦ g−1(v), so the PDF of Y is

fY (v) = d
dv

FX(g−1(v))

= fX(g−1(v))(g−1)′(v).

= fX(g−1(v)) 1
g′(g−1(v))

= fX ◦ g−1(v)
g′ ◦ g−1(v) .

You can think of it as taking the reflection along the line y = x for g.
If g is differentiable and strictly decreasing, then

fY (v) = −fX ◦ g−1(v)
g′ ◦ g−1(v) .

We can simplify these formulas for any differentiable function g (strictly increasing or decreasing) as

fY (v) = fX ◦ g−1(v)
|g′ ◦ g−1(v)| .
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EXAMPLE 27

What if our function is neither strictly increasing nor decreasing? In general,

fY (v) =
∑

f∈g−1({v})

fX(t)
|g′(t)| ,

for all t such that g(t) = v. We require that g is differentiable, and g is not constant on any interval.
Let X ∼ Uniform[0, 2π), and Y = sin2(X). Find P({Y ≤ t}).

DEFINITION 26: Expectation

If X is discrete, then
E[X] =

∑
v

v P({X = v}) =
∑

v

pX(v).

If X is continuous, then

E[X] =
∫ ∞

−∞
xfX(x) dx.

Furthermore, if X is discrete then
E[g(X)] =

∑
v

g(v)pX(v),

or if X is continuous then
E[g(X)] =

∫ ∞

−∞
g(x)fX(x) dx.

DEFINITION 27: Variance

The variance (or 2nd central moment) of a random variable X is

Var(X) = E[X2] = E[X]2 = E
[
(X − E[X])2].

DEFINITION 28: Moments

For an integer p ≥ 1, the pth moment of X is E[Xp]. The pth central moment of X is E[(X − E[X])p].

DEFINITION 29: Moment Generating Function (MGF)

The moment generating function (MGF) of a random variable X is the function

MX(t) = E[etX ].

REMARK 4

For each value of t that we plug in, we’re calculating a different expected value. Why?

(1) The MGF uniquely specifies the probability distribution.

(2) Grants easy access to all moments.

(3) Easy to handle sums of independent random variables.

THEOREM 15

Suppose X and Y are random variables and their MGFs are both defined (integrals exist) in some interval
(−δ, δ) for some δ > 0. If MX(t) = MY (t) for all −δ < t < δ, then X

d= Y .
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THEOREM 16

Suppose X, X1, X2 . . . all have MGFs that are defined on (−δ, δ) for some δ > 0. If MXn(t) → MX(t) as
n → ∞ for all −δ < t < δ, then FXn(x) → FX(x) as n → ∞ for all x ∈ R.

THEOREM 17

For p ≥ 1, if the MGF of X is differentiable p times at t = 0, then

E[Xp] = M
(p)
X (0).

(Rough) Proof: (
d

dt

)p

MX(t) =
(

d

dt

)p

E[etX ] =︸︷︷︸
next lecture

E
[(

d

dt

)p

etX

]
= E[XpetX ].

At t = 0, this is E[Xp · 1] = E[Xp].

EXAMPLE 28

Let G ∼ GEO(p). Find the MGF of G, and then calculate the first moment.

Solution: The MGF is given by

MG(t) = E[etG]

=
∞∑

k=1
etk(1 − p)k−1p

=
∞∑

k=1
(et)k(1 − p)k−1p

= pet
∞∑

k=1
((1 − p)et)k−1

= pet 1
1 − (1 − p)et

= pet

1 − (1 − p)et

= p

e−t − 1 + p
.

We can calculate the first moment (expected value) as follows:

M ′
G(t) = (−1) p

(e−t − 1 + p)2 (−e−t) =⇒ M ′
G(0) = p

(1 − 1 + p)2 (1) = p

p2 = 1
p

.

THEOREM 18

If X1, . . . , Xn are jointly independent random variables, S = X1 + X2 + · · · + Xn, and these random
variables’ MGFs are all defined at some value t, then

MS(t) = MX1(t)MX2(t) · · · MXn
(t).
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Proof: Since X1, . . . , Xn are jointly independent, we have

E[etS ] = E[et(X1+···+Xn)] = E[etX1+···+tXn ] = E[etX1 · · · etXn ] = E[etX1 ] · · ·E[etXn ] =
n∏

i=1
MXi

(t).

EXAMPLE 29

Suppose I1, I2, . . . are a sequence of independent and identically distributed (IID) BERN(p) trials pIj
(0) =

1 − p, pIj
(1) = p. Find the MGF of Ij , and then find the MGF of BIN(n, p).

Solution: For a single Bernoulli RV,

MIj
(t) = (1 − p) · 1 + p · e1t = (1 − p) + pet.

Now, note that the Binomial RV is the sum of n IID Bernoulli trials, so

MS(t) = (1 − p + pet)n.

EXAMPLE 30

Suppose N ∼ POI(λ); that is,

pN (k) = e−λ λk

k! , k ≥ 0.

Find the MGF of N and calculate E[N ] using the MGF.

Solution: The MGF of N is

MN (t) =
∞∑

k=0
etke−λ λk

k!

= e−λ
∞∑

k=0

(etλ)k

k!

= e−λeetλ

= eλ(et−1).

Therefore, the expected value is

M ′
N (t) = λeλ(et−1)et =⇒ M ′

N (0) = E[N ] = λeλ(1−1)e0 = λ.

PROPOSITION 6

If Sk ∼ BIN(k, λ/k) and N ∼ POI(λ), then MSk
(t) → MN (t) for all t ∈ R.

Proof: Note that (
1 + a

n

)bn
n→∞−−−−→ eab.
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Hence,

MSk
(t) =

(
1 − λ

k
+ λ

k
et

)k

=
(

1 − λ(et − 1)
k

)k

k→∞−−−−→ eλ(et−1) = MN (t),

which is the MGF for N , as desired.

PROPOSITION 7

In the same setup as Proposition 6, pSk
(j) → pN (j) as k → ∞ for all j ≥ 0.

Proof: (
k

j

)(
λ

k

)j(
1 − λ

k

)k−j

= k(k − 1) · · · (k − j + 1)
j!

λj

kj

(
1 − λ

k

)k

︸ ︷︷ ︸
k→∞−−−−→e−λ

(
1 − λ

k

)−j

︸ ︷︷ ︸
k→∞−−−−→1

k→∞−−−−→ k(k − 1) · · · (k − j + 1)
kj

λj

j! e−λ(1)

k→∞−−−−→ k

kj
· k − 1

kj
· · · k − j + 1

kj︸ ︷︷ ︸
k→∞−−−−→1

λj

j! e−λ

k→∞−−−−→ λj

j! e−λ

Lecture 7
5th October

REMARK 5: Algebraic Properties of Expectation and Variance

• E[aX + b] = aE[X] + b.

• Var(aX + b) = a2 Var(X).

• E[X + Y ] = E[X] + E[Y ].

• If X and Y are independent, then E[XY ] = E[X]E[Y ], and we say X and Y are uncorrelated.

• To calculate Var(X + Y ), we have

Var(X + Y ) = E[(X + Y )2] − E[X + Y ]2

= E[X2] + 2E[XY ] + E[Y 2] − E[X]2 − 2E[X]E[Y ] + E[Y ]2

= Var(X) + Var(Y ) + 2 Cov(X, Y ).

If X and Y are uncorrelated, then Var(X + Y ) = Var(X) + Var(Y ).
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PROPOSITION 8

P

({ ∞∑
i=1

|Xi| < ∞

})
= 1 =⇒ E

[
n∑

i=1
Xi

]
=

∞∑
i=1

E[Xi].

EXAMPLE 31

If S ∼ BIN(n, p), then S = I1 + · · · + In, where I1, . . . , In
iid∼ BERN(p) trials; that is,

P({Ij = 0}) = 1 − p,

P({Ij = 1}) = p.

Hence,
E[Ij ] = (0)(1 − p) + (1)(p) = p.

Therefore,

E[S] = E

 n∑
j=1

Ij

 =
n∑

j=1
E[Ij ] = np.

EXAMPLE 32

Suppose I have 100 people at a party. They drop their coats in a pile (all have coats). When they leave,
each take a uniform random coat. Let X denote the number of people who get back their own coat.

(a) P({X = 0}),

(b) E[X],

(c) Var(X).

Solution: Let X = I1 + · · · + In, where Ij ∼ BERN(1/100). Note that the Ij ’s are not independent.

(a) Inclusion-exclusion.

(b) E[X] =
∑100

i=1 E[Ij ] = (100)(1/100) = 1.

(c)

E[X2] = E

( n∑
j=1

Ij

)2


= E

 n∑
j=1

I2
j + 2

∑
1≤k<j≤n

IjIk


=

n∑
j=1

E[I2
j ] + 2

(
100
2

)
E[I1I2]

=
n∑

j=1

[
(0)2(1 − 1/100) + (1)2(1/100)

]
+ 2100 · 99

2
1

100
1
99

= 2.

Thus,
Var(X) = 2 − 1 = 1.

Converges to POI(1) as n → ∞.
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EXAMPLE 33

Every box of Sugar Bombs cereal has a toy inside. There are 100 different toys and each box contains an
i.i.d. uniform random toy. Let X be the number of boxes purchased in order to complete a set of at least
one of each toy. Find E[X].

Solution: Let Yj be the number of additional trials to get (j + 1)st toy after first j toys. For each j,
Yj ∼ GEO

( 100−j
100

)
. Hence,

X = Y0 + Y1 + · · · + Y99.

Therefore,

E[X] =
99∑

j=0
E[Yj ]

=
99∑

j=0

100
100 − j

= (100)
99∑

j=0

1
100 − j

= 100
(

1 + 1
2 + 1

3 + · · · + 1
100

)
≈ 100 ln(100).

REMARK 6: Measure-Theoretic Integration

Recall Theorem 17. In general, for a random variable X : Ω → R defined on a probability space (Ω, F ,P),

E[X] =
∫

Ω
X(ω) dP(ω).

Recall that for Riemann sums, we draw vertical bars under the function. However, for Lebesgue (measure)
integral, we draw horizontal bars, which implies that we do not need a continuous function.
Idea:

E[X] =
∫

Ω
X(ω) dP(ω)

= lim
n→∞

∞∑
j=−∞

P
({

j

n
< X ≤ j + 1

n

})
· j

n
.

REMARK 7

lim
x→∞

lim
y→∞

(
1
x

)1/y

= lim
x→∞

1 = 1.

lim
y→∞

lim
x→∞

(
1
x

)1/y

= lim
y→∞

0 = 0.

THEOREM 19: Lebesgue Dominated Convergence Theorem

Suppose X is a measurable function (random variable) on a measure probability space (Ω, F , Ω), and
X1, X2, X3, . . . is a sequence of real-valued measurable functions on this space that converge pointwise to X;
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that is,
∀ω ∈ Ω, lim

n→∞
Xn(ω) = X(ω).

Suppose there is some non-negative measurable function Y such that for all n ≥ 1 and for all ω ∈ Ω,

|Xn(ω)| ≤ Y (ω),

and
∫

Ω Y (ω) dP(ω) < ∞. Then, we conclude that

lim
n→∞

∫
Ω

|Xn(ω) − X(ω)| dP(ω) = 0.

Moreover,
∫

Ω X(ω) dP(ω) exists (is finite) and equals

lim
n→∞

∫
Ω

X(ω) dP(ω).

This theorem also holds for infinite measure spaces.

Lecture 8
7th October

Cancelled.

Lecture 9
17th October

THEOREM 20: Dominated Convergence Theorem

Suppose f1, f2, . . . is a sequence of functions mapping some measure space S to R (S, A, µ) is a measure space,
and suppose ∀x ∈ S lim

n→∞
fn(x) converges. Let f(x) denote this limit (pointwise convergence). Additionally,

suppose there is a function g : S → R such that

(1) For all n ≥ 1, for all x ∈ S |fn(x)| ≤ g(x).

(2)
∫

S
g(x) dµ(x) < ∞.

Then,
lim

n→∞

∫
S

|fn(x) − f(x)| dµ(x) = 0.

PROPOSITION 9

d
dt

E[etX ] = E[XetX ] for t near 0.

For x and t fixed,

d
dt

etx = lim
δ→0

e(t+δ)x − etx

δ

= lim
δ→0

etx

(
eδx − 1

δ

)
.

We want to find g(x)

lim
δ→0

eδx − 1
δ

LHR= lim
δ→0

xeδx

1 = x.
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Therefore,

g(t, x) = etx(|x| + 1) =⇒
∣∣∣∣etx eδx − 1

δ

∣∣∣∣ ≤ g(t, x), sufficiently small δ.

Need E[g(t, X)] < ∞: If
E
[
etX(|X| + 1)

]
< ∞,

then by the DCT,
E[lim( · )] = limE[ · ] ⇐⇒ E

[
XetX

]
= M ′

X(t).

DEFINITION 30: Hypergeometric Distribution

Suppose we have a bag with N blue balls and M red. We sample k times without replacement and count
the number of blue balls picked. Then,

H ∼ HG(k; M, N).

For 0 ≤ j ≤ k and k − M ≤ j ≤ N ,

pH(j) =
(

N
j

)(
M

k−j

)(
N+M

k

) .

Expectation: Let

Im =
{

1, if mth pick blue,

0, otherwise.

Then, H = I1 + · · · + Ik so

E[Im] = 1P({Im = 1}) = N

N + M
, 1 ≤ m ≤ n.

Therefore,
E[H] = k

N

N + M
.

Variance:

E[H2] = E

( k∑
j=1

Ij

)2


= E

 k∑
j=1

I2
j

+ 2E

 ∑
1≤j<i≤n

IjIi


= k E[I2

1 ] + 2
(

k

2

)
E[I1I2]

= k

(
N

N + M

)
+ k(k − 1)(0 + 1P({I1 = I2 = 1}))

= kN

N + M
+ k(k − 1) N

N + M

N − 1
N + M − 1 .

Therefore,
Var(H) = · · · .
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DEFINITION 31: Negative Binomial Distribution

Suppose we have a coin with probability p of flipping heads. We flip repeatedly until we have r heads
(r ≥ 1). If Y is the number of tosses, then

Y ∼ NB(r, p).

For j ≥ r,

pY (j) =
(

j − 1
r − 1

)
(1 − p)j−rpr.

EXAMPLE 34

If G1, . . . , Gr
iid∼ GEO(p), then G1 + · · · + Gr ∼ NB(r, p).

MG1(t) = p

e−t + p − 1 =⇒ MY (t) =
(

p

e−t + p − 1

)r

.

DEFINITION 32: Gamma Function

Γ(α) =
∫ ∞

0
xα−1e−x dx, ℜ(α) > 0.

PROPOSITION 10

1. Γ(1) = 1.

2. Γ(α + 1) = αΓ(α) for α > 0.

3. Γ(1/2) =
√

π.

1. Simply,

Γ(1) =
∫ ∞

0
1e−x dx =

[
−e−x

]∞
0 = 0 − (−1) = 1.

2. Integration by parts: let u = xα, dv = e−xdx, du = αxα−1dx, v = −e−x,

Γ(α + 1) =
∫ ∞

0
xαe−x dx

=
[
−xαe−x

]∞

0
+
∫ ∞

0
e−xαxα−1 dx

= 0 + αΓ(α).

DEFINITION 33

We say G ∼ GAM(α, λ) with shape parameter α > 0 and rate parameter λ > 0 if it has pdf

fG(t) = λα

Γ(α) tα−1e−λt, t > 0.

Lecture 10
21st October

Author’s Note: Missed lecture due to convocation. The following lecture is typed after the lecture, and the notes
were sourced from Zhang Yiran (main source), Baek Inwook, and Zhang Zhiyue.
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DEFINITION 34: Polya’s Urn

Start with one red (R) and one blue (B) ball. At each step, select a ball at random, then put it back into
the urn along with an additional ball of the same colour.

Question: Does the percentage of B converge? If so, to what number?

EXAMPLE 35: Order in Polya’s Urn is Irrelevant

P{RBBBRBR} = 1
2

1
3

2
4

3
5

2
6

4
7

3
8

= 4!3!
8! .

P{RRRBBBB} = 1
2

2
3

3
4

1
5

2
6

3
7

4
8

= 4!3!
8! .

Therefore, the two sequences are exchangeable; that is, order of R and B is irrelevant.

EXAMPLE 36

P{3R + 4B in the first 7 picks} = 4!3!
8!

(
7
3

)
= 1

8 ,

where we multiplied by
(7

3
)
because this is the number of ways to make a sequence of 3R4B. Also,

P{1R + 6B} = 1!6!
8!

(
7
1

)
= 1

8 .

EXAMPLE 37: Random Spinner Game

Suppose Xi
iid∼ Uniform[0, 1] is independent of Y for i ≥ 1, and define

Ci =
{

B, Xi < Y,

R, Xi ≥ Y.

Remarks:

• P{1st is B} = P{C1 = B} = P{X1 < Y }.

• Since X1 and Y are iid,
P{X1 < Y } = P{Y < X1}.

• Since X1 and Y are continuous and independent,

P{X1 = Y } = 0.

Using these facts, we have

2P{X1 < Y } = P{X1 < Y } + P{Y < X1} = 1 − P{X1 = Y } = 1.
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Therefore, P{X1 < Y } = 1/2, that is P(C1 = B) = 1/2.

P({C2 = B} | {C1 = B}) = P{C1 = B, C2 = B}
P{C1 = B}

= P{C1 = C2 = B}
P{C1 = B}

= 1/3
1/2

= 2
3 ,

where the numerator was calculated via

P{C1 = C2 = B} = P{X1 < Y, X2 < Y }

=
∫ 1

0

∫ y

0

∫ y

0
1 dx1 dx2 dy

= 1
3 .

Therefore, P({C2 = B} | {C1 = B}) = 1/3
1/2 = 2

3 .
For the same reason as before,

P{X1 < X2 < Y } = P{X2 < X1 < Y } = · · · = P{Y < X1 < X2} = 1
3! = 1

6 .

P({C9 = B} | {BBRBRRBB}) = P{X1, X2, X4, X7, X8 < Y, X3, X5, X6 > Y }

= 5!3!
9! .

The random spinner game is the same process as Polya’s urn.

• Conditionally given Y , the Ci’s are independent each with probability Y of being B.

• By the law of large numbers, the percentage of B picks converges to Y .

THEOREM 21: De Finetti’s Theorem for Polya’s Urn

The percentage of B picks converges almost surely (100% probability to converge). Let Y denote the limit,

• Y ∼ Uniform[0, 1].

• Given Y , the picks are conditionally independent each with probability Y of being B.

EXAMPLE 38

The conditional cdf of Y given C1 = B is

FY |C1=B = P({Y ≤ t} | {C1 = B})

= P({Y ≤ t} ∩ {C1 = B})
P{C1 = B}

= t2/2
1/2

= t2,
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where numerator is calculated via

P({Y ≤ t} ∩ {C1 = B}) =
∫ t

0

∫ y

0
1 dx1 dy = t2

2 .

The conditional pdf of Y given C1 = B is

fY |C1=B(t) =
{

2t, t ∈ [0, 1],
0, otherwise.

THEOREM 22: Law of Total Probability (Continuous)

If Y is a continuous random variable with pdf fY , then for any event A,

P(A) =
∫ ∞

−∞
P(A | {Y = y})fY (y) dy,

given we can make sense of the conditional probability.

EXAMPLE 39

Using the Law of Total Probability, the conditional cdf of Y given BBRBRRBB

FY |BBRBRRBB(t) = P({Y ≤ t} ∩ {BBRBRRBB})

=
∫ t

0
P({BBRBRRBB} | {Y = y}) dy

=
∫ t

0

y5(1 − y)3

(5!3!)/(9!) dy

= 9!
5!3!

∫ t

0
y5(1 − y)3 dy.

The conditional pdf of Y given BBRBRRBB is

fY |BBRBRRBB(t) =


9!

5!3! t
5(1 − t)3, t ∈ [0, 1],

0, otherwise,

which is the Beta(6, 4) distribution.

Lecture 11
26th October

DEFINITION 35

The joint probability mass function (joint pmf) of a sequence X1, . . . , Xn of discrete random variables
is a function p : Rn → [0, 1] with

p(a1, . . . , an) = P
(
{X1 = a1} ∩ · · · ∩ {Xn = an}

)
.
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EXAMPLE 40

Suppose we are rolling two 4-sided die independently. The joint pmf is

p(a, b) =
{

1
16 , a, b ∈ {1, 2, 3, 4},

0, otherwise.

EXAMPLE 41

Suppose we roll a die and flip a coin. Let X be a die roll and

Y =
{

X, if H,

5 − X, if T.

a
1 2 3 4

b

1 1/8 0 0 1/8
2 0 1/8 1/8 0
3 0 1/8 1/8 0
4 1/8 0 0 1/8

Note that
P({Y = 3}) = 1

8 + 1
8 = 1

4 .

REMARK 8

If p is the joint pmf of (X, Y ), then

P({X = k}) =
∑

j

p(k, j)︸ ︷︷ ︸
P({X=k,Y =j})

.

P({Y = k}) =
∑

j

p(j, k).

In this context of starting with a joint distribution, distribution of components are called “marginal
distributions.”

DEFINITION 36

If p is the joint pmf of X1, . . . , Xn, then the marginal distribution of Xk for any k ∈ {1, 2, . . . , n} is

P({Xk = a}) =
∑

b1,...,bk−1,bk+1,...,bn

p(b1, . . . , bk−1, a, bk+1, . . . , bn).

THEOREM 23

X1, . . . , Xn (discrete) are jointly independent if and only if their joint pmf is the product of their individual
pmfs; that is,

pX1,...,Xn
(b1, . . . , bn) = pX1(b1) · · · pXn

(bn).
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EXAMPLE 42

Let X and Y be independent with pmfs

pX(−1) = 1
2 ,

pX(0) = 1
4 ,

pX(1) = 1
4 ,

pY (0) = 1
3 ,

pY (1) = 2
3 .

They have joint pmf
X

−1 0 1

Y
0 1/6 1/12 1/12
1 1/3 1/6 1/6

DEFINITION 37

If X1, . . . , Xn are continuous random variables and f : Rn → [0, ∞) (A ⊆ Rn) that satisfies∫
· · ·
∫
A

f(x1, . . . , xn) dx1 · · · dxn

then f is a joint pdf for these variables, and they are said to be jointly continuous.

EXAMPLE 43

Suppose we have two continuous random variables X and Y .

P({(X, Y ) ∈ A}) =
∫∫
A

f(x, y) dx dy.

If A is a rectangle, then A = [a, b] × [c, d], which implies

P({a ≤ X ≤ b, c ≤ Y ≤ d}) =
∫ d

c

∫ b

a

f(x, y) dx dy.

THEOREM 24

X1, . . . , Xn (continuous) are jointly independent if and only if they are jointly continuous with joint pdf

fX1,...,Xn(a1, . . . , an) = fX1(a1) · · · fXn(an).

EXAMPLE 44

f(x, y) =
{

2x2, x ∈ [0, 1], |y| ≤ x,

0, otherwise.
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Verifying we have a probability density function:∫ 1

0

∫ x

−x

2x2 dy dx =
∫ 1

0

[
2x2y

]y=x

y=−x

dx

=
∫ 1

0
2x2(x − (−x)) dx

=
∫ 1

0
4x3 dx

=
[
x4
]x=1

x=0

= 1.

Calculating Probabilities: To calculate P({Y ≥ 1/2}), we could work out the system of inequalities:
0 ≤ x ≤ 1, −x ≤ y ≤ x, and 1/2 ≤ y yields

1/2 ≤ y ≤ x ≤ 1.

Or we can work it out graphically.

P
({

Y ≥ 1
2

})
=
∫ 1

1/2

∫ x

1/2
2x2 dy dx

=
∫ 1

1/2

[
2x2y

]y=x

y=1/2
dx

=
∫ 1

1/2
(2x3 − x2) dx

=
[

x4

2 − x3

3

]x=1

x=1/2

= 1
2 − 1

32 − 1
3 + 1

24 .

DEFINITION 38

The marginal density of X is

fX(t) =
∫ ∞

−∞
fX,Y (t, u) du.

DEFINITION 39: Expectation (Continuous)

E
[
g(X, Y )

]
=
∫ ∞

−∞

∫ ∞

−∞
g(x, y)fX,Y (x, y) dx dy.

For example, to calculate E[XY ] we use g(x, y) = xy.

EXAMPLE 45: Polya Urn

P({3rd pick R} | {BB}) = 1
4 .
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If Y is the limiting percentage of blue, then

P
({

Y ≤ 1
2

} ∣∣∣∣ {BB}
)

= P
(

X1, X2, Y ≤ 1
2

)
=
∫ 1/2

0

∫ 1/2

0

∫ 1/2

0
1 dx1 dx2 dx3

= 1
2 · 1

2 · 1
2

= 1
8 .

P({Y ≤ t}) = t3.

fY (t) =
{

3t2, t ∈ [0, 1]
0, otherwise,

which is a Beta(3, 1) distribution.

1
B(α, β)xα−1(1 − x)β−1, x ∈ [0, 1].

Lecture 12
28th October

Discussion on gamma function when α = 0.
EXAMPLE 46

Suppose X ∼ GAM(α, λ). Find MX(t).

Solution:

MX(t) = E[etX ]

=
∫ ∞

0
etx λα

Γ(α)xα−1e−λx dx

= λα

Γ(α)

∫ ∞

0
xα−1e−λx(1−t/λ) dx

= λα

Γ(α)

∫ ∞

0

uα−1

(λ − t)α−1 e−u 1
λ − t

du u = x(λ − t) ⇐⇒ du = (λ − t) dx

= λα

Γ(α)(λ − t)α

∫ ∞

0
uα−1e−u du

= λα

Γ(α)(λ − t)α
Γ(α)

=
(

λ

λ − t

)α

.

EXAMPLE 47

Suppose X1 ∼ GAM(1/2, 2) and X2 ∼ GAM(3, 2) are independent. Find MY (t) where Y = X1 + X2.
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Solution: Since X1 and X2 are independent,

MY (t) = MX1(t)MX2(t)

=
(

2
2 − t

)1/2( 2
2 − t

)3

=
(

2
2 − t

)7/2
.

Therefore, Y ∼ GAM(3.5, 2).

EXAMPLE 48

The pdf for GAM(1, λ) is

fX(t) = λ1

Γ(1) t0e−λt = λe−λt,

which is EXP(1).

REMARK 9

BIN
(

n,
λ

n

)
n→∞−−−−→ POI(λ).

EXAMPLE 49

Suppose Chocolat gets 1 customer every 10 minutes, on average (discrete time).

(i) Model level 1:

• Every minute there is an independent 1/10 chance for a customer to enter (0 chance for
multiple customers in the same minute).

• Let T1 be the waiting time for the first customer in minutes,

T1 = waiting time for the first customer in minutes ∼ GEO
(

1
10

)
,

and E[T1] = 10.

N60 = number of customers in the first hour ∼ BIN
(

60,
1
10

)
.

(ii) Model level 2:

• Every second there is a 1/600 chance for a customer to enter, independently.

T1 = waiting time in minutes = T̃1

60 , where T̃1 ∼ GEO
(

1
600

)
,

and E[T1] = 600/60 = 10.

N60 = number of customers in the first hour ∼ BIN
(

3600,
1

600

)
.

As we approach continuity,

N60
d−→ POI

(
60
10

)
, T1

d−→ EXP
(

1
10

)
.
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For t ≥ 0,
N(t) = number of arrivals in the first t minutes ∼ POI

(
1
10 t

)
.

DEFINITION 40

A Poisson process (N(t) for t ≥ 0) with rate λ is a stochastic process with the properties:

(1) For 0 ≤ t1 < t2,
(N(t2) − N(t1)) ∼ POI(λ(t2 − t1)).

(2) For 0 ≤ t1 < t2 < · · · < tn, the variables

(N(t2) − N(t1)), (N(t3) − N(t2)), . . . (N(tn) − N(tn−1))

are jointly independent.

DEFINITION 41

Tn = inf {t ≥ 0 : N(t) ≥ n}

is the arrival time of the nth customer.

THEOREM 25: Interarrival Times

∆1 = T1, and ∆n = Tn − Tn−1 for n ≥ 2 are known as interarrival times. Then, ∆1, . . . , ∆n
iid∼ EXP(λ)

variables.

COROLLARY 1

For 0 ≤ n1 < n2 < · · · < nk,

Tn2 − Tn1 , Tn3 − Tn2 , . . . , Tnk
− Tnk−1

are jointly independent with respective probability distributions

(Tnj+1 − Tnj ) ∼ GAM(nj+1 − nj , λ).

EXAMPLE 50

T3 ∼ GAM(3, λ) and T5 − T3 ∼ GAM(2, λ) are independent.

EXAMPLE 51

Suppose X ∼ GAM(α, 1) and Y ∼ GAM(β, 1) are independent (rate doesn’t matter, set it equal to 1 for
simplicity).

EXAMPLE 52

α = 3, β = 5, X = T3, Y = T8 − T3. What is the distribution of T3/T8? If it took two hours for 8
people to arrive, what is the conditional distribution of how long it took for three people to arrive?

That is, find the distribution of
Z = X

X + Y
, 0 ≤ Z ≤ 1.
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For t ∈ [0, 1],
x

x + y
≤ t =⇒ x ≤ ty

1 − t
.

Thus, noting that X and Y are independent,

P({Z ≤ t}) =
∫ ∞

0

∫ ty/(1−t)

0

1
Γ(α)xα−1e−x 1

Γ(β)yβ−1e−y dx dy

= 1
Γ(α)Γ(β)

∫ ∞

0

∫ ty/(1−t)

0
xα−1yβ−1e−(x+y) dx dy.

Multivariable substitution:

u = x

x + y
, v = x + y =⇒ x = uv, y = v − uv = v(1 − u).

J = ∂(x, y)
∂(u,v) =

∣∣∣∣ ∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣ =
∣∣∣∣ v u
−v 1 − u

∣∣∣∣ = |(v)(1 − u) − (u)(−v)| = v.

Note that u ≤ t and 0 ≤ v < ∞, which implies

= 1
Γ(α)Γ(β)

∫ ∞

0

∫ 1

0
(uv)α−1(v(1 − u)

)β−1
e−vv du dv

= 1
Γ(α)Γ(β)

∫ ∞

0
vα−1vβ−1︸ ︷︷ ︸

vα+β−1

e−v dv

∫ 1

0
uα−1(1 − u)β−1 du

= Γ(α + β)
Γ(α)Γ(β)

∫ 1

0
uα−1(1 − u)β−1 du.

DEFINITION 42: Beta Distribution

We say X ∼ Beta(α, β) with shape parameters 0 < α ∈ R and 0 < β ∈ R if it has pdf

fX(t | α, β) = 1
B(α, β) tα−1(1 − t)β−1, t ∈ [0, 1]

where B(α, β) denotes the beta function,

B(α, β) =
∫ 1

0
xα−1(1 − x)β−1 dx = Γ(α)Γ(β)

Γ(α + β) .

THEOREM 26

If X ∼ GAM(α, 1) and Y ∼ GAM(β, 1), then

Z = X

X + Y
∼ Beta(α, β)

and is independent of
X + Y ∼ GAM(α + β, 1).

Lecture 13
2nd November
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EXAMPLE 53

Suppose X ∼ N (µ, σ2). Find MX(t).

Solution: Recall that
fX(x) = 1√

2πσ2
exp
{

− (x − µ)2

2σ2

}
.

Hence,

MX(t) =
∫ ∞

−∞
exp{tx} 1√

2πσ2
exp
{

− (x − µ)2

2σ2

}
dx

= 1√
2πσ2

∫ ∞

−∞
exp
{

− 1
2σ2 (x2 − 2µx + µ2 − 2σ2tx)

}
dx

= 1√
2πσ2

∫ ∞

−∞
exp
{

− 1
2σ2

(
x2 − 2(µ + σ2t)x + (µ + σ2t)2 − (µ + σ2t)2 + µ2)}dx

= 1√
2πσ2

exp
{

(µ + σ2t)2 − µ2

2σ2

}∫ ∞

−∞
exp
{

−
(
x − (µ + σ2t)2)

2σ2

}
dx

= exp
{

2µσ2t + σ4t2

2σ2

}
= exp

{
µt + σ2t2

2

}
.

EXAMPLE 54

If X1 ∼ N (µ1, σ2
1), X2 ∼ N (µ2, σ2

2) (independent), and Y = X1 + X2, then

MY (t) = MX1(t)MX2(t)

= exp
{

µ1t + σ2
1t2

2 + µ2t + σ2
2t2

2

}
= exp

{
(µ1 + µ2)t + (

√
σ2

1 + σ2
2)2t2

2

}
.

Therefore, Y ∼ N (µ1 + µ2, σ2
1 + σ2

2),

Recall: If X is a continuous random variable with pdf fX and g is a differentiable function g : R → R whose
derivative only equals 0 at countably many points then the pdf of Y = g(X) is

fY (y) =
∑

x : g(x)=y, g′(x)̸=0

fX(x)
|g′(x)| .

EXAMPLE 55

Suppose X ∼ EXP(3) and Y = 10X. Find fY (y).

Solution: Aside:
g(x) = 10x =⇒ g−1(y) = x

10 =⇒ g′(y) = 10.
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Hence,

fX(x) = 3e−3x, x ≥ 0.

fY (y) = fX(y/10)
g′(y/10) = 3e−3y/10

10 , y ≥ 0.

EXAMPLE 56

Suppose Z ∼ N (0, 1) and X = Z2.

Solution:
fZ(t) = ϕ(t) = 1√

2π
exp{− t2

2 }.

Aside:
g(t) = t2 =⇒ g′(t) = 2t.

Hence,

fX(v) =
∑

t : t2=v

ϕ(t)
|g′(t)|

= ϕ(
√

v)
|g′(

√
v)|

+ ϕ(−
√

v)
|g′(−

√
v)|

, v > 0

= 1
2
√

v

1√
2π

e−v/2 + 1
2
√

v

1√
2π

e−v/2

= 1√
2π

v−1/2e−v/2,

which is GAM(1/2, 1/2).

EXAMPLE 57

If Y1, Y2, . . . , Yp
iid∼ GAM(1/2, 1/2), then

Y1 + · · · + Yp ∼ GAM
(

p

2 ,
1
2

)
.

DEFINITION 43: Chi-squared

The Gamma distribution with shape p/2 and rate 1/2 for any positive integer p is also called the Chi-
squared distribution with p degrees of freedom, and we write Y ∼ χ2

p. This is the distribution of the sum
of squares of p independent standard normal variables. It has pdf

f(x) = (1/2)p/2

Γ(p/2) xp/2−1e−x/2.

THEOREM 27: Markov’s Inequality

If X is a non-negative random variable, then

P(X ≥ a) ≤ E[X]
a

.
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Proof: Suppose X is a non-negative random variable. Then,

E[X] =
∫ ∞

0
tP(X ∈ dt).

Fix a > 0,

E[X] =
∫ a

0
tP(X ∈ dt) +

∫ ∞

a

tP(X ∈ dt)

≥
∫ a

0
0P(X ∈ dt) +

∫ ∞

a

aP(X ∈ dt)

= a
(
1 − FX(a)

)
= aP(X ≥ a).

Therefore,
E[X] ≥ aP(X ≥ a).

REMARK 10: Triangle Flip Trick

Suppose X is non-negative and discrete.

E[X] = 0P(X = 0) + 1P(X = 1) + 2P(X = 2) + · · ·
= P(X = 1) + P(X = 2) + P(X = 2) + P(X = 3) + P(X = 3) + P(X = 3) + · · ·
= P(X ≥ 1) + P(X ≥ 2) + P(X ≥ 3) + · · ·

=
∞∑

k=1
P(X ≥ k).

Suppose X is non-negative and continuous with pdf fX .

E[X] =
∫ ∞

0
tfX(t) dt

=
∫ ∞

0
fX(t)

∫ t

0
1 ds dt

=
∫ ∞

0

∫ ∞

s

fX(t) dt ds

=
∫ ∞

0
1 − FX(t) ds.

THEOREM 28: Chebyshev’s Inequality

For any random variable Y ,

P
(∣∣Y − E[Y ]

∣∣ ≥ a
)

≤ Var(Y )
a2 .

42



Proof: Consider a random variable Y (does not have to be non-negative).

P
(
|Y − E[Y ]| ≥ a

)
= P

(
(Y − E[Y ])2 ≥ a2)

≤
E
[
(Y − E[Y ])2]

a2 by Markov’s inequality

= Var(Y )
a2 .

EXAMPLE 58

If X ∼ EXP(3), then E[X] = 1/3. Using Markov’s inequality,

P(X ≥ 5) ≤ 1/3
5 = 1

15 .

P(X ≥ 5) ≤ P
(
|X − E[X]| ≥ 14/3

)
≤ Var(X)

(14/3)2 = (1/3)2

(14/3)2 = 1
142 = 1

196 .

Lecture 14
4th November

DEFINITION 44

If X is a discrete random variable and A is an event with P(A) > 0, then the conditional pmf of X given
A is

pX|A(k) = P({X = k} ∩ A)
P(A) .

This is another probability mass function:

• Non-negative (ratio of probabilities);

• Sums to 1: ∑
k

pX|A(k) = P({X = k} ∩ A)
P(A)

= 1
P(A)

∑
k

P({X = k} ∩ A)

= 1
P(A) P

(⋃
k

({X = k} ∩ A)
)

= 1
P(A) P

(
A ∩

⋃
k

{X = k}

)

= 1
P(A) P(A ∩ Ω)

= 1.

DEFINITION 45

If Y is another discrete RV then we can define the conditional pmf of X given Y = y in the same manner:

pX|Y (k | y) = P({X = k} ∩ {Y = y})
P({Y = y}) .
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If y is fixed, then this is a pmf over different values of k.

DEFINITION 46

The conditional expectation of X given Y = y is:

E[X | Y = y] =
∑

k

kpX|Y (k | y).

THEOREM 29

If g : R2 → R,
E[g(X, Y ) | Y = y] =

∑
k

g(k, y)pX|Y (k | y),

then ∑
y

E[g(X, Y ) | Y = y]pY (y) = E[g(X, Y )].

That is,
E[E[g(X, Y ) | Y ]] = E[g(X | Y )].

The expectation of the conditional expectation equals the expectation.

EXAMPLE 59

fX,Y (x, y) =
{

2x2, x ∈ [0, 1], y ∈ [−x, x],
0, otherwise.

Recall: The marginal density for X is

fX(x) =
∫ ∞

−∞
f(x, y) dy.

DEFINITION 47

In this setting, for y ∈ R with fY (y) > 0, the conditional pdf for X given Y = y is

fX|Y = fX,Y (x, y)
fY (y) .

For y fixed, we can check if this is a pdf:

• Non-negative;

• Integrate to 1: ∫ ∞

−∞
fX|Y (x | y) dx =

∫ ∞

−∞

fX,Y (x, y)
fY (y) dx

=
∫∞

−∞ fX,Y (x, y) dx

fY (y)

= fY (y)
fY (y)

= 1.
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In our example, −1 ≤ −x ≤ y ≤ x ≤ 1, so

fY (y) =
∫ ∞

−∞
fX,Y (x, y) dx

=
∫ 1

|y|
2x2 dx

=
[

2
3x3

]x=1

x=|y|

= 2
3(1 − |y|3), −1 ≤ y ≤ 1.

Check: ∫ 1

−1

2
3(1 − |y|3) dy =

∫ 0

−1

2
3(1 + y3) dy +

∫ 1

0

2
3(1 − y3) dy

=
[

2
3y + 1

6y4
]y=0

y=−1
+
[

2
3y − 1

6y4
]y=1

y=0

= −
(

−2
3 + 1

6

)
+
(

2
3 − 1

6

)
= 1

2 + 1
2

= 1.

Thus,

fX|Y (x | y) =

3 x2

1 − |y|3
, y ≤ x ≤ 1,

0, otherwise,

y ∈ [−1, 1]

For example, if y = −1/2, then

fX|Y (x | −1/2) =


24
7 x2,

1
2 ≤ x ≤ 1,

0, otherwise.

We can compute

E[X | Y = y] =
∫ ∞

−∞
xfX|Y (x | y) dx

=
∫ 1

|y|
3 x3

1 − |y|3
dx

= 3
1 − |y|3

∫ 1

|y|
x3 dx

= 3
1 − |y|3

[
1
4x4

]x=1

x=|y|

= 3
4(1 − |y|3) (1 − |y|4).

So,

E
[
X

∣∣∣∣ Y = −1
2

]
= 3

4(7/8)
15
16 = 45

56 .
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If y was not fixed, we would have

E[X | Y ] = 3
4(1 − |Y |3) (1 − Y 4),

which is a random variable.

REMARK 11: Why do we care about E[X | Y ]?

E[X | Y ] is the best guess for the value of X, based on Y , in the sense that it minimizes

E
[
(X − E[X | Y ])2].

That is, E[Y | X] in statistics is the true regression function.

E[g(X, Y ) | Y = y] =
∫ ∞

−∞
g(x, y)fX|Y (x | y) dx.

Thus, E[g(X, Y ) | Y ] is the best guess for g(X, Y ), based on Y . It has the property that

E[E[g(X, Y ) | Y ]] = E[g(X, Y )]

EXAMPLE 60

Suppose X is the first arrival time for a Poisson process with rate λ = 2, and Y is the second arrival time.
So, the joint pdf is

fX,Y (x, y) =
{

4e−2y, 0 ≤ x < y,

0, otherwise.

Check: ∫ ∞

0

∫ ∞

x

4e−2y dy dx =
∫ ∞

0

[
−2e−2y

]y→∞
y=x

dx

=
∫ ∞

0
2e−2x dx

=
[
−e−2x

]x→∞
x=0

= 0 − (−1)
= 1.

The marginal pdf for Y is

fY (y) =
∫ ∞

0
fX,Y (x, y) dx

=
∫ y

0
4e−2y dx

=
[
x4e−2y

]x=y

x=0

= 4ye−2y, y ≥ 0,

which is GAM(2, 2). The conditional pdf of X given Y is

fX|Y (x | y) =


4e−2y

4ye−2y
, x ∈ [0, y],

0, otherwise
=


1
y

, x ∈ [0, y],

0, otherwise.
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For a fixed Y -value Y = y, X is conditionally Uniform[0, y]. That is,

X

Y
∼ Uniform[0, 1],

and is independent of Y .

Lecture 14
9th November

Suppose X and Y are jointly continuous with joint pdf fX,Y : R2 → [0, ∞). Suppose U = g1(X, Y ), V =
g2(X, Y ). Any region S ⊆ R2 for which P

(
(X, Y ) ∈ S

)
must have Area(S) > 0, which fails in the example

(X, 1 − X) or (X, g(X)) generally.
Let A =

{
(x, y) : fX,Y (x, y) > 0

}
. Suppose g1 and g2 satisfy the property that ∀S ⊆ A, if Area(S) > 0, then{(

g1(x, y), g2(x, y)
)

: (x, y) ∈ S
}

has positive area. If there exists differentiable functions h1, h2 : R2 → R such that

h1
(
g1(x, y), g2(x, y)

)
= x,

h2
(
g1(x, y), g2(x, y)

)
= y,

then U, V have joint pdf
fU,V (u, v) = fX,Y

(
h1(u, v), h2(u, v)

)
J

where
J =

∣∣∣∣∂(x, y)
∂(u, v)

∣∣∣∣ =
∣∣∣∣ ∂x

∂u
∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣ .
EXAMPLE 61: Distribution of the Product of Beta Variables

Suppose X ∼ Beta(2, 3) and Y ∼ Beta(5, 9) are independent. Let U = XY and V = X. Hence,

g1(x, y) = xy, g2(x, y) = x,

and
h1(u, v) = v, h2(x, y) = u

v
.

Since the range of (X, Y ) is [0, 1]2, the range of (U, V ) is also [0, 1]2. Furthermore, 0 ≤ u ≤ v ≤ 1. By
independence,

fX,Y (x, y) = Γ(5)
Γ(2)Γ(3)x2−1(1 − x)3−1 Γ(14)

Γ(5)Γ(9)y5−1(1 − y)9−1

= Γ(14)
Γ(2)Γ(3)Γ(9)x(1 − x)2y4(1 − y)8.

For 0 ≤ u ≤ v ≤ 1,

fU,V (u, v) = Γ(14)
Γ(2)Γ(3)Γ(9)︸ ︷︷ ︸

C

v(1 − v)2
(

u

v

)4(
1 − u

v

)8
J,

where
J =

∣∣∣∣ 0 1
1/v −u/v2

∣∣∣∣ =
∣∣∣∣−1

v

∣∣∣∣ = 1
v

.

The marginal pdf of U is

fU (u) =
∫ 1

u

Cv(1 − v)2
(

u

v

)4(
1 − u

v

)8 1
v

dv.

47



See textbook [Casella Example 4.3.3] for calculation, not done in class.
Start a Polya’s urn with 2 red, 3 blue, and 9 green:

X = lim red
red + blue

, Y = lim red + blue
all

.

Hence, XY ∼ Beta(2, 12).

EXAMPLE 62

Suppose X ∼ N (1, 4) and Y ∼ N (2, 1) are independent.

fX,Y (x, y) = 1
2π

√
4 · 1

exp
{

− (x − 1)2

2 · 4

}
exp
{

− (y − 2)2

2 · 1

}
.

Let U = X + Y and V = X − Y . Are U and V independent? (U, V ) can have any values in R2.

g1(x, y) = xy, g2(x, y) = x − y,

and
h1(u, v) = u + v

2 , h2(u, v) = u − v

2 .

The Jacobian is
J =

∣∣∣∣1/2 1/2
1/2 −1/2

∣∣∣∣ =
∣∣∣∣−1

4 − 1
4

∣∣∣∣ = 1
2 .

Thus,

fU,V (u, v) = 1
4π

exp
{

−
( u+v

2 − 1)2

8 −
( u−v

2 − 2)2

2

}
1
2

= 1
8π

exp
{

− (u + v − 2)2

32 − (u − v − 4)2

8

}
= 1

8π
exp
{

− (u + v)2

32 − (u − v)2

8 + 4(u + v)
32 + 8(u − v)

8 − 4
32 − 16

8

}
= 1

8π
exp
{

− (u + v)2

32 − 4(u − v)2

32 + 4(u + v)
32 + 32(u − v)

32 − 4
32 − 64

32

}
= 1

8π
exp
{

−2uv

32 + 8uv

32 + u terms + v terms + constant
}

.

We have uv terms, so U and V are not independent.

DEFINITION 48: Convolution

If X and Y are jointly continuous, U = X + Y , then the convolution is defined by

fU (u) =
∫ ∞

−∞
fX,Y (t, u − t) dt

EXAMPLE 63

Suppose X and Y are independent Uniform[0, 1] where U = X + Y .
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fU (u) =
∫ ∞

−∞
fX,Y (t, u − t) dt

=
{∫ 1

u−1 fX,Y (t, u − t) dt 0 < u < 1∫ u

0 1 dt 1 ≤ u < 2

=


u 0 < u < 1
2 − u 1 ≤ u < 2
0 otherwise.

Lecture 15
11th November

• A sample from a probability distribution is a sequence, independent, identically distributed (iid) variables
with that distribution.

• A sample with replacement from a finite population (meaning a finite set S) is a sequence of iid random
variables chosen from the uniform distribution on S.

• A sample without replacement from a finite population S is a sequence of random variables each chosen
from the uniform distribution on S, but conditioned to all having distinct values.

For the rest of this lecture, we assume all samples are iid.
DEFINITION 49: Statistic

Given a sample X1, X2, . . . , Xn, a statistic of the sample is a real- or vector-valued function
T (X1, X2, . . . , Xn).

In our probabilistic model, a statistic is another random variable.

EXAMPLE 64

Some examples of statistics include:

• Order Statistics: highest value, 2nd highest;

• Percentiles: 90th percentile, median, 1st quantile.

DEFINITION 50: Sample Mean (Average), Sample Variance, Sample Standard Deviation

Given a sample X1, . . . , Xn, the sample mean or average of the sample is

X̄ = 1
n

n∑
i=1

Xi.

The sample variance is

S2 = 1
n − 1

n∑
i=1

(Xi − X̄)2.

The sample standard deviation is S =
√

S2.
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THEOREM 30
n∑

i=1
(Xi − a)2 = arg min

a∈R

n∑
i=1

(Xi − a)2.

Proof: Fix a ∈ R,

n∑
i=1

(Xi − a)2 =
n∑

i=1
((Xi − X̄) + (X̄ − a))2

=
n∑

i=1
(Xi − X̄)2 + 2

n∑
i=1

(Xi − X̄)(X̄ − a)︸ ︷︷ ︸
0

+
n∑

i=1
(X̄ − a)2

=
n∑

i=1
(Xi − X̄)2 +

n∑
i=1

(X̄ − a)2

>

n∑
i=1

(Xi − X̄)2,

unless a = X̄, in which case they are equal. The middle term is 0 since

n∑
i=1

(Xi − X̄)(X̄ − a) = (X̄ − a)
n∑

i=1
(Xi − X̄)

= (X̄ − a)(0)
= 0.

THEOREM 31

(n − 1)S2 =
n∑

i=1
X2

i − nX̄2.

Proof: By the previous argument with a = 0,
n∑

i=1
X2

i =
n∑

i=1
(Xi − X̄)2 +

n∑
i=1

X̄2

= (n − 1)S2 + nX̄2.

THEOREM 32

Suppose X1, X2, . . . , Xn is an iid sample from a probability distribution with mean µ ∈ R and variance
σ2 < ∞. Then,

(i) E[X̄] = µ;

(ii) Var(X̄) = σ2/n;

(iii) E[S2] = σ2.

Proof:

(i) Easy: E[X̄] = E
[ 1

n

∑n
i=1 Xi

]
= 1

n nE[X1] = µ.
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(ii) Still easy:

Var(X̄) = Var
(

1
n

n∑
i=1

Xi

)

= 1
n2 Var

(
n∑

i=1
Xi

)

= 1
n2

n∑
i=1

Var(Xi) Xi ⊥⊥ Xj for i ̸= j

= 1
n2 n Var(X1) Xi iid

= σ2

n
.

(iii) Still easy, but long

E[S2] = E

[
1

n − 1

n∑
i=1

(Xi − X̄)2

]

= 1
n − 1

n∑
i=1

E
[
(Xi − X̄)2]

= n

n − 1 E[(X1 − X̄)2]

= n

n − 1 E

[(
X1 −

n∑
i=1

Xi

n

)2
]

= n

n − 1

{
E[X2

1 ] − 2E
[

X1

n∑
i=1

Xi

n

]
+ E[X̄2]

}

= n

n − 1

{
(σ2 + µ2) +

(
σ2

n
+ µ2

)
− 2
(
E
[
X1

X1

n

]
+ E

[
X1

n∑
i=2

Xi

n

])}

= n

n − 1

{
(σ2 + µ2) +

(
σ2

n
+ µ2

)
− 2
(

1
n
E[X2

1 ] + 1
n
E[X1X2]

)}
= n

n − 1

{
(σ2 + µ2) +

(
σ2

n
+ µ2

)
− 2
(

1
n

(σ2 + µ2) + n − 1
n

E[X1]E[X2]
)}

= n

n − 1

{
(σ2 + µ2) +

(
σ2

n
+ µ2

)
− 2
(

1
n

(σ2 + µ2) + n − 1
n

µ2
)}

= n

n − 1

{
σ2 + µ2 + σ2

n
+ µ2 − 2

n
σ2 − 2

n
µ2 − 2n − 1

n
µ2
}

= n

n − 1

{
(n − 1)σ2

n

}
= σ2.
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DEFINITION 51: Exponential Family

A family of pdfs (continuous) or pmfs (discrete) form an exponential family if it has the form

f(x | θ) = h(x)c(θ) exp
{

k∑
i=1

wi(θ)ti(x)
}

,

where h(x) ≥ 0, c(θ) ≥ 0. All real-valued functions h and t1, . . . , tk cannot depend on θ; c and w1, . . . , wk

cannot depend on x.

EXAMPLE 65

For n fixed, the family of Binomial distributions BIN(n, p) for 0 < p < 1 form an exponential family.

Solution: First,

f(j | p) =
(

n

j

)
pj(1 − p)n−j =

(
n

j

)(
p

1 − p

)j

(1 − p)n,

where we define

h(j) =
{(

n
j

)
, 0 ≤ j ≤ n,

0, otherwise,

c(p) =
{

(1 − p)n, 0 < p < 1
0, otherwise.

We want (
p

1 − p

)j

= exp{w1(p)t1(j)},

so if we set t1(j) = j, we get

exp{w1(p)j} =
(

p

1 − p

)j

=⇒ w1(p)j = j ln
(

p

1 − p

)
=⇒ w1(p) = ln

(
p

1 − p

)
.

Therefore,

f(j | p) = h(j)c(p) exp{w1(p)t1(j)} =
(

n

j

)
(1 − p)n exp

{
ln
(

p

1 − p

)
j

}
.

EXAMPLE 66

The normal distribution N (µ, σ2) form an exponential family for µ ∈ R, 0 < σ2 < ∞.

Solution: First,

f(x | µ, σ2) = 1√
2πσ2

exp
{

− (x − µ)2

2σ2

}
= 1√

2πσ2
exp
{

− x2

2σ2 − µ2

2σ2 + µx

σ2

}
= 1√

2πσ2
exp
{

− µ2

2σ2

}
exp
{

− x2

2σ2 + µx

σ2

}
.
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Define the following functions:

h(x) = 1,

c(µ, σ2) = 1√
2πσ2

exp
{

− µ2

2σ2

}
,

w1(µ, σ2) = − 1
2σ2 , t1(x) = x2,

w2(µ, σ2) = µ

σ2 , t2(x) = x.

We try to fit this representation with as few wi’s and ti’s as possible. If the number of terms in the sum k
(number of wi’s and ti’s) equals the number of parameters for the family of distributions, then this is a
full exponential family.
If k is greater than the number of parameters, then this is a curved exponential family.

THEOREM 33

If X is a random variable whose distribution comes from an exponential family,

f(x | θ) = h(x)c(θ) exp
{

k∑
i=1

wi(θ)ti(x)
}

,

then for any parameter θ,

(i) E

[
k∑

i=1

∂wi(θ)
∂θj

ti(X)
]

= − ∂

∂θj
ln(c(θ));

(ii) Var
(

k∑
i=1

∂wi(θ)
∂θj

ti(X)
)

= − ∂2

∂θ2
j

ln(c(θ)) − E

[
k∑

i=1

∂2wi(θ)
∂θ2

j

ti(X)
]
.

EXAMPLE 67

Let X ∼ BIN(n, p). From Example 65, we know that

h(j) =
{(

n
j

)
, 0 ≤ j ≤ n,

0, otherwise,

c(p) =
{

(1 − p)n, 0 < p < 1
0, otherwise,

t1(j) = j,

w1(p) = ln
(

p

1 − p

)
.

To use E
[∑k

i=1
∂wi(p)

∂p ti(X)
]

= − ∂
∂p ln(c(p)), we compute

∂wi(p)
∂p

= ∂

∂p
ln
(

p

1 − p

)
= 1

p/(1 − p)
(1 − p) · 1 − p(−1)

(1 − p)2 = 1
p(1 − p) ,

−∂ ln(c(p))
∂p

= − ∂

∂p
ln((1 − p)n) = −n

∂

∂p
ln(1 − p) = −n

1
1 − p

(−1) = n

1 − p
.

Hence,

E
[

1
p(1 − p)X

]
= n

1 − p
=⇒ E[X] = np.
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THEOREM 34

Suppose X1, . . . , Xn are iid samples from a distribution that comes from an exponential family,

f(x | θ) = h(x)c(θ) exp
{

k∑
i=1

wi(θ)ti(x)
}

.

Define statistics T1, T2, . . . , Tk by

Ti(X1, . . . , Xn) =
n∑

j=1
ti(Xj), 1 ≤ i ≤ k.

If the set {
(w1(θ), w2(θ), . . . , wk(θ)) : θ is an allowed value for the parameter

}
contains an open subset of Rk (usually true for full exponential families), then the distribution of the vector
(T1, . . . , Tk) = T is itself an exponential family of the form

fT (u1, . . . , uk | θ) = H(u1, . . . , uk)c(θ)n exp
{

k∑
i=1

wi(θ)ui

}
.

Lecture 16
16th November

DEFINITION 52: Order Statistic

Given a sample X1, X2, . . . , Xn, let X(1) denote the lowest value in the sample,

X(j) = min{x ∈ R :
∣∣{i ∈ [n] : Xi ≤ x}

∣∣ ≥ j}, 1 ≤ j ≤ n.

So X(1) ≤ X(2) ≤ · · · ≤ X(n) is a decreasing re-ordering of our sample. We call X(j) the jth order
statistic of the sample.

EXAMPLE 68

If our sample is
X1 X2 X3 X4 X5 X6 X7
5 3 6 2 9 1 2

Then,
X(1) X(2) X(3) X(4) X(5) X(6) X(7)

1 2 2 3 5 6 9

DEFINITION 53: Median

The median of a sample of size n is
X((n+1)/2), n odd,

X(n/2) + X((n/2)+1)

2 , n even.

DEFINITION 54: Percentile

For 1
2n < p < 1 − 1

2n , we can define the pth percentile as X([np]), where [x] denotes rounding to the
nearest integer.
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If we wanted to be more precise, we could define the pth percentile as

(⌊np⌋ + 1 − np)X(⌊np⌋) + (np − ⌊np⌋)X(⌊np⌋+1),

where ⌊x⌋ is the floor of x.

THEOREM 35

Suppose X1, . . . , Xn is a sample from a discrete distribution with possible values a1 < a2 < a3 < · · · . Define
pi = P{X = ai} and Pi =

∑i
j=1 pi = P{X ≤ ai}. Then,

P{X(j) ≤ ai} =
n∑

m=j

(
n

m

)
P m

i (1 − Pi)n−m.

P{X(j) = ai} =
n∑

m=j

(
n

m

)[
P m

i (1 − Pi)n−m − P m
i−1(1 − Pi−1)n−m

]
.

Proof: For 1 ≤ k ≤ n, let

Ik =
{

1, Xk ≤ ai,

0, otherwise.

Since the Xk are independent, the (Ik, k = 1, 2, . . . , n) are independent. Thus,

S =
n∑

k=1
Ik ∼ BIN(n, q),

where q = P{X1 ≤ ai} = Pi. Hence,

P{X(j) ≤ ai} = P{S ≥ j}

=
n∑

m=j

P{S = m}

=
n∑

m=j

(
n

m

)
P m

i (1 − Pi)n−m.

The second formula is
P{X(j) = ai} = P{X(j) ≤ ai} − P{X(j) ≤ ai−1}.

EXAMPLE 69

Suppose G1, . . . , G9
iid∼ GEO(1/6).

pi =
(

5
6

)i−1 1
6 = P{G = 1},

Pi = P{G ≤ i} = 1 − P{G > i} = 1 −
(

5
6

)i

.
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Median:

P{G(5) = k} =
9∑

m=5

(
9
m

){
P m

k (1 − Pk)9−m − P m
i−1(1 − Pk)9−m

}
=

9∑
m=5

(
9
m

){[
1 −

(
5
6

)k]m(5
6

)k(9−m)
−
[
1 −

(
5
6

)k−1]m(5
6

)(k−1)(9−m)
}

THEOREM 36

For any sample of size n, from any discrete distribution, for any possible value of a of the variables,

P{X(j) = a} =
n∑

m=j

(
n

m

){
P{X ≤ a}m P{X > a}n−m − P{X < a}m P{X ≥ a}n−m

}
.

THEOREM 37

Suppose X1, . . . , Xn is a sample from a continuous distribution on R with pdf f and cdf of F . Then,

P{X(j) ≤ t} =
n∑

m=j

(
n

m

)
F (t)m(1 − F (t))n−m

is the cdf of X(j). The pdf of X(j) is

P(X(j) ∈ dt) = fX(j)(t) dt

=
(

n

j − 1, 1, n − j

)
F (t)j−1(1 − F (t))n−jf(t) dt,

noting that (
n

j − 1, 1, n − j

)
= j

(
n

j

)
.

Proof: The argument for the first formula is the same as in the discrete case. To get the second, we will
differentiate. Define gm(x) = xm(1 − x)n−m, so

g′
m(x) = mxm−1(1 − x)n−m + xm(n − m)(1 − x)n−m−1(−1)

=
(
m(1 − x) − (n − m)x

)
xm−1(1 − x)n−m−1

= (m − nx)xm−1(1 − x)n−m−1.

Also,

fX(j)(t) = d
dt

FX(t)

=
n∑

m=j

d
dt

(
n

m

)
gm(F (t))

=
n∑

m=j

(
n

m

)
(m − nF (t))F (t)m−1(1 − F (t))n−m−1f(t),

RIP.
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EXAMPLE 70

Suppose U1, . . . , Un
iid∼ U [0, 1].

fU(j)(t) = j

(
n

j

)
tj−1(1 − t)n−j · 1

= n!
(j − 1)!(n − j)! t

j−1(1 − t)n−j .

That is, U(j) ∼ Beta(j, n + 1 − j). Also,

E[U(j)] = j

j + n + 1 − j
= j

n + 1 .

Lecture 17
18th November

DEFINITION 55: Convergence in Probability

Given a sequence of random variables X1, X2 . . ., and a random variable Y , we say the sequence converges
in probability to Y , denoted

Xn
p−→ Y

if
∀ε > 0, lim

n→∞
P
{

|Y − Xn| ≥ ε
}

= 0.

THEOREM 38: Weak Law of Large Numbers (WLLN)

If X1, X2, . . . is a sequence of independent random variables with

Var(Xn) ≤ σ2 < ∞, ∀n,

which implies all Xn have finite expectation, then

Sn − E[Sn]
n

p−→ 0, ∀n,

where Sn =
∑n

j=1 Xj .

Proof: Let ε > 0.

P
(∣∣∣∣Sn − E[Sn]

n

∣∣∣∣ ≥ ε

)
= P

(∣∣∣∣Sn

n
− E

[
Sn

n

]∣∣∣∣ ≥ ε

)
≤

Var
(

Sn

n

)
ε2

≤
1

n2 Var(Sn)
ε2

≤ (nσ2)/n2

ε2

= σ2

nε2
n→∞−−−−→ 0.
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COROLLARY 2: Weak Law of Large Numbers

If the {Xn}n≥1 are iid, then
Sn

n

p−→ E[X1].

THEOREM 39

Fix 0 < q < p < ∞. For a random variable X, if E
[
|X|p

]
< ∞, then E

[
|X|q

]
< ∞.

Proof: Suppose E
[
|X|p

]
< ∞.

E
[
|X|q

]
= E

[
|X|q I

{
|X| < 1

}]
+ E

[
|X|q I

{
|X| ≥ 1

}]
≤ P

{
|X| < 1

}
+ E

[
|X|p I

{
|X| ≥ 1

}]
< ∞.

THEOREM 40

Suppose X1, X2, . . . , Xn
iid∼ N (µ, σ2) and

Sn =

√√√√ 1
n − 1

n∑
j=1

(Xj − X̄)2.

Then,

(n − 1)S2
n

σ2 ∼ χ2(n − 1) = GAM
(

n − 1
2 ,

1
2

)
.

Proof: Casella Section 5.3.

EXAMPLE 71

By Theorem 40,

Var
(

(n − 1)S2
n

σ2

)
= 2n − 2,

hence
Var(S2

n) = σ4(2n − 2)
(n − 1)2 = 2σ4

n − 1 .

Using Chebyshev’s inequality,

P
{

|S2
n − σ2| ≥ ε

}
≤ 2σ4/(n − 1)

ε2
n→∞−−−−→ 0.

Hence,
S2

n
p−→ σ2.

THEOREM 41

For any continuous function g : R → R, if
Xn

p−→ Y,

then
g(Xn) p−→ g(Y ).
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COROLLARY 3

Sn
p−→ σ2 for sample standard deviation of N (µ, σ2) samples.

Proof: Take square roots.

DEFINITION 56: Almost Sure Convergence

Given a sequence of random variables X1, X2, . . ., and a random variable Y , we say the sequence converges
almost surely (a.s.) to Y , denoted

Xn
a.s.−−→ Y

if
∀ε > 0, P

{
lim

n→∞
|Y − Xn| ≥ ε

}
= 0.

Equivalently,
P
{

lim
n→∞

|Y − Xn| = 0
}

= 1.

THEOREM 42: Almost Sure Convergence =⇒ Convergence in Probability

If Xn
a.s.−−→ Y , then Xn

p−→ Y .

Proof: Assume Xn
a.s.−−→ Y . Fix ε > 0.

N = max
{

{n ∈ N : ∀m > n, |Y − Xn| ≤ ε} ∪ {1}
}

(the last time that Y − Xn > ε). Since Xn
a.s.−−→ Y , N is a.s. finite so P{N > n} n→∞−−−−→ 0.

P
(
|Y − Xn| ≥ ε

)
≤ P{n ≤ N} n→∞−−−−→ 0.

LEMMA 1: Borel-Cantelli Lemma

For a sequence of events A1, A2, . . ., if
∞∑

n=1
P(An) < ∞,

then

P(infinitely many of the An happen) = P

 ∞⋂
n=1

∞⋃
j=n

Aj

 = 0.

If the (An, n ≥ 1) are independent, then the converse of this is true.

EXAMPLE 72: Convergence in Probability ̸ =⇒ Almost Sure Convergence

Suppose for all n ≥ 1, Xn
iid∼ BERN(1/n). Note that Xn

p−→ 0, but

∞∑
n=1

P{Xn = 1} =
∞∑

n=1

1
n

= ∞.

By the Borel-Cantelli lemma, there are a.s. finitely many n for which Xn = 1.

Lecture 17
30th November
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DEFINITION 57

We say a sequence of events (An)n≥1 happens infinitely often on an outcome ω if for all N , there exists
n > N such that ω ∈ An where {

(An)n≥1 i.o
}

=
⋂

N≥1

⋃
n≥N

.

THEOREM 43: Borel-Cantelli Lemma

If
∑∞

n=1 P(An) < ∞, then
P{(An)n≥1 i.o} = 0.

Proof: Let Y =
∑∞

n=1 I{An}, so Y ∈ N ∪ {∞}.

E[Y ] = E

[ ∞∑
n=1

I{An}

]

=
∞∑

n=1
E[I{An}]

=
∞∑

n=1
(1P(An) + 0P(Ac

n))

=
∞∑

n=1
P(An)

< ∞.

Thus, P{Y = ∞} = 0. Alternatively,

P{Y > n} ≤ E[Y ]
n

n→∞−−−−→ 0,

so P{Y = ∞} = 0.

COROLLARY 4

If the events An are independent, then the converse of Theorem 43 is also true.

Proof: Suppose the (An)n≥1 are independent and that
∑∞

n=1 P(An) = ∞ andwewill showP{(An) i.o.} =
1. For all N ∈ N,

P

 ⋃
n≥N

An

 = 1 − P

 ∞⋃
n≥N

Ac
n


= 1 −

∏
n≥N

(1 − P(An))

≥ 1 −
∏

n≥N

e− P(An)

= 1 − e
−
∑

n≥N
P(An)

= 1 − e−∞

= 1.
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EXAMPLE 73: Convergence in Probability ̸ =⇒ Almost Sure Convergence

For all n ≥ 1, Xn
iid∼ BERN(1/n). Then,

P{|Xn − 0| > ε} = 1
n

→ 0.

But,
∞∑

n=1
P{Xn = 1} =

∞∑
n=1

1
n

= ∞.

Let Yn = nXn, so

Yn =
{

n, w.p. 1
n ,

0, w.p. 1 − 1
n .

E[Yn] = 1 for every n,
Yn

p−→ 0,

but E[Yn] → 1, so Yn ̸ a.s.−−→ 0.

LEMMA 2: Kronecker’s Lemma

For a sequence (Xn)n≥1 ∈ (0, ∞)N, if
∑∞

n=1
Xn

n < ∞, then lim
N→∞

1
N

∑N
n=1 Xn = 0.

Proof: Suppose S =
∑∞

n=1
Xn

n < ∞, then

N∑
n=1

Xn

n
−

N∑
n=1

Xn

N
=

N∑
n=1

Xn

n

(
1 − n

N

)
n→∞−−−−→ S.

Fix ε > 0. Let N1 be sufficiently large such that

∞∑
n=N1

Xn

n
<

ε

2 ,

and let N2 > N1 be sufficiently large so that

N1

N2
<

ε

2S
,

that is, N2 = ⌈ 2N1S
ε ⌉. Then,

N2∑
n=1

Xn

n

(
1 − n

N2

)
≥

N1∑
n=1

Xn

n

(
1 − N1

N2

)

≥
(

1 − ε

2S

) N1∑
n=1

Xn

n

≥
(

1 − ε

2S

)(
S − ε

2

)
= S − S

ε

2S
− ε

2 + ε2

4S

≥ S − ε

2 − ε

2
= S − ε.
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We conclude that
N∑

n=1

Xn

n
−

N∑
n=1

Xn

N

n→∞−−−−→ S.

Therefore,
N∑

n=1

Xn

N

N→∞−−−−→ S − S = 0.

THEOREM 44: Strong Law of Large Numbers

If X1, X2, . . . is a sequence of IID random variables with E[|Xi|] < ∞, then

1
n

n∑
j=1

Xj
a.s.−−→ E[X1]

as n → ∞.

First Step of Proof: Let Yn = Xn I{|Xn| ≤ n}.

Lecture 18
2nd December

THEOREM 45: Kolmogorov’s Inequality

Suppose X1, . . . , Xn are independent random variables with finite expectation. For 1 ≤ j ≤ n, let Sj =
X1 + · · · + Xj . Then for any ε > 0,

P
(

max
1≤j≤n

∣∣Sj − E[Sj ]
∣∣ ≥ ε

)
≤ Var(Sn)

ε2 .

Proof: Assume WLOG, E[Xj ] = 0 for j = 1, . . . , n, so E[Sj ] = 0 as well. Let

Aj =
{

|Sj | < ε, 1 ≤ j < k,

|Sk| ≥ ε, otherwise.

A =
n⋃

k=1
Ak = { max

1≤j≤n
|Sj | ≥ ε}.

Let I{A} = 1 if A happens, and I{A} = 0 otherwise. Now,

Var(Sn) = E[S2
n] ≥ E[S2

n I{A}] = E

[
S2

n

( n∑
k=1

I{Ak}
)]

=
n∑

k=1
E[S2

n I{Ak}].

For 1 ≤ k ≤ n, define Yk = Xk+1 + Xk+2 + · · · + Xn so that

Sn = Sk + Yk.
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E[S2
n I{Ak}] = E

[
(Sk + Yk)2 I{Ak}

]
= E[S2

k I{Ak}] + 2E[SkYk I{Ak}] + E[Y 2
k I{Ak}]

= E[S2
k I{Ak}] + 2E[Sk I{Ak}]E[Yk]︸ ︷︷ ︸

0

+E[Y 2
k I{Ak}]

= E[S2
k I{Ak}] + E[Y 2

k I{Ak}]︸ ︷︷ ︸
≥0

≥ E[S2
k I{Ak}]

≥ E[ε2 I{Ak}]
= ε2 P(Ak).

Plugging this back in,

Var(Sn) ≥
n∑

k=1
E[S2

n I{Ak}] ≥
n∑

k=1
ε2 P(Ak) = ε2 P(Ak).

Thus,

P(A) ≤ Var(Sn)
ε2 .

THEOREM 46: Kolmogorov’s Criterion

Suppose X1, X2, . . . are independent random variables with

∞∑
k=1

Var(Xn)
k2 < ∞.

Then,
Sn − E[Sn]

n

a.s.−−→ 0 as n → ∞,

where Sn =
∑n

k=1 Xk for n ≥ 1.

Proof: Assume WLOG that E[Sk] = 0 for k ≥ 1. Fix ε > 0. Let

Ak = |Sn|
n

≥ ε, for some n ∈ (2k−1, 2k].

We want to show
P{(Ak)k≥1 i.o.} = 0.

Using the Borel-Cantelli lemma, we want to show
∑∞

k=1 P(Ak) < ∞.

P(Ak) ≤ P{|Sn| ≥ 2k−1ε} for some n ≤ 2k

≤ Var(S2k )
(2k−1ε)2 by Kolmogorov’s Inequality

= 4
ε2

Var(S2k )
22k

.
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Therefore,

∞∑
k=1

P(Ak) ≤ 4
ε2

∞∑
k=1

Var(S2k )
22k

= 4
ε2

∞∑
k=1

2−2k
2k∑

j=1
Var(Xj)

= 4
ε2

∑
1≤k<∞
1≤j≤2k

2−2k Var(Xj)

= 4
ε2

∞∑
j=1

Var(Xj)
∞∑

k=⌈log2(j)⌉

(2−2)k

= 4
ε2

∞∑
j=1

Var(Xj) (2−2)⌈log2(j)⌉

1 − 2−2

≤ 4
ε2

4
3

∞∑
j=1

Var(Xk)(2−2)log2(j)

= 16
3ε2

∞∑
j=1

Var(Xj)j−2

< ∞

by our hypothesis. It’s worth noting that to change the sums we have j ≤ 2k, 2k ≥ j, k ≥ log2(j) so
k ≥ ⌈log2(j)⌉. Therefore, by Borel-Cantelli lemma,

P{(Ak)k≥1 i.o.} = 0.

Since this holds for every ε > 0,

P
{

lim
n→∞

|Sn|
n

= 0
}

= 1.

THEOREM 47: Strong Law of Large Numbers (IID)

If X1, X2, . . . are IID variables with finite expectation and Sn =
∑n

j=1 Xj for n ≥ 1, then

Sn

n

a.s.−−→ E[X1] as n → ∞.

Proof: For n ≥ 1, let Yn = Xn I{|Xn| ≤ n}.
∞∑

n=1
P{|Xn| > n} =

∞∑
n=1

∞∑
k=n

P{k < |X1| ≤ k + 1}

=
∞∑

k=1

k∑
n=1

P{k < |X1| ≤ k + 1}

=
∞∑

k=1
k P{k ≤ |X1| ≤ k + 1}

≤ E
[
|X1|

]
< ∞.
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Thus, by Borel-Cantelli,
P{Xn ̸= Yn i.o.} = 0.

Hence, it suffices to prove
S′

n

n

a.s.−−→ E[X1] as n → ∞,

where S′
n =

∑n
j=1 Yj . We can also assume WLOG E[X1] = 0.

E[Yn] = E[X1 I{|X1| ≤ n}] → E[X1] as n → ∞

(Application of the Dominated Convergence Theorem). Therefore,

1
n

n∑
j=1

E[Yj ] → 0 as n → ∞.

It would suffice to prove
1
n

n∑
j=1

(Yj − E[Yj ]︸ ︷︷ ︸
Zj

) a.s.−−→ 0 as n → ∞.

Note that E[Zj ] = 0 =⇒ Var(Zj) = Var(Yj). By Kolmogorov’s Criterion, it would be sufficient to show

∞∑
k=1

Var(Zj)
j2 < ∞.

∞∑
k=1

Var(Yk)
k2 ≤

∞∑
k=1

E[Y 2
k ]

k2

=
∞∑

k=1

E[X2
k I{Xk} < k]

k2

=
∞∑

k=1

1
k2

k∑
j=1

E[X2
1 I{j − 1 < |X1| < j}]

=
∞∑

j=1
E[X2

j I{j − 1 < |Xj | ≤ j}]
∞∑

k=j

1
k2

≤
∞∑

j=1
E[X2

j I{j − 1 < |Xj | ≤ j}]C
j

for some C > 0

≤
∞∑

j=1
E[j|X1| I{j − 1 < |X1| ≤ j}]C

j

= C

∞∑
j=1

E[|X1| I{j − 1 < |X1| ≤ j}]

= C E

|X1|
∞∑

j=1
I{j − 1 < |X1| ≤ j}


= C E[|X1|]
< ∞.

Lecture 19
7th December
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DEFINITION 58: Statistic

Recall, given a sample (X1, X2, . . . , Xn) = X, a statistic of the sample is some function T (X) ∈ Rd.

DEFINITION 59

We say T is a sufficient statistic for a parameter θ of the distribution of the sample if any inference about
θ based on the sample should depend only on T (X).

DEFINITION 60

T (X) is a sufficient statistic for θ if the conditional distribution of X given T (X) does not depend on θ.

θ ↔ T (X) ↔ X.

• In a Bayesian framework, we would say θ and X are conditionally independent given T (X).

• If T (x) = T (y), then our inferences about θ should be the same in the sample.

THEOREM 48

If p(x | θ) is the joint pmf or pdf of the sample X and q(t | θ) is the pmf or (joint) pdf of T (X), then T (X)
is a sufficient statistic for θ if and only if the ratio

p(x | θ)
q(T (x) | θ) = P({X = x} | {T (X) = T (x)})

does not depend on θ; that is,

∀x ∃C ∈ [0, ∞) such that ∀θ,
p(x | θ)

q(T (x) | θ) = C.

EXAMPLE 74

X1, . . . , Xn
iid∼ BERN(θ) for 0 < θ < 1. Let T (X) =

∑n
j=1 Xj , so T (X) ∼ BIN(n, θ). Fix x ∈ {0, 1}n. Let

t =
∑n

i=1 xi = T (x). First,

p(x | θ) =
n∏

i=1

{
θ, xi = 1,

1 − θ, xi = 0
= θT (x) = (1 − θ)n−T (x).

REMARK 12

P{11010 | θ} = θ · θ · (1 − θ) · θ · (1 − θ) = θ3(1 − θ)2.

Second,

q(t | θ) =
(

n

t

)
θt(1 − θ)n−t.

REMARK 13

P{three 1’s and two 0’s | θ} = P{T (X) = 3 | θ}.

Using these two facts,
p(x | θ)

q(T (x) | θ) = 1(
n

T (x)
) ,
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which does not depend on θ, so T is sufficient for θ.

EXAMPLE 75

X = (X1, . . . , Xn) iid∼ N (µ, σ2). Suppose σ2 is known and µ is unknown.

T (X) = X̄ = X1 + · · · + Xn

n
∼ N

(
µ,

σ2

n

)
.

Recall the following trick:

n∑
i=1

(xi − µ)2 =
n∑

i=1

(
(xi − x̄) + (x̄ − µ)

)
= n(x̄ − µ)2 +

n∑
i=1

(xi − x̄) + 2(x̄ − µ)
n∑

i=1
(xi − x̄)︸ ︷︷ ︸

0

= n(x̄ − µ)2 +
n∑

i=1
(xi − x̄).

First,

p(x | µ, σ2) = (2πσ2)−n/2 exp
{

−
∑n

i=1(xi − µ)2

2σ2

}
.

Second,

q(t(x) | µ, σ2) =
(

2π
σ2

n

)−1/2
exp
{

− (x̄ − µ)2

2(σ2/n)

}
.

Hence,

p

q
=

√
n(2πσ2)(1−n)/2 exp

{
− 1

2σ2

(
n(x̄ − µ)2 +

n∑
i=1

(xi − x̄)2
)

+ n(x̄ − µ)2

2σ2

}

=
√

n(2πσ2)−(n−1)/2 exp
{

−
∑n

i=1(xi − x̄)2

2σ2

}
,

which does not depend on µ, so T is a sufficient statistic for µ.

The vector of order statistics of a sample X(1) ≤ X(2) ≤ · · · ≤ X(n) is sufficient for everything.

THEOREM 49: Factorization Theorem (Halmos + Savage, 1949)/(Neyman 1935)

T is sufficient for θ if and only if there exists functions g and h such that

∀x ∀θ, p(x | θ) = g(T (x | θ))h(x)

Proof (Discrete Setting): Assume X is a sample from a discrete distribution.
( =⇒ ) Assume T is sufficient. Choose g(t, θ) = q(t | θ) and h(x) = P{X = x|T (X) = T (x)} (sufficiency
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was used to define h(x)). Hence,

g(T (x), θ)h(x) = q(T (x) | θ) P{X = x | θ}
P{T (X) = T (x) | θ}

= q(T (x) | θ) p(x | θ)
q(T (x) | θ)

= p(x | θ).

( ⇐= ) Assume p(x | θ) = g(T (x), θ)h(x) for some g and h. Then,

q(t | θ) =
∑

x : T (x)=t

p(x | θ).

Therefore,

p(x | θ)
q(T (x) | θ) = g(T (x), θ)h(x)∑

y : T (y)=T (x) g(T (y), θ)h(y)

= g(T (x), θ)h(x)∑
y : T (y)=T (x) g(T (x), θ)h(y)

= h(x)∑
y : T (y)=T (x) h(y) ,

which does not depend on θ, so T is sufficient.

EXAMPLE 76

In our N (µ, σ2) example with T (X) = X̄, we have

h(x) =
√

n(2πσ2)−(n−1)/2 exp
{

−
∑n

i=1(xi − x̄)2

2σ2

}
,

and

q(t, µ) =
(

2π
σ2

n

)−1/2
exp
{

− (t − µ)2

2(σ2/n)

}
.

EXAMPLE 77

IID Uniform{1, 2, . . . , θ} for θ ∈ N.

p(x | θ) =


1
θn

, max
1≤i≤n

xi ≤ θ,

0, otherwise.

So, T (x) = max1≤i≤n xi. Take

g(t, θ) =


1
θn

, ti ≤ θ,

0, otherwise,

and

h(x) =
{

1, xi ∈ N ∀i,

0, otherwise.
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